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Abstract

In this article, we generalize Yano’s concept of a half-symmetric affine connection. With
respect to this generalization, we obtain five linearly independent curvature tensors. In
the following, we examine which special kinds of affine connections may be the general-
ized half-symmetric affine connection. At the end of this work, we generalize the term
of Killing’s vector given by Yano to affine Killing, conformal Killing, projective Killing,
harmonic, and covariant and contravariant analytic vectors.

Keywords: affine connection; torsion tensor; non-symmetric metric; dual connection;
Nijenhuis tensor; Hermitian space
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1. Introduction

The symmetric affine connection spaces [1-3], and Riemannian spaces as special cases
of them, are subjects of research of different researchers and scientific groups. Those include
J. Mikes$ with his team [1,2], N. S. Sinyukov [3], and many others.

An n-dimensional manifold equipped with a symmetric affine connection V, whose
coefficients are l]’:k, l]l:k = l,i(]-, is the n-dimensional symmetric affine connection space A;,.
A special subclass of the class of symmetric affine connection spaces is composed of the
n-dimensional manifolds equipped with symmetric metric tensors g;;. These spaces are
n-dimensional Riemannian spaces R;,.

The affine connection coefficients of Riemannian space R, are Christoffel symbols:

) 1 .
’Y}k = 581’7 (gjp,k —8jkp T+ gkp,j)r (1)

where [¢7] = [gif] ~!, a comma denotes partial derivation, gijx = 9gij/9x*, and a summa-
tion by the mute index p, p = 1,...,n, is implied.

From [1-3], it is well known that sums l;k + P]ik and 'yjk + P]ik of the affine connec-
tion coefficients Z]l.k and '7;‘k and a tensor P]?k of the type (1,2) are coefficients of other
affine connections.

The impact of special forms of this tensor on properties of affine connections on the
n = 2N-dimensional manifold is studied in this research. The research starts with Section 2,
where general definitions of n-dimensional and 2N-dimensional affine connection spaces
are reviewed. After that, we generalize the results presented in [1-3] by involving torsion

Axioms 2025, 14,923

https://doi.org/10.3390/axioms14120923


https://doi.org/10.3390/axioms14120923
https://doi.org/10.3390/axioms14120923
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0009-0004-1961-0797
https://orcid.org/0000-0002-5632-0041
https://orcid.org/0000-0002-9414-0711
https://orcid.org/0000-0002-7598-9058
https://doi.org/10.3390/axioms14120923
https://www.mdpi.com/article/10.3390/axioms14120923?type=check_update&version=1

Axioms 2025, 14,923

2 of 20

in the affine connection, such as Yano's results [4] with different possibilities of defining
special affine connections initially defined in Yano’s work. The results of this research may
be of special interest for applications in different scientific disciplines such as quantum
physics, cosmology, astronomy, and many others.

2. Theoretical Background

In this research, we continue the research about half-symmetric affine connection
started by K. Yano [4], T. Suguri and S. Nakayama [5], and S. Ishihara [6,7]. Yano's research
is a special case of the study about non-symmetric affine connection space started by L. P.
Eisenhart [8], and continued by S. Minci¢ [9-14], M. Stankovi¢ [15], Lj. S. Velimirovi¢ [14-16],
M. Z. Petrovi¢ [16-18], and many others.

In this article, we recall basic definitions about symmetric and non-symmetric affine
connection spaces. After that, the curvature tensors of these spaces are expressed. In
Section 2, we present a definition of half-symmetric connection [4] and correlate it with
the corresponding non-symmetric affine connection. In Section 3, we obtain a family of
curvature tensors with respect to half-symmetric affine connection. The last result in this
study is linearly independent curvature tensors obtained with respect to the half-symmetric
affine connection.

2.1. 2N-Dimensional Riemannian Space

In this part, we adopt definitions of an N-dimensional Riemannian space from [1-3]
for the corresponding-dimensional Riemannian spaces. A 2N-dimensional differentiable
manifold Mpy equipped with symmetric metric tensor §, whose components are g;;,

gij = gji, is the Riemannian space Ryy. We assume the regularity of matrix [g;], i.e.,

det 8ij] # 0. The regularity of matrix [g;;] allows the contravariant metric tensor 5:1 to be

defined by components such as [¢"] = 18ii] -
The first quadratic form of space Ryy is

ds*> = SpqdxPdxi. )

The Christoffell symbols of space Ry are

(8jik — &jki T 8ikj)-

N~

Tije =

The Christoffel symbols of the second kind of space Ry, which are the affine connec-
tion coefficients of space Ryy are

, , 1 . ,
k= 8" pjk = 587 (8jpk = &jkp + &pkj) = Ty

The covariant derivative of a tensor a; of type (1, 1) with respect to the affine connection
F;k is
B a;.lk = a;‘,k + F’Lkaf — l"zkai,.
2.2. Symmetric and Non-Symmetric Affine Connection Spaces
The generalization of the concept of Riemannian space consists of symmetric and

non-symmetric affine connection spaces. An n-dimensional manifold M, equipped with a

0 , . .
symmetric metric affine connection V, whose coefficients are L;.k, L;.k =L ” is the symmetric

affine connection space A, (see [1-3]).
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The covariant derivative of a tensor 4 of type (1,1) with respect to the symmetric affine
connection % is [1-3]
a;‘k = a}k + L;la L]kap,
where partial derivation is marked by a comma.
The corresponding Ricci identity is

a’RL — gl RV

i i _
Tijmin = %jlafm = B Fpmn = BpRjns
for the curvature tensor of space R, expressed as [3]

i i i poyi prp
Rjy, = L]mn —L]nm+L]mLpn —LLHLM. 3)
An n-dimensional manifold M, equipped with a non-symmetric affine connection
V, whose coefficients are L! ik L§k #* Lf{]- for at least one pair of indices (j, k), is the non-
symmetric affine connection space GA, (see [8—19]).
The symmetric and anti-symmetric parts of affine coefficients L;‘k are

o 1
L+ 1), Ti=Li

|
—— — _
Lﬁ_ k2

The components L§k are components of coefficients of a symmetric affine connection. This

symmetric affine connection is the affine connection of associated space GAg. The com-
ponents Ll are components of a tensor of type (1,2). The tensor S' = =2L! k is the torsion

tensor of space GAg. Tt holds the equality Lt ik = L e T L

S. M. Min¢i¢ found four kinds of covariant der1vat1ves of tensor 4 of type (1,1) with
respect to non-symmetric affine connection [9-14]

B = G+ L] — Lyt @

G = Gt Ly~ Ligay, 5)

B = @+ L) — Lijal, (6)
3

a;lk = aj»,k + L;;pa] L]ka (7)

N. O. Vesi¢ proved that three of these four kinds of covariant derivatives were linearly
independent [20].

With respect to the four kinds of covariant derivatives (4)—(7), S. M. Min¢i¢ obtained
four curvature tensors, eight derived curvature tensors, and fifteen curvature pseudotensors
of space GA,,.

Minci¢’s work has been continued by many scientists, including M. Stankovi¢ [15], M
Zlatanovi¢ [15,19], Lj. S. Velimirovi¢ [14-18], and many others.

N. O. Vesi¢ [20,21] and D. J. Simjanovi¢ [21] completed the research realized in [20]
where it was proved that just curvature tensors could be obtained from the differences

al o P s €{1,2,3,4}.

j;Lm»lin B Jln\
The curvature tensors of space GA,, are elements of family

Kt =RL 4yuTt 4+ 4/T!

jmn jmn

+0T] Thy + ' Th Ty + 0T T (8)

jmln jn|m jm = pn jn=pm

The next theorem about Bianchi identities, as a generalization of Bianchi identities
presented in [1-3], is proved in the following.
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Theorem 1. In a non-symmetric affine connection space GAy, with affine connection V whose
coefficients are L;k = L}k + L;k, the family of curvature tensors Ki  satisfies the family of first
7 \%

jmn

generalized Bianchi identities

jmn mnj
+ (0 =o' + ) (T}, Thy — T]’;T;,m + T T))

©)

With respect to the covariant derivative with respect to the affine connection L . denoted by

//l ”

, the following equation holds:

i _ i i
ijn\k + K; nk|m km\n - Z’l(ij\n|k +T n\k\m T'k|m|n)

”I(T]m\k\ n\m\k+ k|n|m)

((T]n o) T (Tﬁ(T;ﬁmhn (T}, Tpn) i) (10)
O (T T+ (Th, Ty + (Th Tom) )

( T T + (T Tpi & (Ton Ty

Proof. To simplify calculations in this theorem, we involve the term

=Li 4+LL L — P LﬁﬂL;p. (11)

]m|n jmn pn=pm n pm

The affine connection coefficients L;’k are not tensors. Thus, the equality (11) does not repre-
sent a covariant derivative of LiA but just simplifies the writing of its right—hand side. This

k+L — Ll —

abbreviation is significant because if we define Li ‘
P ]m\n k™ pm|n

jmlnlk = ]m|”

Lf;k L;p‘n L nkL;m\p and substitute the definition (11) in this relation and antisymmetrize it

by n and k, we get

=R! RP LI —RP Ll (12)

i
—-L pnijm jnk—pm mnk

i
Lj k]

jm|n|k

We are now ready to start the proof of this theorem.
First, the curvature tensor of symmetric affine connection space Ry is

RE =pi i 4Pl Pl

jmn jm,n jnm jm=pn jnpm 13)
_ 7l P ori pPri
= Lipjn ]n|m L L + L Lpms

for L;ﬂhl defined by (11).

With respect to the definition of family K;mn of curvature tensors, we obtain

+R;1]m (]?m|n+T U+T
P 4 4
+u'( jn‘m+T mlj T j\n)+v(T]mTrlm+TmnTl +Tn]T;m)

+0 (T]’;T;m + T,’:Z]T;m + T Th) + w(Tha T + Tf]T;m + T]’;T;n)

K;mn + K;mz] + K;]m = R;mn + Rzmn]

J\m)

— ] p p
- (Ljﬂ|n o ]n\m L]mL;m + L]nLle)

1 i 14 4
le"U Lm]\n Lanl + Lmlepn)

(

(L;”m — nml] — Lﬁlepm + L Ll )
(

(

/
u_u>( jm\n_Tjn\m—i_T n|])
P p P i
v—v +w) (T, T, — T' T +TmnT;j).

jm=pn jn=pm
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along with relation (9), which proves the first part of this theorem.

After expressing the curvature tensor Ri jmn 0 terms of L;mm and L;n|m as in (13), we get
Kiyunlte = Ltk = Linpmlt = LnfiLon = LinLpne  LhajeLpm + L Ly
+uTm‘n‘k+u’T?n|m‘k+vT i pn—i—vT]mT;n|k (14)
T]*; lkT;m +THTE, L+ men‘kij + Wi Ty
K ki Linlim ]k\nlm jﬂ\mL;k L]n pkjm T L]k\mLpn +Lj er\m
+ uT alkim T U Tk‘n|m + vT.p‘ T o vT]n pk‘ (15)
to Tji\mT;’” +oTRT, rmlm + T T + 0T Ty
Kjnf = Liimin = Ljmpkin ~ LieguLpm = LicLpmin + L Lk + Lin Lt
+uTk|m|n + 1/ Tm|k|n +vTJk‘nT;m +vT]’;<T;)m|n (16)
+0 TmlnT;,k +v T]m pifn + wT ol Ty + wT [ p]ln

With respect to the equalities (14)—(16), we obtain the following sum
Kt + Kl + Kl = (Lmulic = L}ﬁ\k\n) - (L}j|m|k - L;ﬂ|k|m)

+ (Lt = Litgal) + L?m (Lhuje = L)

— L, pn (L ]m\k ]k|m) ( i _LG\m)
- L] im (Lpn pk\ a) + ( L;k\ )
—Lp( pmln pn|m) +“( jm|n\k+Tn|k|m + Tipn) 17
u' (T ]m\k\ Tttt + Tiklnim)
(( o)+ (T Ty o+ (T, T i)

( T]};cTrlm (T]m pk)|n (T]nTpm)|k)

Tp TI (T]fmT;la])\n + (Tmnij)\k)'

Based on Equations (12) and (13), we transform the previous relation to
i i i p P
K;'mn\k + K;nk\ + K; jkm|n — (R;ka‘ R]nkUPWl RmnkLl )

j P 4
- (Rl kL R]ka;m ankL;p)

p P
+(Rlpan]k R]mn pk kanL;P)

+1L, (ank + Lj’nL;’k ijLf;n)

- Ll ( jmk ;]mLZk - L?quM)
( b Lq L’? me)

- L” i (R + Lpn g T LycLin)

P q
+ Ly (Rt L Ly — L L)

in
,LP( nJFLquin*anL;m)
+u(T; ]m\n\k +T n\k|m + Tk\m|n)
+ 1 (T n|m\k+ 'k\n|m)
((T]n o) m T (Tﬁ(T;;m)m + (T]mTpn)|k)
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+ vl((TjF]](T;im)W + (TﬁnT;lyk)\n + (Tﬁ,T;lam)Uc)
+ w((T;fkT;;j)W + (T]fmT;lzj)M + (TnP;nT;;jhk)'

Since R;mn = —R;'-nm and annk +RP + R =0, we reduce the last equality to

nkm kmn

Equation (10), which completes the proof of this theorem. [
The equalities (9) and (10) are families of the first and second generalized Bianchi identities.

Linearly Independent Curvature Tensors

In an attempt to generalize initial research about curvature tensors of symmetric affine

connection [1,3], S. M. Min¢i¢ [9-13] concluded that from the difference a§|m|” — a;|n\m’ five
linearly independent curvature tensors could be obtained: o B
B = i~ U~ Lo ()
12<;imn = Liin— Lijm + LZU.L;;p - Lf;].L;'np, (19)
Rin = Limn = Liim + Ly Lip = L Lo + 2L1n Ty, (20)
§§mn = Limn = Ljm + Ly Lip = LyLpm + 2L Ty, @1)
Ris = L — Loy + 5 (Lo + L Loy — L Ly — L01,). @)

These five linearly independent curvature tensors are expressed as functions of the
curvature tensor R}m ,, of associated space A, and torsion tensor as

R = R+ T~ T+ T Ton = T To @
Rinn = Risn = Tini + T + T Tpn = Th o (24)
R = R+ T+ T~ T T + T Thy — 2700 T, @)
R = R + T+ Th = Ty Thu 4 T4 Th + 2T T, (26
Rl = Ry + 0,10, AT, @)

In the research of N. O. Vesi¢ [20,21] and D. ]J. Simjanovi¢ [21], the six linearly indepen-
dent curvature tensors of space GA, were obtained. Six linearly independent curvature
tensors of this space are

R = Rimn = T = Tiap + T Tpw = T Tym + 2T Ty
R = R+ i = Th Tl Ton + T Th
Riomn = R+ T = T~ T Tpn = Ty T (28)
Bion = Rian + Tt~ hi =TT =37 T
§§mn =Rl ;m|n + T]?nlm + Tﬁanyn i T}ZTﬁmr
B = R = T, = Tl = T Tl = T Th

The curvature tensors Il{;mn, s, Ié;mn are the elements of family (8) for the following

six c = (u,u',0,9,w): ¢ = (1,—1,1,—1,2),5 = (1,—1,1,1,0),g = (1,-1,-1,-1,0),

i =(1,-1,-1,-3,0), g = (1,1,1,1,0), and g = (—1,—1,—1,-1,0). If we substitute these
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values of u, u’, v, v/, and w into Equations (9) and (10), we obtain generalized Bjanchi
identities which correspond to these six curvature tensors.

The linearly independent curvature tensors Ifémn, eee, I;{;mn given by (23)—(27) and I;{;mn
given by (28) are linearly independent. Hence, our study in this research is based on these
six linearly independent curvature tensors.

2.3. Almost Complex Manifolds

The n = 2N-dimensional affine connection spaces were studied in Yano’s work [4]. A
2N-dimensional manifold My = Mon(x), ..., x2N ) equipped with a structural affinor
Fih which satisfies the equality

FFj=-¢, (29)

is an almost complex manifold [4].
The operators Oi’f and *O"* are defined as

1
h h h
OTZ'S - 5(51,55 _Fr FZ'S),
1
h h h
Oy = 5(5,55 + F; Ff).

The affine connection of an almost complex space, whose coefficients are L;k, is the
F-connection if the affinor Fih is covariantly constant with respect to that connection, i.e.,
F/. = 0. Since

ilk
1

j ol J rl I rj
Fi = E — Tneki + Tk,
1

the F-connection satisfies the equality
j — _plpl 7l pl
Foo = —TyFi + TiFy

The F-connection L;’k is the half-symmetric connection if its torsion tensor satisfies
the equality
OjROKf Sl = 0.

For the half-symmetric affine connection, the next equivalences are satisfied:

Sk = FF!'S, + F/F{S}, + F'F{S},

T{; = P;F,h T}, + F'F} T! + FI'F! v

FF = -, (30)
= _Tl]kFil + Tl-lkFlj.

j
Fije

2.4. Motivation

The structure F]?' = g'PF,; is used in mathematics (F-plannar mappings [22-24]).
Invariants for F-planar mappings and transformation rules caused by F]? are the main
subjects of that research.

This structure is also widely applied in physics. The anti-symmetric tensor F; cor-
responds to electromagnetism [25]. In [26], the importance of the structure F;F" for the
Einstein-Maxwell cosmological model is demonstrated.

In this article, our attention is focused on theoretical aspects of transformations of affine
connection caused by F;, but these results will be directly applied in future generalizations
of gravity theory. Because our research generalizes Yano's results, the tensor F; is anti-
symmetric by i and j.
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2.5. Research Purposes

In [27], we studied the affine connection spaces whose affine connection coefficients

were of the form
1. 1
i _7i i P
ik = LL" - EFij;k, (31)
for a covariant derivative with respect to the affine connection L;'-k. This is a special type of

half-symmetric affine connection. In this article, we reduce our subject of research to the
affine connection spaces whose affine connection coefficients are

[io—ri _ Lpipy (32)
je T Rk Tt l K
This research start with a special case of half-symmetric affine connection. Following
the methodology used in Yano’s work [4], we restrict that concept for general affine connec-
tions expressed as in (32). After that, the F-connections (affine connections which cause
affinors to vanish by covariant differentiation) are studied. The term of the Killing vector [4]
is generalized with respect to the definition of a half-symmetric affine connection (32).

3. Results in Almost Hermitian Spaces

The almost complex manifold M»x generated with the positive definite quadratic
form (2) such that the following equations are satisfied

8ij = FiFgts, (33)
Fj = Figi, (34)

is the almost Hermitian space. An almost Hermitian space in which the following equation
is satisfied
i -
B Fg; =0
g g

is an almost Tachibana space (nearly Kédhlerian space) [4].

Based on Equations (30) and (33), the following equality holds F;; = —F;;. The Rie-
mannian metric g;; which satisfies (33) is the Hermitian metric. The almost complex space
M equipped with the Hermitian metric is the almost Hermitian space.

In the almost Hermitian space, we may analyze the special case of half-symmetric
affine connection (31), given by (32). The affine connection (32) is the first connection
(canonic connection). For the affine connection (32), the following equalities are satisfied

Sijlk = 0, (35)
1

Eije =0,

1

1.
for the covariant derivative | with respect to the affine connection whose coefficients are F}k.
1

Let us prove the next theorem.

Theorem 2. Let l";.k be the second-kind Christoffell symbols in an almost Hermitian space. For the
Ix N
affine connection coefficients F;k, the next equalities are satisfied

1, 2. ) ) 1, 2. ) )

P — l = 1 = 1 . l. = — l. = l = 1 .

S].k = S]k 0 <— P”k Fk‘], T] T]k 0 <— F]|k Fk‘],
8 8 g 8
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ie., F]k = L" if and only if the tensor F]?"k is symmetric by j and k.
g
Proof. Based on Equation (32), the torsion tensor and its half are
sio=ori, = Lpi(Fr _p 36
jk = “hjk = o tp k\] ik | (36)
v 8
1. 1. 1.
i i i P _ P
ﬂ—rﬂ—45<ﬁj 5&'
v 8 8
The symmetric and dual affine connection of the connection (32) are, respectively,
1. 1/1. 1. |
i _ 2 T1i i) Tt i p P
=5 (F]k + l"k]> FK 4Fp (F]k Fk|]> (37)
fi [ [ g — Tpipr (38)
jk T Tk T gk Sk T Jk 2P k\]

The affine connection (32) can be expressed as

1 p p
F}_Fk+F}_Fk+Tl r;+43<ﬁh 5k>

2. 1, 1. 2. 1. 1 .
: i _ Qi _ i : i _ i i 4 P
The torsion tensor Sjk = Skj = 2Tk]-, such as its half T].k = Tk]. = 4Fp (Fjé'f Fkg]),

because of their anti-symmetries by j and k, satisfy the next equalities

2. 1. 2. 1,

[ — 1 1T 1
Sik =5 Th=-"Th

which completes proof of this theorem. [

The next theorem gives the necessary and sufficient condition for a dual connection to
be an F-connection.

2. 1.
Theorem 3. The dual connection 1“1. of the affine connection F;.k is an F-connection if and only if

1
— -F Fqu is satisfied.

T
the equality F].| 5 k|] 5 P|ﬂi

1, .
Proof. Because F}k is the F-connection, the next equality holds F;\k = 0, where | is the
1
1

1. .
covariant derivative with respect to the affine connection F}k. Based on the equality F;I =0
1

and Equation (38), we obtain

i i qrp
Jlk_ flk Fk|]+2 prF

2.
where | is the covariant derivative with respect to the affine connection F}k. O
2

The next theorem is a logical extension of the previous one.
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1. 1.
Theorem 4. The symmetric affine connection l"l.k of the connection F}k is an F-connection if and

1F1 1F’ FIF} holds.

only if the equality F! k\] 2 PW

J\k

Proof. From the equality F]?"k = 0 and Equation (37), we obtain
1

|
i qrP
Pik_ (]k Pk\1+2 MFF>

1.
where | is the covariant derivative with respect to the symmetric affine connection F}k. O
0 i

1. 1.
Theorem 5. The symmetric part 1"1. of the affine connection F;.k is a metric connection if and only

if the next equality is satisfied Fl|k +F ‘ = 0, i.e., if and only if an almost Hermitian space is an

8
almost Tachibana space.

Proof. Based on Equation (30) and the covariant derivative |, we get
8

P P —
Ff\ Fip+ ! Fyy = 0. (39)
8 8

With respect to Equation (39), we obtain the following equality

1
%y=£ﬂ<m+ﬂJ

which completes the proof of this theorem. [

Theorem 6. The tensor F; is covariantly constant with respect to the symmetric part F’ . of the

1 1
affine connection F i if and only if the equality F; ]\k = Fk]\z + sz\] is satisfied.

Proof. Using Equations (29) and (34), we get

EpF = —gij, (40)
Fyi 1:]?’ = gij- (41)

From Equations (34), (40), and (41), one obtains
1 1 1
(s g )
1,

Fi]‘(\)k:Fiirk szpp/ L]kPlp—Fij/k rlkpp] F sz,

»
I

such as

These relations, together with the anti-symmetry of F; by i and j (see [4], p. 126),
complete the proof of this theorem. [
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2. 1.
Theorem 7. The dual connection F}k of the affine connection F;.k is a metric connection if and

only if the equality FJ?I p T Fli\j = 0 is satisfied, i.e., if and only if the almost Hermitian space is the
g g

Tachibana space.

Proof. With respect to g;;|x = 0, we obtain
g
o= tp (P
Sijlk = Fpk\ Fjji T )y )
2 g g

Theorem 8. The tensor F; is covariantly constant with respect to the dual affine connection 1"1 v of

which proves the theorem. O

the affine connection F « if and only if the next equality F; ]|k _ 1 Fk]\z + L sz|] holds.

Proof. Based on Equations (34), (40) and (41), we obtain

1 1
1]\k— z;\k+ k\ + sz\] (42)

The equality (42), together with the relation F;; = —Fj; (see [4], p. 126), confirms the
validity of this theorem. [

The properties of torsion tensor (36) with respect to the affinor F]?' are examined below.
For the torsion tensor of first connection (36), we obtain

1 .
i i
FPS]k < jlk kgj)’

1 1
q P _ _
Fpsqz*_f zr|r*§Fi’
g

1. 1
Pgi __
FJ’ pk— <J|k FfF FkP)’
FPFqu _ _1 FP FP
k°pq — le k\P )

Hence, the following relations are satisfied:

1. .
k=0 = Fl\k ziyf (43)
, |
RSt =0 Fl|k i (44)
8

1
qqP _ —
FISh =0 <= F =0,

1. . .
p _ _ P ot
F Sy =0 < Fy=hEER,
8 8
1. X X
p _ _ Pt
FSy =0 < Fy=hEER,
8 8

FquSl =0 < F!

p_ p
k2pq E Pk|pF

\ jlp
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The Nijenhuis tensor in an almost Hermitian space is

i _pppi @i\ _pplp _p
jk = Fe ( jlp PJ) F] (ka Pk>'
8 8 8 8

When this tensor vanishes, the almost Hermitian space is a Hermitian one.
These expressions complete the proof of the two following theorems.

Theorem 9. In an almost Hermitian space, if Equation (43) or (44) is satisfied, then the almost
Hermitian space is a Hermitian one.

Theorem 10. An almost Hermitian space is an almost semi-Kihlerian space (F; = 0) if and only if

1
the equality FZ Sg . = 0 holds.

A Killing vector o' of Riemannian space Ry (almost Hermitian space) is the vector
which satisfies Killing’s equations:

Logij = vP gijjp + gﬂv’f’i - giﬁvfj =0. (45)
$ g g
Because g;;|, = 0, the previous Killing equations reduce to
78
ﬁ-[;gﬂ = Ui‘]' +Uj|i =0.
g g
The vector o' is Killing’s vector with respect to the first connection (32) if

1
L:ygﬂ == 0,

1
for £ defined as .
Logij = " gijlp + &pi0}; + 8ip]; = 0.
! 1 1

Theorem 11. In an almost Hermitian space, the next equation holds:
Logii = Logii + ~oiFt  ED 1 F7
v8ij = ~o8ij T 5Vt 175l )

Proof. Since the equality ¢;:, = 0 is satisfied with respect to the Equation (35), the previous
q Y 8ijlp P q p
1

Killing equations for the first connection reduce to
1
L”gﬂ = U,’|]' + U]“l' =0.
1 1
After some computing, we get

Loifpp o pp
WU+%i=Wj+%h+2w%<5j+5ir
1 1 8 & 8 8

which completes this proof. [J
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Corollary 1. If an almost Hermitian space is an almost Tachibana space, then the next equality holds

1
£7)gﬂ = ﬁygﬁ.

Corollary 2. If v is a Killing vector in an almost Hermitian space, then the following equality
is satisfied
Logi = 2ot FY 4 FF
o8 = 2\ Filp

Corollary 3. In an almost Hermitian space, let a vector v* be the Killing vector. Then, the equality

1
Lygij = 0 holds if and only if the almost Hermitian space is the almost Tachibana space.

1

Based on Equation (3), we obtain the curvature tensor R’ imn = I";m — I’; - I’]p - I’lpn
1.
anfé,m with respect to the symmetric affine connection Iﬁ;-ik:
Ri =R~ Ypipge, o lpi(p o p
jmn = g N jmn T g ptj Nsmn T Ep | B n|jm
8 g
i s pd i p P
<3F |n+FFFs> <F]m—|—F |]> (46)
8

1 i s 4 i 4 P
<3F o+ EER F|s F]|n+F‘]

where R;mn and | are the curvature tensor and covariant derivative with respect to the
8

Christoffell symbols FLk From Equation (46), we get:

;

Ilz{;'m"_R;mﬂ_%F <Fp|m‘Fpgjm> 1FZ|WF:1\]+1F1WF5|]
4 qu (F Fp)

éﬁmn_R}mn*%F <Fpmn Ffum ;Fﬁnﬁlm*lpﬁfn*lﬁm i
“FZ (Ffm ol )

%mn R3mn‘%F (Jmn_ m) ]|m immFQﬁle\n éu
4p|q (FJSmF m\n )

115{;'“” ?LR;'””_ALF’;Fstm”_}LF <Fpm F”g].m> glgplnpfp\m }LP\HFIZ\]

1 1
p 14 q| s pp p
+4 plmFJ\n+8 P\anIJ 8 PIqF (F \]F ]|”F >
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A vector v of Riemannian (almost Hermitian) space Ryy which satisfies the affine
Killing equations
io=1ol PooP =
Ly i vyk—kR]kpv 0,

is the affine Killing vector.
A vector ' is the affine Killing vector with respect to the first connection (32) if the
following equalities are satisfied

1. ‘ ‘
ﬁvl"ik = vlyk + R, 0" = 0. (47)
Let us prove the next theorem.

Theorem 12. In an almost Hermitian space, the next equation is satisfied:

1 . .
i [ t
8

1

1 1 i t q s t
2 (Ft \]k+ Ft‘kF ‘] FtF F |kF |5

Proof. Equation (47) reduces to
! i i i i
Eyrﬁzvl]k+R]kp 2 Ft ‘kv‘]+F t|kv‘p+Pt P|] |k
1 1 1
I i Tt drs rt
Tk (FtFp|] FlkF |] FtF F ‘kF s) =0.
After some computation, we get
vl +RY oF =0l + RE v 1 F{F} 0! + F'F} 0l +FF
ke T ke éIgjk jip?” t Ik \] t\k Ip t P\J \k
1 1 1
_ _pP t it drs rt
Tk <FtF ‘]k+ F|kF ‘/ FtF F ‘kF s)
which completes the proof of this theorem. O

Corollary 4. If o' is an affine Killing vector in an almost Hermitian space, then the next relation holds

1 t
ﬁ” ]k__ (FfF \kv|J+FF\kU\P+Ff pl] Ik>

1

1 ; 1
TP irt i t q s t
5? (FtFsz]kJr th|kF i~ SHEE, ‘kF s)

A vector v of Riemannian (almost Hermitian) space Ry which satisfies the conformal
Killing equations
‘C"Uglj =0 |] ]é|zl = Zq)gﬂ/

for a scalar function @, is the conformal Killing vector.
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A vector ' is the conformal Killing vector with respect to the first connection (32) if
the next equation is satisfied

1
Logij = vijj +vjj; = 29gij.
1 1

The previous conformal Killing equations reduce to
Logii = L FI' | =29
o8] = 0ij Ol g \] i) =298

Corollary 5. If a vector v' is a conformal Killing vector in an almost Hermitian space, then the
following holds

1 1
Logij = 20g;; + S0iF, ( ilj F}L)

Corollary 6. Let v' be a conformal Killing vector in an almost Hermitian space. In this case, the

1
equality Evgﬁ = 20g;; holds if and only if the almost Hermitian space is an almost Tachibana one.

A vector v of Riemannian (almost Hermitian) space Ry is the projective Killing vector
with respect to the symmetric affine connection if the next relation holds (the projective
Killing equations):

i i Y i
EWFK = Uélz]-k + R]kpvp = IIJ]Ak + lpkA]/

for the gradient vector ;.
A vector v' is the projective Killing vector with respect to the first connection (32) if
the projective Killing equations hold

The previous projective Killing equatlon reduce to

1. 1
i t t

g g
1 1 it 1 drs rt
~2° <Ff plie + 2 FiFpy — 5 FE b
= AL+ A
Corollary 7. If a vector v is a projective Killing vector, then the next equality holds
LT = g AL+ oAl - ( EF o'+ FIF} ol + F{F
olji = $jAx + P, 2 iF \klf \klp fp\]\k

1 1 1
14 i ot drs rt
~ 50 (FtFp]k+ FlkF i~ SHEF ‘kF s)

A vector v' of Riemannian (almost Hermitian) space Ry is the harmonic vector if it
satisfies the following equations
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A vector v’ is harmonic with respect to the first connection (32) if the following
equations hold

The last two equations reduce to

1
. — D — 1. L —FF bt
vilj — Vjji = Vil Z’]|z+25”v<5f Fw')'
1 1 8 g 8

1,
=0+ ~FLF P,

i
i > et
8

1 8

ie.,

1
D — D — 1. 4 —FF to_pt
vilj Ol =01 — O+ 5k UF’<F1']' FJ’)
1 1 8 g 8

. . 1

A A a4 14
v =0 ZFthv .
g

Corollary 8. If v' is a harmonic vector of almost Hermitian space, then the next equalities hold:

1
o tpp bt
vzl|] vjll_thvP<Fi|j sz’)f
&

8

; 1

i __ _ —rt 4

v = 2Fthv .
1

Corollary 9. Let v' be a harmonic vector in an almost Hermitian space. This vector is harmonic

with respect to the first affine connection if and only if the almost Hermitian space is the almost

Kihler one (F; = 0) and the tensor F]?" i 18 symmetric by j and k.
g

Corollary 10. An almost Hermitian space is the almost Kihler one (F; = 0) if and only if the

i i i
equality v =Y holds.

1 g

A vector v' is a contravariant almost analytic vector of an almost Hermitian space if it

satisfies the following equalities:
[,vF] v F]|P F] v, + va‘]. 0.
g g g

A vector ¢' is the contravariant almost analytic vector with respect to the first connec-

tion (32) if the next equalities hold

1
i — oPFl PPy ioP —
EUF] UF]V ISJUI\P+FVU\1 0.
1

Because the first connection is an F-connection (F]?| = 0), the last equation becomes
1

1
i_ P i P
EvF]- = Fj Ul|p+valj70.
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We prove the next theorem.

Theorem 13. In an almost Hermitian space, the following equation holds

1 . . , 1
1 __ 1 t 1 i 9P
EvFj = LZUFj -0 ( jt‘;t t‘] P F: Ftw)

Proof. After some calculations, one gets

I . | 1
i_ it i i pqpP
LoFj = LoFf —v ( jt‘;t 5 t‘] F F. Ft|q>
which completes the proof of this theorem. [

Corollary 11. Ifa vector v' is a contravariant almost analytic vector in an almost Hermitian space,
then the next equation holds:

1 . . ]
i __ t 1 S pidrP
EUF] = —0 ( ]J{t t|]7 F F: th>

1 .
Corollary 12. In an almost Hermitian space, the equality EZ,F]? = EUF]? holds if and only if the

; 1 1
equality F]?‘ Fi‘]—l— F’l—"ql-"’g| holds.

1 . .
Corollary 13. In an almost Hermitian space, the equality EUF]? = EUF]? holds if and only if the

2, 1.
dual and symmetric connections, F}k and F}k, are F-connections.

Proof. Because the next equalities hold

1 1qu_1i 1
F = Fk\ﬁ Fp B, Fky zp\q

qrp
i k\q FiFes

and considering Theorems 3 and 4, we complete the proof of this corollary. [

Corollary 14. Let a vector v' be covariant almost analytic ( EUF]? = 0) in an almost Hermitian space.
. 1 .
The vector v* is contravariant almost analytic with respect to the first connection (32) ( £UF]? =0)if

2. 1. 1.
. . . ; ; o .
and only if the dual and symmetric connections I ik and T i of connection I’ i are F-connections.

A vector v; is a covariant almost analytic vector of an almost Hermitian space if it

p p
<F11F11> 1|P+F Up\] 0.

A vector v; is a covariant analytic vector with respect to the first connection (32) if the

P p P
(F]_Fﬂl) Fj v,-‘p—i—F vp|] 0.

satisfies the equation

next equation holds
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Because the first connection is an F-connection (F]?‘ k
1

= 0), the last equation transforms into:
P, 14 )
F] Ullp +F vp]|] =0.

Finally, we present the following theorem.

Theorem 14. In an almost Hermitian space, the following equality holds

1 1
p p trd P
—F vqp+P Upl] —F/ vi‘p+F vp|]+ F‘ vp 5 th
Proof. After some computing, we get
—Flv;, + Flv,; = —Flv, + Fvy v +1FFF v
j 117] pl] i lt‘f i pélg] \] PS5t t|q ps

which confirms the validity of this theorem. O

Corollary 15. If a vector v; is a covariant almost analytic one in an almost Hermitian space, then

1 1
p p trd P
i vil‘p+F Opli = < P - F‘]+ SEF Ft|q>

Corollary 16. Let a vector v; be a covariant almost analytic one in an almost Hermitian space. The
vector v; is a covariant almost analytic vector with respect to the first connection (32) if and only if
the following equation holds

1 1
2 ]\k

1 1
FFqFZ = + FtF,fFf

i
Fklj Iq 2 Jlk ]w

4. Conclusions

In this study, we analyzed the special half-symmetric affine connection initiated by
Christoffell symbols (32).

We analyzed the dual connection and obtained the necessary and sufficient condition
for it to be an F-connection. In particular, the necessary and sufficient condition for the
symmetric part of a half-symmetric affine connection to be an F-connection was presented.

Five linearly independent curvature tensors were obtained with respect to this
affine connection.

Next, we reviewed the definition of a Tachibana space [4] and generalized it to the
definition of an almost Tachibana space. After that, we obtained the necessary and sufficient
condition for a dual half-symmetric connection to be a metric connection. It was proved that
a dual connection of a half-symmetric connection (32) and its symmetric part were metric
connections if and only if the almost Hermitian space equipped with the half-symmetric
connection was an almost Tachibana space.

The necessary condition for an almost Hermitian space to be a Hermitian space was
presented. The necessary and sufficient condition for an almost Kahlerian space was presented
as well.

In the last part of this research, motivated by Yano's research [4], we generalized the
concept of Killing vector by defining the affine Killing vector, conformal Killing vector,
projective Killing vector, harmonic vector, and covariant and contravariant analytic vectors.
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