DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen
dc.contributor.authorAshraf, Firouzehen
dc.contributor.authorda Fonseca, Carlosen
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:44Z-
dc.date.available2020-05-01T20:12:44Z-
dc.date.issued2019-11-02en
dc.identifier.issn0308-1087en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1108-
dc.description.abstractLet M = [mij] be a symmetric matrix, or equivalently, a weighted graph (Formula presented.) whose edge ij has the weight (Formula presented.). The eigenvalues of mij are the eigenvalues of M. We denote by (Formula presented.) the principal submatrix of M obtained by deleting from M both the ith row and the ith column. If μ is an eigenvalue of M, and thus of (Formula presented.), of multiplicity (Formula presented.), then vertex i of k ≥ 1 is a downer, or a neutral, or a Parter vertex, depending whether the multiplicity of μ in (Formula presented.) or, equivalently, in (Formula presented.), is k−1, k, or k+1, respectively. In this paper, for a fixed μ, we consider vertex types according to the above classification in graphs which are generalized lexicographic products of an arbitrary graph over cliques and co-cliques, or connected regular graphs. In addition, we add some comments on constructions of large families of cospectral and integral graphs.en
dc.publisherTaylor & Francis-
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectAdjacency matrix | cospectral graphs | downer vertex | generalized lexicographic product | integral graph | neutral vertex | Parter vertexen
dc.titleVertex types in some lexicographic products of graphsen
dc.typeArticleen
dc.identifier.doi10.1080/03081087.2018.1490689en
dc.identifier.scopus2-s2.0-85049564023en
dc.relation.firstpage2282en
dc.relation.lastpage2296en
dc.relation.issue11en
dc.relation.volume67en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

1
checked on Jul 12, 2024

Page view(s)

46
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.