DC FieldValueLanguage
dc.contributor.authorSimić, Slavkoen
dc.date.accessioned2020-05-01T20:12:40Z-
dc.date.available2020-05-01T20:12:40Z-
dc.date.issued2018-01-01en
dc.identifier.issn1450-9628en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1064-
dc.description.abstractWe presented here a refinement of Hermite-Hadamard inequality as a linear combination of its end-points. The problem of best possible constants is closely connected with well known Simpson's rule in numerical integration. It is solved here for a wide class of convex functions, but not in general. Some supplementary results are also given.en
dc.publisherUniversity of Kragujevac, Faculty of Science-
dc.relation.ispartofKragujevac Journal of Mathematicsen
dc.subjectConvex function | Differentiable function | Hermite-Hadamard integral inequalityen
dc.titleSome refinements of Hermite-Hadamard inequality and an open problemen
dc.typeArticleen
dc.identifier.scopus2-s2.0-85053736743en
dc.relation.firstpage349en
dc.relation.lastpage356en
dc.relation.issue3en
dc.relation.volume42en
dc.description.rankM51-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-7550-1625-
Show simple item record

SCOPUSTM   
Citations

7
checked on Apr 3, 2025

Page view(s)

17
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.