DC FieldValueLanguage
dc.contributor.authorBelardo, Francescoen
dc.contributor.authorLi Marzi, Enzoen
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorWang, Jianfengen
dc.date.accessioned2020-05-01T20:12:47Z-
dc.date.available2020-05-01T20:12:47Z-
dc.date.issued2011-12-01en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1134-
dc.description.abstractFor a graph matrix M, the Hoffman limit value H(M) is the limit (if it exists) of the largest eigenvalue (or, M-index, for short) of M(Hn), where the graph Hn is obtained by attaching a pendant edge to the cycle Cn-1 of length n-1. In spectral graph theory, M is usually either the adjacency matrix A or the Laplacian matrix L or the signless Laplacian matrix Q. The exact values of H(A) and H(L) were first determined by Hoffman and Guo, respectively. Since Hn is bipartite for odd n, we have H(Q)=H(L). All graphs whose A-index is not greater than H(A) were completely described in the literature. In the present paper, we determine all graphs whose Q-index does not exceed H(Q). The results obtained are determinant to describe all graphs whose L-index is not greater then H(L). This is done precisely in Wang et al. (in press) [21].en
dc.publisherElsevier-
dc.relationPRIN 2008 (Italy) “Disegni Combinatorici, Grafi e loro Applicazioni”-
dc.relationSerbian Ministry of Science, Grant no. 144015-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relationNational Science Foundation of China (No. 10961023)-
dc.relationNSFQH (SRIPQHNU) (No. 2011-ZR-616)-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectHoffman limit value | Index | Limit point of the eigenvalues | Signless Laplacian matrix | Spectral radiusen
dc.titleGraphs whose signless Laplacian spectral radius does not exceed the Hoffman limit valueen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2011.05.006en
dc.identifier.scopus2-s2.0-79960837286en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2913en
dc.relation.lastpage2920en
dc.relation.issue11en
dc.relation.volume435en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
Show simple item record

SCOPUSTM   
Citations

5
checked on Apr 2, 2025

Page view(s)

14
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.