DC FieldValueLanguage
dc.contributor.authorLeader, Imreen
dc.contributor.authorMilićević, Lukaen
dc.contributor.authorTan, Ta Shengen
dc.date.accessioned2020-05-01T20:12:38Z-
dc.date.available2020-05-01T20:12:38Z-
dc.date.issued2018-02-01en
dc.identifier.issn0097-3165en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1043-
dc.description.abstractLet fr(n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. Graham and Pollak showed that f2(n)=n−1. An easy construction shows that fr(n)≤(1−o(1))(n⌊r/2⌋) and it has been unknown if this upper bound is asymptotically sharp. In this paper we show that fr(n)≤([formula presented]+o(1))(nr/2) for each even r≥4.en
dc.publisherElsevier-
dc.relationMinistry of Higher Education of Malaysia, FRGS grant FP048-2014B-
dc.relation.ispartofJournal of Combinatorial Theory. Series Aen
dc.subjectDecomposition | Graham–Pollak | Hypergraphen
dc.titleDecomposing the complete r-graphen
dc.typeArticleen
dc.identifier.doi10.1016/j.jcta.2017.08.008en
dc.identifier.scopus2-s2.0-85029491778en
dc.relation.firstpage21en
dc.relation.lastpage31en
dc.relation.volume154en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-1427-7241-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 23, 2024

Page view(s)

20
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.