DC FieldValueLanguage
dc.contributor.authorAlazemi, Abdullahen
dc.contributor.authorAnđelić, Milicaen
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:46Z-
dc.date.available2020-05-01T20:12:46Z-
dc.date.issued2016-09-15en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1116-
dc.description.abstractChain graphs (also called double nested graphs) play an important role in the spectral graph theory since every connected bipartite graph of fixed order and size with maximal largest eigenvalue is a chain graph. In this paper, for a given chain graph G, we present an algorithmic procedure for obtaining a diagonal matrix congruent to A+xI, where A is the adjacency matrix of G and x any real number. Using this procedure we show that any chain graph has its least positive eigenvalue greater than 12, and also prove that this bound is best possible. A similar procedure for threshold graphs (also called nested split graphs) is outlined.en
dc.publisherElsevier-
dc.relationKuwait University, Grant No. SM03/15-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectChain graph | Double nested graph | Least positive eigenvalue | Nested split graph | Threshold graphen
dc.titleEigenvalue location for chain graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2016.04.030en
dc.identifier.scopus2-s2.0-84966701407en
dc.relation.firstpage194en
dc.relation.lastpage210en
dc.relation.volume505en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Show simple item record

SCOPUSTM   
Citations

29
checked on Jan 21, 2025

Page view(s)

25
checked on Jan 21, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.