DC FieldValueLanguage
dc.contributor.authorMilićević, Lukaen
dc.date.accessioned2020-05-01T20:12:38Z-
dc.date.available2020-05-01T20:12:38Z-
dc.date.issued2017-09-01en
dc.identifier.issn0963-5483en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1044-
dc.description.abstractErdå's asked the following question: Given n points in the plane in almost general position (no four collinear), how large a set can we guarantee to find that is in general position (no three collinear)? Füredi constructed a set of n points in almost general position with no more than o(n) points in general position. Cardinal, Tóth and Wood extended this result to R3, finding sets of n points with no five in a plane whose subsets with no four points in a plane have size o(n), and asked the question for higher dimensions: For given n, is it still true that the largest subset in general position we can guarantee to find has size o(n)? We answer their question for all d and derive improved bounds for certain dimensions.en
dc.publisherCambridge University Press-
dc.relation.ispartofCombinatorics Probability and Computingen
dc.titleSets in Almost General Positionen
dc.typeArticleen
dc.identifier.doi10.1017/S0963548317000098en
dc.identifier.scopus2-s2.0-85017519437en
dc.relation.firstpage720en
dc.relation.lastpage745en
dc.relation.issue5en
dc.relation.volume26en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-1427-7241-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 2, 2025

Page view(s)

22
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.