DC FieldValueLanguage
dc.contributor.authorCardoso, Domingosen
dc.contributor.authorCarvalho, Paulaen
dc.contributor.authorRama, Paulaen
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorStanić, Zoranen
dc.date.accessioned2020-05-01T20:12:45Z-
dc.date.available2020-05-01T20:12:45Z-
dc.date.issued2017-01-01en
dc.identifier.issn1452-8630en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1114-
dc.description.abstractFor a (simple) graph H and non-negative integers c0; c1; ... ; cd (cd ≠ 0), p(H) =Σkd=0 ck . Hk is the lexicographic polynomial in H of degree d, where the sum of two graphs is their join and ck . Hk is the join of ck copies of Hk. The graph Hk is the kth power of H with respect to the lexicographic product (H0 = K1). The spectrum (if H is connected and regular) and the Laplacian spectrum (in general case) of p(H) are determined in terms of the spectrum of H and ck's. Constructions of infinite families of cospectral or integral graphs are announced.en
dc.publisherSchool of Electrical Engineering, University of Belgrade-
dc.relationCIDMA - Center for Research and Development in Mathematics and Applications, Project UID/MAT/04106/2013-
dc.relationGeometry, Education and Visualization With Applications-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen
dc.subjectAdjacency matrix | Cospectral graphs | Integral graphs | Laplacian matrix | Lexicographic producten
dc.titleLexicographic polynomials of graphs and their spectraen
dc.typeArticleen
dc.identifier.doi10.2298/AADM1702258Cen
dc.identifier.scopus2-s2.0-85031944955en
dc.relation.firstpage258en
dc.relation.lastpage272en
dc.relation.issue2en
dc.relation.volume11en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
Show simple item record

SCOPUSTM   
Citations

4
checked on Jan 21, 2025

Page view(s)

16
checked on Jan 22, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.