DC Field | Value | Language |
---|---|---|
dc.contributor.author | Anđelić, Milica | en |
dc.contributor.author | Ghorbani, Ebrahim | en |
dc.contributor.author | Simić, Slobodan | en |
dc.date.accessioned | 2020-05-01T20:12:45Z | - |
dc.date.available | 2020-05-01T20:12:45Z | - |
dc.date.issued | 2019-09-30 | en |
dc.identifier.issn | 0166-218X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/1110 | - |
dc.description.abstract | A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. A threshold graph can be obtained from a chain graph by making adjacent all pairs of vertices in one colour class. Given a graph G, let λ be an eigenvalue (of the adjacency matrix) of G with multiplicity k≥1. A vertex v of G is a downer, or neutral, or Parter depending whether the multiplicity of λ in G−v is k−1, or k, or k+1, respectively. We consider vertex types in the above sense in threshold and chain graphs. In particular, we show that chain graphs can have neutral vertices, disproving a conjecture by Alazemi et al. | en |
dc.publisher | Elsevier | - |
dc.relation | IPM, Grant No. 96050211 | - |
dc.relation | Graph theory and mathematical programming with applications in chemistry and computer science | - |
dc.relation.ispartof | Discrete Applied Mathematics | en |
dc.subject | Adjacency spectrum | Chain graphs | Threshold graphs | Vertex types | en |
dc.title | Vertex types in threshold and chain graphs | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.dam.2019.02.040 | en |
dc.identifier.scopus | 2-s2.0-85063034428 | en |
dc.relation.firstpage | 159 | en |
dc.relation.lastpage | 168 | en |
dc.relation.volume | 269 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
crisitem.project.projectURL | http://www.mi.sanu.ac.rs/novi_sajt/research/projects/174033e.php | - |
crisitem.project.fundingProgram | Directorate for Computer & Information Science & Engineering | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/NSF/Directorate for Computer & Information Science & Engineering/1740333 | - |
SCOPUSTM
Citations
5
checked on Nov 18, 2024
Page view(s)
21
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.