DC FieldValueLanguage
dc.contributor.authorBarbedo, Inêsen
dc.contributor.authorCardoso, Domingosen
dc.contributor.authorCvetković, Dragošen
dc.contributor.authorRama, Paulaen
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:47Z-
dc.date.available2020-05-01T20:12:47Z-
dc.date.issued2014-01-01en
dc.identifier.issn0032-5155en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1128-
dc.description.abstractIn spectral graph theory a graph with least eigenvalue -2 is exceptional if it is connected, has least eigenvalue greater than or equal to -2, and it is not a generalized line graph. A (κ τ)-regular set S of a graph is a vertex subset, inducing a κ-regular subgraph such that every vertex not in S has t neighbors in S. We present a recursive construction of all regular exceptional graphs as successive extensions by regular sets.en
dc.publisherEuropean Mathematical Society-
dc.relation.ispartofPortugaliae Mathematicaen
dc.subjectExceptional graphs | Posets | Spectral graph theoryen
dc.titleA recursive construction of the regular exceptional graphs with least eigenvalue -2en
dc.typeArticleen
dc.identifier.doi10.4171/PM/1942en
dc.identifier.scopus2-s2.0-84905126056en
dc.relation.firstpage79en
dc.relation.lastpage96en
dc.relation.issue2en
dc.relation.volume71en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.