DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen
dc.contributor.authorGhorbani, Ebrahimen
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:45Z-
dc.date.available2020-05-01T20:12:45Z-
dc.date.issued2019-09-30en
dc.identifier.issn0166-218Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1110-
dc.description.abstractA graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. A threshold graph can be obtained from a chain graph by making adjacent all pairs of vertices in one colour class. Given a graph G, let λ be an eigenvalue (of the adjacency matrix) of G with multiplicity k≥1. A vertex v of G is a downer, or neutral, or Parter depending whether the multiplicity of λ in G−v is k−1, or k, or k+1, respectively. We consider vertex types in the above sense in threshold and chain graphs. In particular, we show that chain graphs can have neutral vertices, disproving a conjecture by Alazemi et al.en
dc.publisherElsevier-
dc.relationIPM, Grant No. 96050211-
dc.relationGraph theory and mathematical programming with applications in chemistry and computer science-
dc.relation.ispartofDiscrete Applied Mathematicsen
dc.subjectAdjacency spectrum | Chain graphs | Threshold graphs | Vertex typesen
dc.titleVertex types in threshold and chain graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.dam.2019.02.040en
dc.identifier.scopus2-s2.0-85063034428en
dc.relation.firstpage159en
dc.relation.lastpage168en
dc.relation.volume269en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php-
crisitem.project.fundingProgramDirectorate for Computer & Information Science & Engineering-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333-
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 18, 2024

Page view(s)

21
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.