DC FieldValueLanguage
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorŽivković, Dejanen
dc.contributor.authorAnđelić, Milicaen
dc.contributor.authorda Fonseca, Carlosen
dc.date.accessioned2020-05-01T20:12:46Z-
dc.date.available2020-05-01T20:12:46Z-
dc.date.issued2016-03-01en
dc.identifier.issn0925-9899en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1120-
dc.description.abstractA graph is reflexive if the second largest eigenvalue of its adjacency matrix is less than or equal to 2. In this paper, we characterize trees whose line graphs are reflexive. It turns out that these trees can be of arbitrary order—they can have either a unique vertex of arbitrary degree or pendant paths of arbitrary lengths, or both. Since the reflexive line graphs are Salem graphs, we also relate some of our results to the Salem (graph) numbers.en
dc.publisherSpringer Link-
dc.relation.ispartofJournal of Algebraic Combinatoricsen
dc.subjectAdjacency matrix | Line graph | Reflexive graph | Salem graph | Second largest eigenvalue | Subdivision graphen
dc.titleReflexive line graphs of treesen
dc.typeArticleen
dc.identifier.doi10.1007/s10801-015-0640-zen
dc.identifier.scopus2-s2.0-84957439116en
dc.relation.firstpage447en
dc.relation.lastpage464en
dc.relation.issue2en
dc.relation.volume43en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 23, 2024

Page view(s)

27
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.