DC FieldValueLanguage
dc.contributor.authorMilićević, Lukaen
dc.date.accessioned2020-05-01T20:12:38Z-
dc.date.available2020-05-01T20:12:38Z-
dc.date.issued2019-10-01en
dc.identifier.issn1016-443Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1041-
dc.description.abstractLet G1, … , Gk be vector spaces over a finite field F= Fq with a non-trivial additive character χ. The analytic rank of a multilinear form α: G1× ⋯ × Gk→ F is defined as arank(α)=-logqEx1∈G1,…,xk∈Gkχ(α(x1,…,xk)). The partition rank prank (α) of α is the smallest number of maps of partition rank 1 that add up to α, where a map is of partition rank 1 if it can be written as a product of two multilinear forms, depending on different coordinates. It is easy to see that arank (α) ≤ O(prank (α)) and it has been known that prank (α) can be bounded from above in terms of arank (α). In this paper, we improve the latter bound to polynomial, i.e. we show that there are quantities C, D depending on k only such that prank (α) ≤ C(arank (α) D+ 1). As a consequence, we prove a conjecture of Kazhdan and Ziegler. The same result was obtained independently and simultaneously by Janzer.en
dc.publisherSpringer Link-
dc.relationRepresentations of logical structures and formal languages and their application in computing-
dc.relation.ispartofGeometric and Functional Analysisen
dc.titlePolynomial bound for partition rank in terms of analytic ranken
dc.typeArticleen
dc.identifier.doi10.1007/s00039-019-00505-4en
dc.identifier.scopus2-s2.0-85068169416en
dc.relation.firstpage1503en
dc.relation.lastpage1530en
dc.relation.issue5en
dc.relation.volume29en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174026e.php-
crisitem.project.fundingProgramDirectorate for Social, Behavioral & Economic Sciences-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Social, Behavioral & Economic Sciences/1740267-
crisitem.author.orcid0000-0002-1427-7241-
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 23, 2024

Page view(s)

24
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.