DC FieldValueLanguage
dc.contributor.authorMilićević, Lukaen
dc.date.accessioned2020-05-01T20:12:38Z-
dc.date.available2020-05-01T20:12:38Z-
dc.date.issued2019-04-01en
dc.identifier.issn1452-8630en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1042-
dc.description.abstractGiven a k-colouring of the edges of the complete graph K n , are there k - 1 monochromatic components that cover its vertices? This important special case of the well-known Lovász-Ryser conjecture is still open. In this paper we consider a strengthening of this question, where we insist that the covering sets are not merely connected but have bounded diameter. In particular, we prove that for any colouring of E(K n ) with four colours, there is a choice of sets A 1 ,A 2 ,A 3 that cover all vertices, and colours c 1 , c 2 , c 3 , such that for each i = 1, 2, 3 the monochromatic subgraph induced by the set A i and the colour c i has diameter at most 80.en
dc.publisherSchool of Electrical Engineering, University of Belgrade-
dc.relationRepresentations of logical structures and formal languages and their application in computing-
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen
dc.subjectBounded diameter | Monochromatic componenten
dc.titleCovering complete graphs by monochromatically bounded setsen
dc.typeArticleen
dc.identifier.doi10.2298/AADM170204022Men
dc.identifier.scopus2-s2.0-85065543292en
dc.relation.firstpage85en
dc.relation.lastpage110en
dc.relation.issue1en
dc.relation.volume13en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1427-7241-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 18, 2024

Page view(s)

18
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.