DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen
dc.contributor.authorAshraf, Firouzehen
dc.contributor.authorda Fonseca, Carlosen
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:44Z-
dc.date.available2020-05-01T20:12:44Z-
dc.date.issued2019-11-02en
dc.identifier.issn0308-1087en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1108-
dc.description.abstractLet M = [mij] be a symmetric matrix, or equivalently, a weighted graph (Formula presented.) whose edge ij has the weight (Formula presented.). The eigenvalues of mij are the eigenvalues of M. We denote by (Formula presented.) the principal submatrix of M obtained by deleting from M both the ith row and the ith column. If μ is an eigenvalue of M, and thus of (Formula presented.), of multiplicity (Formula presented.), then vertex i of k ≥ 1 is a downer, or a neutral, or a Parter vertex, depending whether the multiplicity of μ in (Formula presented.) or, equivalently, in (Formula presented.), is k−1, k, or k+1, respectively. In this paper, for a fixed μ, we consider vertex types according to the above classification in graphs which are generalized lexicographic products of an arbitrary graph over cliques and co-cliques, or connected regular graphs. In addition, we add some comments on constructions of large families of cospectral and integral graphs.en
dc.publisherTaylor & Francis-
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectAdjacency matrix | cospectral graphs | downer vertex | generalized lexicographic product | integral graph | neutral vertex | Parter vertexen
dc.titleVertex types in some lexicographic products of graphsen
dc.typeArticleen
dc.identifier.doi10.1080/03081087.2018.1490689en
dc.identifier.scopus2-s2.0-85049564023en
dc.relation.firstpage2282en
dc.relation.lastpage2296en
dc.relation.issue11en
dc.relation.volume67en
dc.description.rankM21-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 4, 2025

Page view(s)

25
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.