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Abstract

In this article, we generalize Yano’s concept of a half-symmetric affine connection. With
respect to this generalization, we obtain five linearly independent curvature tensors. In
the following, we examine which special kinds of affine connections may be the general-
ized half-symmetric affine connection. At the end of this work, we generalize the term
of Killing’s vector given by Yano to affine Killing, conformal Killing, projective Killing,
harmonic, and covariant and contravariant analytic vectors.
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Nijenhuis tensor; Hermitian space
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1. Introduction
The symmetric affine connection spaces [1–3], and Riemannian spaces as special cases

of them, are subjects of research of different researchers and scientific groups. Those include
J. Mikeš with his team [1,2], N. S. Sinyukov [3], and many others.

An n-dimensional manifold equipped with a symmetric affine connection ∇, whose
coefficients are li

jk, li
jk = li

kj, is the n-dimensional symmetric affine connection space An.
A special subclass of the class of symmetric affine connection spaces is composed of the
n-dimensional manifolds equipped with symmetric metric tensors gij. These spaces are
n-dimensional Riemannian spaces Rn.

The affine connection coefficients of Riemannian space Rn are Christoffel symbols:

γi
jk =

1
2

gip(gjp,k − gjk,p + gkp,j
)
, (1)

where
[
gij] = [gij

]−1, a comma denotes partial derivation, gij,k = ∂gij/∂xk, and a summa-
tion by the mute index p, p = 1, . . . , n, is implied.

From [1–3], it is well known that sums li
jk + Pi

jk and γi
jk + Pi

jk of the affine connec-

tion coefficients li
jk and γi

jk and a tensor Pi
jk of the type (1, 2) are coefficients of other

affine connections.
The impact of special forms of this tensor on properties of affine connections on the

n = 2N-dimensional manifold is studied in this research. The research starts with Section 2,
where general definitions of n-dimensional and 2N-dimensional affine connection spaces
are reviewed. After that, we generalize the results presented in [1–3] by involving torsion
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in the affine connection, such as Yano’s results [4] with different possibilities of defining
special affine connections initially defined in Yano’s work. The results of this research may
be of special interest for applications in different scientific disciplines such as quantum
physics, cosmology, astronomy, and many others.

2. Theoretical Background
In this research, we continue the research about half-symmetric affine connection

started by K. Yano [4], T. Suguri and S. Nakayama [5], and S. Ishihara [6,7]. Yano’s research
is a special case of the study about non-symmetric affine connection space started by L. P.
Eisenhart [8], and continued by S. Minčić [9–14], M. Stanković [15], Lj. S. Velimirović [14–16],
M. Z. Petrović [16–18], and many others.

In this article, we recall basic definitions about symmetric and non-symmetric affine
connection spaces. After that, the curvature tensors of these spaces are expressed. In
Section 2, we present a definition of half-symmetric connection [4] and correlate it with
the corresponding non-symmetric affine connection. In Section 3, we obtain a family of
curvature tensors with respect to half-symmetric affine connection. The last result in this
study is linearly independent curvature tensors obtained with respect to the half-symmetric
affine connection.

2.1. 2N-Dimensional Riemannian Space

In this part, we adopt definitions of an N-dimensional Riemannian space from [1–3]
for the corresponding-dimensional Riemannian spaces. A 2N-dimensional differentiable
manifold M2N equipped with symmetric metric tensor ĝ, whose components are gij,

gij = gji, is the Riemannian space R2N . We assume the regularity of matrix
[
gij
]
, i.e.,

det
[
gij
]
̸= 0. The regularity of matrix

[
gij
]

allows the contravariant metric tensor g−1 to be

defined by components such as
[
gij] = [gij

]−1.
The first quadratic form of space R2N is

ds2 = gpqdxpdxq. (2)

The Christoffell symbols of space R2N are

Γi.jk =
1
2
(

gji,k − gjk,i + gik,j
)
.

The Christoffel symbols of the second kind of space R2N , which are the affine connec-
tion coefficients of space R2N are

Γi
jk = gipΓp.jk =

1
2

gip(gjp,k − gjk,p + gpk,j
)
= Γi

kj.

The covariant derivative of a tensor ai
j of type (1, 1) with respect to the affine connection

Γi
jk is

ai
j|
g
k = ai

j,k + Γi
pkap

j − Γp
jkai

p.

2.2. Symmetric and Non-Symmetric Affine Connection Spaces

The generalization of the concept of Riemannian space consists of symmetric and
non-symmetric affine connection spaces. An n-dimensional manifold Mn equipped with a

symmetric metric affine connection
0
∇, whose coefficients are Li

jk, Li
jk = Li

kj, is the symmetric

affine connection space An
(
see [1–3]

)
.
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The covariant derivative of a tensor â of type (1, 1) with respect to the symmetric affine

connection
0
∇ is [1–3]

ai
j|k = ai

j,k + Li
pkap

j − Lp
jkai

p,

where partial derivation is marked by a comma.
The corresponding Ricci identity is

ai
j|m|n − ai

j|n|m = ap
j Ri

pmn − ai
pRp

jmn,

for the curvature tensor of space Rn expressed as [3]

Ri
jmn = Li

jm,n − Li
jn,m + Lp

jmLi
pn − Lp

jnLp
jm. (3)

An n-dimensional manifold Mn equipped with a non-symmetric affine connection
∇, whose coefficients are Li

jk, Li
jk ̸= Li

kj for at least one pair of indices (j, k), is the non-

symmetric affine connection space GAn
(
see [8–19]

)
.

The symmetric and anti-symmetric parts of affine coefficients Li
jk are

Li
jk =

1
2
(

Li
jk + Li

kj
)
, Ti

jk = Li
jk
∨
=

1
2
(

Li
jk − Li

kj
)
.

The components Li
jk are components of coefficients of a symmetric affine connection. This

symmetric affine connection is the affine connection of associated space GAK. The com-
ponents Li

jk
∨

are components of a tensor of type (1, 2). The tensor Si
jk = 2Li

jk
∨

is the torsion

tensor of space GAK. It holds the equality Li
jk = Li

jk + Li
jk
∨

.

S. M. Minčić found four kinds of covariant derivatives of tensor â of type (1, 1) with
respect to non-symmetric affine connection [9–14]

ai
j|
1
k = ai

j,k + Li
pkap

j − Lp
jkai

p, (4)

ai
j|
2
k = ai

j,k + Li
kpap

j − Lp
kja

i
p, (5)

ai
j|
3
k = ai

j,k + Li
pkap

j − Lp
kja

i
p, (6)

ai
j|
4
k = ai

j,k + Li
kpap

j − Lp
jkai

p. (7)

N. O. Vesić proved that three of these four kinds of covariant derivatives were linearly
independent [20].

With respect to the four kinds of covariant derivatives (4)–(7), S. M. Minčić obtained
four curvature tensors, eight derived curvature tensors, and fifteen curvature pseudotensors
of space GAn.

Minčić’s work has been continued by many scientists, including M. Stanković [15], M.
Zlatanović [15,19], Lj. S. Velimirović [14–18], and many others.

N. O. Vesić [20,21] and D. J. Simjanović [21] completed the research realized in [20]
where it was proved that just curvature tensors could be obtained from the differences
ai

j |
p
m|

q
n − ai

j|
r
n|

s
m, p, q, r, s ∈ {1, 2, 3, 4}.

The curvature tensors of space GAn are elements of family

Ki
jmn = Ri

jmn + uTi
jm|n + u′Ti

jn|m + vTp
jmTi

pn + v′Tp
jnTi

pm + wTp
mnTi

pj. (8)

The next theorem about Bianchi identities, as a generalization of Bianchi identities
presented in [1–3], is proved in the following.



Axioms 2025, 14, 923 4 of 20

Theorem 1. In a non-symmetric affine connection space GAN , with affine connection ∇ whose
coefficients are Li

jk = Li
jk + Li

jk
∨

, the family of curvature tensors Ki
jmn satisfies the family of first

generalized Bianchi identities

Ki
jmn + Ki

mnj + Ki
njm = (u − u′)

(
Ti

jm|n − Ti
jn|m + Ti

mn|j
)

+ (v − v′ + w)
(
Ti

pnTi
pn − Tp

jnTi
pm + Tp

mnTi
pj
) (9)

With respect to the covariant derivative with respect to the affine connection Li
jk denoted by

“|”, the following equation holds:

Ki
jmn|k + Ki

jnk|m + Ki
jkm|n = u

(
Ti

jm|n|k + Ti
jn|k|m + Ti

jk|m|n
)

+ u′(Ti
jm|k|n + Ti

jn|m|k + Ti
jk|n|m

)
+ v
(
(Tp

jnTi
pk)|m + (Tp

jkTi
pm)|n + (Tp

jmTi
pn)|k

)
+ v′

(
(Tp

jkTi
pn)|m + (Tp

jmTi
pk)|n + (Tp

jnTi
pm)|k

)
+ w

(
(Tp

nkTi
pj)|m + (Tp

kmTi
pj)|n + (Tp

mnTi
pj)|k

)
.

(10)

Proof. To simplify calculations in this theorem, we involve the term

Li
jm|n = Li

jm,n + Li
pnLi

pm − Lp
jnLi

pm − Lp
mnLi

jp. (11)

The affine connection coefficients Li
jk are not tensors. Thus, the equality (11) does not repre-

sent a covariant derivative of Li
jk but just simplifies the writing of its right-hand side. This

abbreviation is significant because if we define Li
jm|n|k = Li

jm|n,k + Li
pkLp

jm|n − Lp
jkLi

pm|n −

Lp
mkLi

jp|n − Lp
nkLi

jm|p and substitute the definition (11) in this relation and antisymmetrize it

by n and k, we get

Li
jm|n|k − Li

jm|k|n = Ri
pnkLp

jm − Rp
jnkLi

pm − Rp
mnkLi

pj. (12)

We are now ready to start the proof of this theorem.
First, the curvature tensor of symmetric affine connection space RN is

Ri
jmn = Li

jm,n − Li
jn,m + Lp

jmLi
pn − Lp

jnLi
pm

= Li
jm|n − Li

jn|m − Lp
jmLi

pn + Lp
jnLi

pm,
(13)

for Li
jm|n defined by (11).

With respect to the definition of family Ki
jmn of curvature tensors, we obtain

Ki
jmn + Ki

mnj + Ki
njm = Ri

jmn + Ri
mnj + Ri

njm + u
(
Ti

jm|n + Ti
mn|j + Ti

nj|m
)

+ u′(Ti
jn|m + Ti

nm|j + Ti
mj|n

)
+ v
(
Tp

jmTi
pn + Tp

mnTi
pj + Tp

njT
i
pm
)

+ v′
(
Tp

jnTi
pm + Tp

mjT
i
pn + Tp

nmTi
pj
)
+ w

(
Tp

mnTi
pj + Tp

njT
i
pm + Tp

jmTi
pn
)

=
(

Li
jm|n − Li

jn|m − Lp
jmLi

pn + Lp
jnLi

pm
)

+
(

Li
mn|j − Li

mj|n − Lp
mnLi

pj + Lp
mjL

i
pn
)

+
(

Li
nj|m − Li

nm|j − Lp
njL

i
pm + Lp

nmLi
pj
)

+
(
u − u′)

(
Ti

jm|n − Ti
jn|m + Ti

mn|j
)

+ (v − v′ + w)
(
Tp

jmTi
pn − Tp

jnTi
pm + Tp

mnTi
pj
)
.
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along with relation (9), which proves the first part of this theorem.
After expressing the curvature tensor Ri

jmn in terms of Li
jm|n and Li

jn|m as in (13), we get

Ki
jmn|k = Li

jm|n|k − Li
jn|m|k − Lp

jm|kLi
pn − Lp

jmLi
pn|k + Lp

jn|kLi
pm + Lp

jnLi
pm|k

+ uTi
jm|n|k + u′Ti

jn|m|k + vTp
jm|kTi

pn + vTp
jmTi

pn|k

+ v′Tp
jn|kTi

pm + v′Tp
jnTi

pm|k + wTp
mn|kTi

pj + wTp
mnTi

pj|k,

(14)

Ki
jnk|m = Li

jn|k|m − Li
jk|n|m − Lp

jn|mLi
pk − Lp

jnLi
pk|m + Lp

jk|mLi
pn + Lp

jkLi
pn|m

+ uTi
jn|k|m + u′Ti

jk|n|m + vTp
jn|mTi

pk + vTp
jnTi

pk|m

+ v′Tp
jk|mTi

pn + v′Tp
jkTi

pn|m + wTp
nk|mTi

pj + wTp
nkTi

pj|m,

(15)

Ki
jkm|n = Li

jk|m|n − Li
jm|k|n − Lp

jk|nLi
pm − Lp

jkLi
pm|n + Lp

jm|nLi
pk + Lp

jmLi
pk|n

+ uTi
jk|m|n + u′Ti

jm|k|n + vTp
jk|nTi

pm + vTp
jkTi

pm|n

+ v′Tp
jm|nTi

pk + v′Tp
jmTi

pk|n + wTp
km|nTi

pj + wTp
kmTi

pj|n.

(16)

With respect to the equalities (14)–(16), we obtain the following sum

Ki
jmn|k + Ki

jnk|m + Ki
jkm|n =

(
Li

jm|n|k − Li
jm|k|n

)
−
(

Li
jn|m|k − Li

jn|k|m
)

+
(

Li
jk|m|n − Li

jk|n|m
)
+ Li

pm
(

Lp
jn|k − Lp

jk|n
)

− Li
pn
(

Lp
jm|k − Lp

jk|m
)
+ Li

pk
(

Lp
jm|n − Lp

jn|m
)

− Lp
jm
(

Li
pn|k − Li

pk|n
)
+ Lp

jn
(

Li
pm|k − Li

pk|m
)

− Lp
jk
(

Li
pm|n − Li

pn|m
)
+ u

(
Ti

jm|n|k + Ti
jn|k|m + Ti

jk|m|n
)

+ u′(Ti
jm|k|n + Ti

jn|m|k + Ti
jk|n|m

)
+ v
(
(Tp

jnTi
pk)|m + (Tp

jkTi
pm)|n + (Tp

jmTi
pn)|k

)
+ v′

(
(Tp

jkTi
pn)|m + (Tp

jmTi
pk)|n + (Tp

jnTi
pm)|k

)
+ w

(
(Tp

nkTi
pj)|m + (Tp

kmTi
pj)|n + (Tp

mnTi
pj)|k

)
.

(17)

Based on Equations (12) and (13), we transform the previous relation to

Ki
jmn|k + Ki

jnk|m + Ki
jkm|n =

(
Ri

pnkLp
jm − Rp

jnkLi
pm − Rp

mnkLi
jp
)

−
(

Ri
pmkLp

jn − Rp
jmkLi

pn − Rp
nmkLi

jp
)

+
(

Ri
pmnLp

jk − Rp
jmnLi

pk − Rp
kmnLi

jp
)

+ Li
pm
(

Rp
jnk + Lq

jnLp
qk − Lq

jkLp
qn
)

− Li
pn
(

Rp
jmk + Lq

jmLp
qk − Lq

jkLp
qm
)

+ Li
pk
(

Rp
jmn + Lq

jmLp
qn − Lq

jnLp
qm
)

− Lp
jm
(

Ri
pnk + Lq

pnLi
qk + Lq

pkLi
qn
)

+ Lp
jn
(

Ri
pmk + Lq

pmLi
qn − Lq

pkLi
qm
)

− Lp
jk
(

Ri
pmn + Lq

pmLi
qn − Lq

pnLi
qm
)

+ u
(
Ti

jm|n|k + Ti
jn|k|m + Ti

jk|m|n
)

+ u′(Ti
jm|k|n + Ti

jn|m|k + Ti
jk|n|m

)
+ v
(
(Tp

jnTi
pk)|m + (Tp

jkTi
pm)|n + (Tp

jmTi
pn)|k

)



Axioms 2025, 14, 923 6 of 20

+ v′
(
(Tp

jkTi
pn)|m + (Tp

jmTi
pk)|n + (Tp

jnTi
pm)|k

)
+ w

(
(Tp

nkTi
pj)|m + (Tp

kmTi
pj)|n + (Tp

mnTi
pj)|k

)
.

Since Ri
jmn = −Ri

jnm and Rp
mnk + Rp

nkm + Rp
kmn = 0, we reduce the last equality to

Equation (10), which completes the proof of this theorem.

The equalities (9) and (10) are families of the first and second generalized Bianchi identities.

Linearly Independent Curvature Tensors

In an attempt to generalize initial research about curvature tensors of symmetric affine
connection [1,3], S. M. Minčić [9–13] concluded that from the difference ai

j |
p
m|

q
n − ai

j|
r
n|

s
m, five

linearly independent curvature tensors could be obtained:

R
1

i
jmn = Li

jm,n − Li
jn,m + Lp

jmLi
pn − Lp

jnLi
pm, (18)

R
2

i
jmn = Li

mj,n − Li
nj,m + Lp

mjL
i
np − Lp

njL
i
mp, (19)

R
3

i
jmn = Li

jm,n − Li
nj,m + Lp

jmLi
np − Lp

njL
i
pm + 2Lp

nmTi
pj, (20)

R
4

i
jmn = Li

jm,n − Li
nj,m + Lp

jmLi
np − Lp

njL
i
pm + 2Lp

mnTi
pj, (21)

R
5

i
jmn = Li

jm,n − Li
jn,m +

1
2
(

Lp
jmLi

pn + Lp
mjL

i
np − Lp

jnLi
mp − Lp

njL
i
pm
)
. (22)

These five linearly independent curvature tensors are expressed as functions of the
curvature tensor Ri

jmn of associated space An and torsion tensor as

R
1

i
jmn = Ri

jmn + Ti
jm|n − Ti

jn|m + Tp
jmTi

pn − Tp
jnTi

pm, (23)

R
2

i
jmn = Ri

jmn − Ti
jm|n + Ti

jn|m + Tp
jmTi

pn − Tp
jnTi

pm, (24)

R
3

i
jmn = Ri

jmn + Ti
jm|n + Ti

jn|m − Tp
jmTi

pn + Tp
jnTi

pm − 2Tp
mnTi

pj, (25)

R
4

i
jmn = Ri

jmn + Ti
jm|n + Ti

jn|m − Tp
jmTi

pn + Tp
jnTi

pm + 2Tp
mnTi

pj, (26)

R
5

i
jmn = Ri

jmn + Tp
jmTi

pn + Tp
jnTi

pm. (27)

In the research of N. O. Vesić [20,21] and D. J. Simjanović [21], the six linearly indepen-
dent curvature tensors of space GAn were obtained. Six linearly independent curvature
tensors of this space are

R̃
1

i
jmn = Ri

jmn + Ti
jm|n − Ti

jn|m + Tp
jmTi

pn − Tp
jnTi

pm + 2Tp
mnTi

pj,

R̃
2

i
jmn = Ri

jmn + Ti
jm|n − Ti

jn|m + Tp
jmTi

pn + Tp
jnTi

pm,

R̃
3

i
jmn = Ri

jmn + Ti
jm|n − Ti

jn|m − Tp
jmTi

pn − Tp
jnTi

pm, (28)

R̃
4

i
jmn = Ri

jmn + Ti
jm|n − Ti

jn|m − Tp
jmTi

pn − 3Tp
jnTi

pm,

R̃
5

i
jmn = Ri

jmn + Ti
jm|n + Ti

jn|m + Tp
jmTi

pn + Tp
jnTi

pm,

R̃
6

i
jmn = Ri

jmn − Tp
jm|n − Tp

jn|m − Tp
jmTi

pn − Tp
jnTi

pm.

The curvature tensors R
1

i
jmn, . . . , R

6
i
jmn are the elements of family (8) for the following

six c = (u, u′, v, v′, w): c
1
= (1,−1, 1,−1, 2), c

2
= (1,−1, 1, 1, 0), c

3
= (1,−1,−1,−1, 0),

c
4
= (1,−1,−1,−3, 0), c

5
= (1, 1, 1, 1, 0), and c

6
= (−1,−1,−1,−1, 0). If we substitute these
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values of u, u′, v, v′, and w into Equations (9) and (10), we obtain generalized Bjanchi
identities which correspond to these six curvature tensors.

The linearly independent curvature tensors R̃
1

i
jmn, . . . , R̃

5
i
jmn given by (23)–(27) and R̃

3
i
jmn

given by (28) are linearly independent. Hence, our study in this research is based on these
six linearly independent curvature tensors.

2.3. Almost Complex Manifolds

The n = 2N-dimensional affine connection spaces were studied in Yano’s work [4]. A
2N-dimensional manifold M2N = M2N(x1, . . . , x2N) equipped with a structural affinor
Fh

i which satisfies the equality
Fs

i Fi
t=− δs

t , (29)

is an almost complex manifold [4].
The operators Ohs

ri and ∗Ohs
ri are defined as

Ohs
ri =

1
2

(
δh

r δs
i − Fh

r Fs
i

)
,

∗Ohs
ri =

1
2

(
δh

r δs
i + Fh

r Fs
i

)
.

The affine connection of an almost complex space, whose coefficients are Li
jk, is the

F-connection if the affinor Fh
i is covariantly constant with respect to that connection, i.e.,

Fj
i|
1
k = 0. Since

Fj
i|k = Fj

i|
1
k − T j

lkFl
i + Tl

ikFj
l ,

the F-connection satisfies the equality

Fj
i|k = −T j

lkFl
i + Tl

ikFj
l .

The F-connection Li
jk is the half-symmetric connection if its torsion tensor satisfies

the equality
Ohs

rkOkt
ij Sr

st = 0.

For the half-symmetric affine connection, the next equivalences are satisfied:

Sh
ij = Fs

j Fh
r Sr

is + Ft
i Fs

j Sh
ts + Fh

r Ft
i Sr

tj,

Th
ij = Fs

j Fh
r Tr

is + Ft
i Fs

j Th
ts + Fh

r Ft
i Tr

tj,

Fs
i Fi

t = −δs
t , (30)

Fj
i|k = −T j

lkFi
l + Tl

ikFl
j.

2.4. Motivation

The structure Fi
j = gipFpj is used in mathematics

(
F-plannar mappings [22–24]

)
.

Invariants for F-planar mappings and transformation rules caused by Fi
j are the main

subjects of that research.
This structure is also widely applied in physics. The anti-symmetric tensor Fij cor-

responds to electromagnetism [25]. In [26], the importance of the structure FijFij for the
Einstein–Maxwell cosmological model is demonstrated.

In this article, our attention is focused on theoretical aspects of transformations of affine
connection caused by Fi

j , but these results will be directly applied in future generalizations
of gravity theory. Because our research generalizes Yano’s results, the tensor Fij is anti-
symmetric by i and j.
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2.5. Research Purposes

In [27], we studied the affine connection spaces whose affine connection coefficients
were of the form

1
Li

jk = Li
jk −

1
2

Fi
pFp

j;k, (31)

for a covariant derivative with respect to the affine connection Li
jk. This is a special type of

half-symmetric affine connection. In this article, we reduce our subject of research to the
affine connection spaces whose affine connection coefficients are

1
Γi

jk = Γi
jk −

1
2

Fi
pFp

j|
g
k, (32)

This research start with a special case of half-symmetric affine connection. Following
the methodology used in Yano’s work [4], we restrict that concept for general affine connec-
tions expressed as in (32). After that, the F-connections (affine connections which cause
affinors to vanish by covariant differentiation) are studied. The term of the Killing vector [4]
is generalized with respect to the definition of a half-symmetric affine connection (32).

3. Results in Almost Hermitian Spaces
The almost complex manifold M2N generated with the positive definite quadratic

form (2) such that the following equations are satisfied

gij = Ft
i Fs

j gts, (33)

Fij = Ft
j gti, (34)

is the almost Hermitian space. An almost Hermitian space in which the following equation
is satisfied

Fi
j|
g
k + Fi

k |
g
j = 0

is an almost Tachibana space (nearly Kählerian space) [4].
Based on Equations (30) and (33), the following equality holds Fij = −Fji. The Rie-

mannian metric gij which satisfies (33) is the Hermitian metric. The almost complex space
M2N equipped with the Hermitian metric is the almost Hermitian space.

In the almost Hermitian space, we may analyze the special case of half-symmetric
affine connection (31), given by (32). The affine connection (32) is the first connection
(canonic connection). For the affine connection (32), the following equalities are satisfied

gij|
1
k = 0, (35)

Fij|
1
k = 0,

for the covariant derivative |
1

with respect to the affine connection whose coefficients are
1
Γi

jk.

Let us prove the next theorem.

Theorem 2. Let Γi
jk be the second-kind Christoffell symbols in an almost Hermitian space. For the

affine connection coefficients
1
Γi

jk, the next equalities are satisfied

1
Si

jk = −
2
Si

jk = 0 ⇐⇒ Fi
j|
g
k = Fi

k |
g
j,

1
Ti

jk = −
2
Ti

jk = 0 ⇐⇒ Fi
j|
g
k = Fi

k |
g
j,
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i.e.,
1
Γi

jk =
1
Γi

jk if and only if the tensor Fi
j|
g
k is symmetric by j and k.

Proof. Based on Equation (32), the torsion tensor and its half are

1
Si

jk = 2
1
Γi

jk
∨
=

1
2

Fi
p

(
Fp

k |
g
j − Fp

j|
g
k

)
, (36)

1
Ti

jk =
1
Γi

jk
∨
=

1
4

Fi
p

(
Fp

k |
g
j − Fp

j|
g
k

)
.

The symmetric and dual affine connection of the connection (32) are, respectively,

1
Γi

jk =
1
2

(
1
Γi

jk +
1
Γi

kj

)
= Γi

jk −
1
4

Fi
p

(
Fp

j|
g
k + Fp

k |
g
j

)
, (37)

2
Γi

jk =
1
Γi

kj =
1
Γi

jk −
1
Si

jk = Γi
jk −

1
2

Fi
pFp

k |
g
j. (38)

The affine connection (32) can be expressed as

1
Γi

jk =
1
Γi

jk +
1
Γi

jk
∨
=

1
Γi

jk +
1
Ti

jk =
1
Γi

jk +
1
4

Fi
p

(
Fp

k |
g
j − Fp

j|
g
k

)
.

The torsion tensor
2
Si

jk =
1
Si

kj = 2
1
Ti

kj, such as its half
2
Ti

jk =
1
Ti

kj =
1
4

Fi
p

(
Fp

j|
g
k − Fp

k |
g
j

)
,

because of their anti-symmetries by j and k, satisfy the next equalities

2
Si

jk = −
1
Si

jk,
2
Ti

jk = −
1
Ti

jk,

which completes proof of this theorem.

The next theorem gives the necessary and sufficient condition for a dual connection to
be an F-connection.

Theorem 3. The dual connection
2
Γi

jk of the affine connection
1
Γi

jk is an F-connection if and only if

the equality Fi
j|
g
k =

1
2

Fi
k |

g
j −

1
2

Fi
p|

g
qFq

j Fp
k is satisfied.

Proof. Because
1
Γi

jk is the F-connection, the next equality holds Fi
j|
1
k = 0, where |

1
is the

covariant derivative with respect to the affine connection
1
Γi

jk. Based on the equality Fi
j|
1
k = 0

and Equation (38), we obtain

Fi
j|
2
k = Fi

j|
g
k −

1
2

Fi
k |

g
j +

1
2

Fi
p|

g
qFq

j Fp
k ,

where |
2

is the covariant derivative with respect to the affine connection
2
Γi

jk.

The next theorem is a logical extension of the previous one.
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Theorem 4. The symmetric affine connection
1
Γi

jk of the connection
1
Γi

jk is an F-connection if and

only if the equality Fi
j|
g
k =

1
2

Fi
k |

g
j −

1
2

Fi
p|

g
qFq

j Fp
k holds.

Proof. From the equality Fi
j|
1
k = 0 and Equation (37), we obtain

Fi
j|
0
k =

1
2

(
Fi

j|
g
k −

1
2

Fi
k |

g
j +

1
2

Fi
p|

g
qFq

j Fp
k

)
,

where |
0

is the covariant derivative with respect to the symmetric affine connection
1
Γi

jk.

Theorem 5. The symmetric part
1
Γi

jk of the affine connection
1
Γi

jk is a metric connection if and only

if the next equality is satisfied Fi
j|
g
k + Fi

k |
g
j = 0, i.e., if and only if an almost Hermitian space is an

almost Tachibana space.

Proof. Based on Equation (30) and the covariant derivative |
g
, we get

Fp
i |
g
kFjp + Fp

j|
g
kFip = 0. (39)

With respect to Equation (39), we obtain the following equality

gij|
0
k =

1
4

Fpk

(
Fp

j|
g
i + Fp

i |
g
j

)
,

which completes the proof of this theorem.

Theorem 6. The tensor Fij is covariantly constant with respect to the symmetric part
1
Γi

jk of the

affine connection
1
Γi

jk if and only if the equality Fij|
g
k =

1
2

Fkj|
g
i +

1
2

Fik |
g
j is satisfied.

Proof. Using Equations (29) and (34), we get

FipFp
j = −gij, (40)

FpiF
p
j = gij. (41)

From Equations (34), (40), and (41), one obtains

Fij|
0
k =

1
2

(
Fij|

g
k +

1
2

Fjk |
g
i +

1
2

Fki |
g
j

)
,

such as

Fij|
0
k = Fij,k − Lp

ikFpj − Lp
jkFip = Fij,k −

1
Γp

ikFpj −
1
Γp

jkFip,

These relations, together with the anti-symmetry of Fij by i and j (see [4], p. 126),
complete the proof of this theorem.
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Theorem 7. The dual connection
2
Γi

jk of the affine connection
1
Γi

jk is a metric connection if and

only if the equality Fi
j|
g
k + Fi

k |
g
j = 0 is satisfied, i.e., if and only if the almost Hermitian space is the

Tachibana space.

Proof. With respect to gij|
g
k = 0, we obtain

gij|
2
k =

1
2

Fpk

(
Fp

j|
g
i + Fp

i |
g
j

)
,

which proves the theorem.

Theorem 8. The tensor Fij is covariantly constant with respect to the dual affine connection
2
Γi

jk of

the affine connection
1
Γi

jk if and only if the next equality Fij|
g
k =

1
2

Fkj|
g
i +

1
2

Fik |
g
j holds.

Proof. Based on Equations (34), (40) and (41), we obtain

Fij|
2
k = Fij|

g
k +

1
2

Fjk |
g
i +

1
2

Fki |
g
j. (42)

The equality (42), together with the relation Fij = −Fji (see [4], p. 126), confirms the
validity of this theorem.

The properties of torsion tensor (36) with respect to the affinor Fi
j are examined below.

For the torsion tensor of first connection (36), we obtain

Fi
p

1
Sp

jk =
1
2

(
Fi

j|
g
k − Fi

k |
g
j

)
,

Fq
p

1
Sp

qi = −1
2

Fr
i |
g
r =

1
2

Fi,

Fp
j

1
Si

pk = −1
2

(
Fi

j|
g
k − Fi

t Fp
j Ft

k |
g
p

)
,

Fp
j Fq

k

1
Si

pq = −1
2

(
Fi

j|
g
pFp

k − Fi
k |

g
pFp

j

)
.

Hence, the following relations are satisfied:

1
Si

jk = 0 ⇐⇒ Fi
j|
g
k = Fi

k |
g
j, (43)

Fi
p

1
Sp

jk = 0 ⇐⇒ Fi
j|
g
k = Fi

k |
g
j, (44)

Fq
p

1
Sp

qi = 0 ⇐⇒ Fi = 0,

Fp
j

1
Si

pk = 0 ⇐⇒ Fi
j|
g
k = Fi

t Fp
j Ft

k |
g
p,

Fp
j

1
Si

pk = 0 ⇐⇒ Fi
j|
g
k = Fi

t Fp
j Ft

k |
g
p,

Fp
j Fq

k

1
Si

pq = 0 ⇐⇒ Fi
j|
g
pFp

k = Fi
k |

g
pFp

j .
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The Nijenhuis tensor in an almost Hermitian space is

Ni
jk = Fp

k

(
Fi

j|
g
p − Fi

p|
g
j

)
− Fp

j

(
Fi

k |
g
p − Fi

p|
g
k

)
.

When this tensor vanishes, the almost Hermitian space is a Hermitian one.
These expressions complete the proof of the two following theorems.

Theorem 9. In an almost Hermitian space, if Equation (43) or (44) is satisfied, then the almost
Hermitian space is a Hermitian one.

Theorem 10. An almost Hermitian space is an almost semi-Kählerian space (Fi = 0) if and only if

the equality Fq
p

1
Sp

qi = 0 holds.

A Killing vector vi of Riemannian space R2N (almost Hermitian space) is the vector
which satisfies Killing’s equations:

Lvgij = vpgij|
g
p + gpjv

p
|
g
i + gipvp

|
g
j = 0. (45)

Because gij|
g
p = 0, the previous Killing equations reduce to

Lvgij = vi |
g
j + vj|

g
i = 0.

The vector vi is Killing’s vector with respect to the first connection (32) if

1
Lvgij = 0,

for
1
L defined as

1
Lvgij = vpgij|

1
p + gpjv

p
|
1
i + gipvp

|
1
j = 0.

Theorem 11. In an almost Hermitian space, the next equation holds:

1
Lvgij = Lvgij +

1
2

vtFt
p

(
Fp

i |
g
j + Fp

j|
g
i

)
.

Proof. Since the equality gij|
1
p = 0 is satisfied with respect to the Equation (35), the previous

Killing equations for the first connection reduce to

1
Lvgij = vi|

1
j + vj|

1
i = 0.

After some computing, we get

vi|
1
j + vj|

1
i = vi |

g
j + vj|

g
i +

1
2

vtFt
p

(
Fp

i |
g
j + Fp

j|
g
i

)
,

which completes this proof.
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Corollary 1. If an almost Hermitian space is an almost Tachibana space, then the next equality holds

1
Lvgij = Lvgij.

Corollary 2. If vi is a Killing vector in an almost Hermitian space, then the following equality
is satisfied

1
Lvgij =

1
2

vtFt
p

(
Fp

i |
g
j + Fp

j|
g
i

)
.

Corollary 3. In an almost Hermitian space, let a vector vi be the Killing vector. Then, the equality
1
Lvgij = 0 holds if and only if the almost Hermitian space is the almost Tachibana space.

Based on Equation (3), we obtain the curvature tensor
1
Ri

jmn =
1
Γi

jm,n −
1
Γi

jn,m +
1
Γp

jm

1
Γi

pn −
1
Γp

jn

1
Γi

pm with respect to the symmetric affine connection
1
Γi

jk:

1
Ri

jmn =
3
4

Ri
jmn −

1
4

Fi
pFs

j Rp
smn −

1
4

Fi
p

(
Fp

m|
g
jn − Fp

n|
g
jm

)

− 1
16

(
3Fi

p|
g
n + Fs

pFq
n Fi

q|
g
s

)(
Fp

j|
g
m + Fp

m|
g
j

)

+
1
16

(
3Fi

p|
g
m + Fs

pFq
mFi

q|
g
s

)(
Fp

j|
g
n + Fp

n|
g
j

)
,

(46)

where Ri
jmn and |

g
are the curvature tensor and covariant derivative with respect to the

Christoffell symbols Γi
jk. From Equation (46), we get:

1
R
1

i
jmn =

1
2

Ri
jmn −

1
2

Fi
pFs

j Rp
smn −

1
4

Fi
p|

g
nFp

j|
g
m +

1
4

Fi
p|

g
mFp

j|
g
n,

1
R
2

i
jmn = Ri

jmn −
1
2

Fi
p

(
Fp

m|
g
jn − Fp

n|
g
jm

)
− 1

2
Fi

p|
g
nFp

m|
g
j +

1
2

Fi
p|

g
mFp

n|
g
j

− 1
4

Fi
p|

g
qFq

s

(
Fs

m|
g
jF

p
n − Fs

n|
g
jF

p
m

)
,

1
R
3

i
jmn = Ri

jmn −
1
2

Fi
p

(
Fp

j|
g
mn − Fp

n|
g
jm

)
− 1

2
Fi

p|
g
nFp

j|
g
m +

1
4

Fi
p|

g
mFp

n|
g
j +

1
4

Fp
n|

g
mFi

p|
g
j

− 1
4

Fi
p|

g
qFq

s

(
Fs

j|
g
mFp

n − Fs
n|

g
mFp

j

)
,

1
R
4

i
jmn = Ri

jmn −
1
2

Fi
p

(
Fp

j|
g
mn − Fp

n|
g
jm

)
− 1

2
Fi

p|
g
nFp

j|
g
m +

1
4

Fi
p|

g
mFp

n|
g
j +

1
4

Fp
m|

g
nFi

p|
g
j

− 1
4

Fi
p|

g
qFq

s

(
Fs

j|
g
mFp

n − Fs
m|

g
nFp

j

)
,

1
R
5

i
jmn =

3
4

Ri
jmn −

1
4

Fi
pFs

j Rp
smn −

1
4

Fi
p

(
Fp

m|
g
jn − Fp

n|
g
jm

)
− 1

8
Fi

p|
g
nFp

j|
g
m − 1

4
Fi

p|
g
nFp

m|
g
j

+
1
4

Fi
p|

g
mFp

j|
g
n +

1
8

Fi
p|

g
mFp

n|
g
j −

1
8

Fi
p|

g
qFq

s

(
Fs

m|
g
jF

p
n − Fs

j|
g
nFp

m

)
.
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A vector vi of Riemannian (almost Hermitian) space R2N which satisfies the affine
Killing equations

LvΓi
jk = vi

|
g
jk + Ri

jkpvp = 0,

is the affine Killing vector.
A vector vi is the affine Killing vector with respect to the first connection (32) if the

following equalities are satisfied

1
LvΓi

jk = vi
|
1
jk + Ri

jkpvp = 0. (47)

Let us prove the next theorem.

Theorem 12. In an almost Hermitian space, the next equation is satisfied:

1
LvΓi

jk = LvΓi
jk −

1
2

(
Fi

t Ft
p|

g
kvp

|
g
j + Ft

j Fp
t|
g
kvi

|
g
p + Fi

t Ft
p|

g
jv

p
|
g
k

)

− 1
2

vp

(
Fi

t Ft
p|

g
jk +

1
2

Fi
t|
g
kFt

p|
g
j −

1
2

Fi
t Fq

j Fs
q|

g
kFt

p|
g
s

)
.

Proof. Equation (47) reduces to

1
LvΓi

jk = vi
|
g
jk + Ri

jkpvp − 1
2

(
Fi

t Ft
p|

g
kvp

|
g
j + Ft

j Fp
t|
g
kvi

|
g
p + Fi

t Ft
p|

g
jv

p
|
g
k

)

− 1
2

vp

(
Fi

t Ft
p|

g
jk +

1
2

Fi
t|
g
kFt

p|
g
j −

1
2

Fi
t Fq

j Fs
q|

g
kFt

p|
g
s

)
= 0.

After some computation, we get

vi
|
1
jk + Ri

jkpvp = vi
|
g
jk + Ri

jkpvp − 1
2

(
Fi

t Ft
p|

g
kvp

|
g
j + Ft

j Fp
t|
g
kvi

|
g
p + Fi

t Ft
p|

g
jv

p
|
g
k

)

− 1
2

vp

(
Fi

t Ft
p|

g
jk +

1
2

Fi
t|
g
kFt

p|
g
j −

1
2

Fi
t Fq

j Fs
q|

g
kFt

p|
g
s

)
,

which completes the proof of this theorem.

Corollary 4. If vi is an affine Killing vector in an almost Hermitian space, then the next relation holds

1
LvΓi

jk = −1
2

(
Fi

t Ft
p|

g
kvp

|
g
j + Ft

j Fp
t|
g
kvi

|
g
p + Fi

t Ft
p|

g
jv

p
|
g
k

)

− 1
2

vp

(
Fi

t Ft
p|

g
jk +

1
2

Fi
t|
g
kFt

p|
g
j −

1
2

Fi
t Fq

j Fs
q|

g
kFt

p|
g
s

)
.

A vector vi of Riemannian (almost Hermitian) space R2N which satisfies the conformal
Killing equations

Lvgij = vi |
g
j + vj|

g
i = 2Φgij,

for a scalar function Φ, is the conformal Killing vector.
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A vector vi is the conformal Killing vector with respect to the first connection (32) if
the next equation is satisfied

1
Lvgij = vi|

1
j + vj|

1
i = 2Φgij.

The previous conformal Killing equations reduce to

1
Lvgij = vi |

g
j + vj|

g
i +

1
2

vtFt
p

(
Fp

i |
g
j + Fp

j|
g
i

)
= 2Φgij.

Corollary 5. If a vector vi is a conformal Killing vector in an almost Hermitian space, then the
following holds

1
Lvgij = 2Φgij +

1
2

vtFt
p

(
Fp

i |
g
j + Fp

j|
g
i

)
.

Corollary 6. Let vi be a conformal Killing vector in an almost Hermitian space. In this case, the

equality
1
Lvgij = 2Φgij holds if and only if the almost Hermitian space is an almost Tachibana one.

A vector vi of Riemannian (almost Hermitian) space R2N is the projective Killing vector
with respect to the symmetric affine connection if the next relation holds (the projective
Killing equations):

LvΓi
jk = vi

|
g
jk + Ri

jkpvp = ψj Ai
k + ψk Ai

j,

for the gradient vector ψi.
A vector vi is the projective Killing vector with respect to the first connection (32) if

the projective Killing equations hold

1
LvΓi

jk = vi
|
1
jk + Ri

jkpvp = ψj Ai
k + ψk Ai

j.

The previous projective Killing equation reduce to

1
LvΓi

jk = vi
|
g
jk + Ri

jkpvp − 1
2

(
Fi

t Ft
p|

g
kvp

|
g
j + Ft

j Fp
t|
g
kvi

|
g
p + Fi

t Ft
p|

g
jv

p
|
g
k

)

− 1
2

vp

(
Fi

t Ft
p|

g
jk +

1
2

Fi
t|
g
kFt

p|
g
j −

1
2

Fi
t Fq

j Fs
q|

g
kFt

p|
g
s

)
= ψj Ai

k + ψk Ai
j.

Corollary 7. If a vector vi is a projective Killing vector, then the next equality holds

1
LvΓi

jk = ψj Ai
k + ψk Ai

j −
1
2

(
Fi

t Ft
p|

g
kvp

|
g
j + Ft

j Fp
t|
g
kvi

|
g
p + Fi

t Ft
p|

g
jv

p
|
g
k

)

− 1
2

vp

(
Fi

t Ft
p|

g
jk +

1
2

Fi
t|
g
kFt

p|
g
j −

1
2

Fi
t Fq

j Fs
q|

g
kFt

p|
g
s

)
.

A vector vi of Riemannian (almost Hermitian) space R2N is the harmonic vector if it
satisfies the following equations

vi |
g
j − vj|

g
i = 0,

vi
|
g
i = 0.
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A vector vi is harmonic with respect to the first connection (32) if the following
equations hold

vi|
1
j − vj|

1
i = 0,

vi
|
1
i = 0.

The last two equations reduce to

vi|
1
j − vj|

1
i = vi |

g
j − vj|

g
i +

1
2

Fp
t vp

(
Ft

i |
g
j − Ft

j|
g
i

)
,

vi
|
1
i = vi

|
g
i +

1
2

Ft
pFi

t|
g
iv

p,

i.e.,

vi|
1
j − vj|

1
i = vi |

g
j − vj|

g
i +

1
2

Fp
t vp

(
Ft

i |
g
j − Ft

j|
g
i

)
,

vi
|
1
i = vi

|
g
i −

1
2

Ft
pFtvp.

Corollary 8. If vi is a harmonic vector of almost Hermitian space, then the next equalities hold:

vi|
1
j − vj|

1
i =

1
2

Fp
t vp

(
Ft

i |
g
j − Ft

j|
g
i

)
,

vi
|
1
i = −1

2
Ft

pFtvp.

Corollary 9. Let vi be a harmonic vector in an almost Hermitian space. This vector is harmonic
with respect to the first affine connection if and only if the almost Hermitian space is the almost
Kähler one (Fi = 0) and the tensor Fi

j|
g
k is symmetric by j and k.

Corollary 10. An almost Hermitian space is the almost Kähler one (Fi = 0) if and only if the
equality vi

|
1
i = vi

|
g
i holds.

A vector vi is a contravariant almost analytic vector of an almost Hermitian space if it
satisfies the following equalities:

LvFi
j = vpFi

j|
g
p − Fp

j vi
|
g
p + Fi

pvp
|
g
j = 0.

A vector vi is the contravariant almost analytic vector with respect to the first connec-
tion (32) if the next equalities hold

1
LvFi

j = vpFi
j|
1
p − Fp

j vi
|
1
p + Fi

pvp
|
1
j = 0.

Because the first connection is an F-connection (Fi
j|
1
k = 0), the last equation becomes

1
LvFi

j = −Fp
j vi

|
1
p + Fi

pvp
|
1
j = 0.
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We prove the next theorem.

Theorem 13. In an almost Hermitian space, the following equation holds

1
LvFi

j = LvFi
j − vt

(
Fi

j|
g
t −

1
2

Fi
t|
g
j −

1
2

Fi
pFq

j Fp
t|
g
q

)
.

Proof. After some calculations, one gets

1
LvFi

j = LvFi
j − vt

(
Fi

j|
g
t −

1
2

Fi
t|
g
j −

1
2

Fi
pFq

j Fp
t|
g
q

)
,

which completes the proof of this theorem.

Corollary 11. If a vector vi is a contravariant almost analytic vector in an almost Hermitian space,
then the next equation holds:

1
LvFi

j = −vt

(
Fi

j|
g
t −

1
2

Fi
t|
g
j −

1
2

Fi
pFq

j Fp
t|
g
q

)
.

Corollary 12. In an almost Hermitian space, the equality
1
LvFi

j = LvFi
j holds if and only if the

equality Fi
j|
g
k =

1
2

Fi
k |

g
j +

1
2

Fi
pFq

j Fp
k |

g
q holds.

Corollary 13. In an almost Hermitian space, the equality
1
LvFi

j = LvFi
j holds if and only if the

dual and symmetric connections,
2
Γi

jk and
1
Γi

jk, are F-connections.

Proof. Because the next equalities hold

Fi
j|
g
k =

1
2

Fi
k |

g
j +

1
2

Fi
pFq

j Fp
k |

g
q =

1
2

Fi
k |

g
j −

1
2

Fi
p|

g
qFq

j Fp
k ,

and considering Theorems 3 and 4, we complete the proof of this corollary.

Corollary 14. Let a vector vi be covariant almost analytic (LvFi
j = 0) in an almost Hermitian space.

The vector vi is contravariant almost analytic with respect to the first connection (32) (
1
LvFi

j = 0) if

and only if the dual and symmetric connections
2
Γi

jk and
1
Γi

jk of connection
1
Γi

jk are F-connections.

A vector vi is a covariant almost analytic vector of an almost Hermitian space if it
satisfies the equation (

Fp
i |
g
j − Fp

j|
g
i

)
vp − Fp

j vi |
g
p + Fp

i vp|
g
j = 0.

A vector vi is a covariant analytic vector with respect to the first connection (32) if the
next equation holds (

Fp
i|
1
j − Fp

j|
1
i

)
vp − Fp

j vi|
1
p + Fp

i vp|
1
j = 0.
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Because the first connection is an F-connection (Fi
j|
1
k = 0), the last equation transforms into:

−Fp
j vi|

1
p + Fp

i vp|
1
j = 0.

Finally, we present the following theorem.

Theorem 14. In an almost Hermitian space, the following equality holds

−Fp
j vi|

1
p + Fp

i vp|
1
j = −Fp

j vi |
g
p + Fp

i vp|
g
j +

1
2

Fp
i |
g
jvp +

1
2

Ft
i Fq

j Fp
t|
g
qvp.

Proof. After some computing, we get

−Fp
j vi|

1
p + Fp

i vp|
1
j = −Fp

j vi |
g
p + Fp

i vp|
g
j +

1
2

Fp
i |
g
jvp +

1
2

Ft
i Fq

j Fp
t|
g
qvp,

which confirms the validity of this theorem.

Corollary 15. If a vector vi is a covariant almost analytic one in an almost Hermitian space, then

−Fp
j vi|

1
p + Fp

i vp|
1
j = vp

(
Fp

j|
g
i −

1
2

Fp
i |
g
j +

1
2

Ft
i Fq

j Fp
t|
g
q

)
.

Corollary 16. Let a vector vi be a covariant almost analytic one in an almost Hermitian space. The
vector vi is a covariant almost analytic vector with respect to the first connection (32) if and only if
the following equation holds

Fi
k |

g
j =

1
2

Fi
j|
g
k −

1
2

Ft
j Fq

k Fi
t|
g
q =

1
2

Fi
j|
g
k +

1
2

Fi
t Fq

k Ft
j|
g
q.

4. Conclusions
In this study, we analyzed the special half-symmetric affine connection initiated by

Christoffell symbols (32).
We analyzed the dual connection and obtained the necessary and sufficient condition

for it to be an F-connection. In particular, the necessary and sufficient condition for the
symmetric part of a half-symmetric affine connection to be an F-connection was presented.

Five linearly independent curvature tensors were obtained with respect to this
affine connection.

Next, we reviewed the definition of a Tachibana space [4] and generalized it to the
definition of an almost Tachibana space. After that, we obtained the necessary and sufficient
condition for a dual half-symmetric connection to be a metric connection. It was proved that
a dual connection of a half-symmetric connection (32) and its symmetric part were metric
connections if and only if the almost Hermitian space equipped with the half-symmetric
connection was an almost Tachibana space.

The necessary condition for an almost Hermitian space to be a Hermitian space was
presented. The necessary and sufficient condition for an almost Kählerian space was presented
as well.

In the last part of this research, motivated by Yano’s research [4], we generalized the
concept of Killing vector by defining the affine Killing vector, conformal Killing vector,
projective Killing vector, harmonic vector, and covariant and contravariant analytic vectors.
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10. Minčić, S.M. Curvature tensors of the space of non-symmetric affine connexion, obtained from the curvature pseudotensors. Mat.

Vesn. 1976, 13, 421–435.
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27. Stefanović, M.; Vesić, N.; Simjanović, D. Linearly Independent Curvature Tensors of Half-Symmetric Affine Connection. Filomat

2025, 39, 7749–7757.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.22190/FUMI210921019V
http://dx.doi.org/10.1142/S0217732310032883
http://dx.doi.org/10.1142/S0218271819501268

	Introduction
	Theoretical Background
	2N-Dimensional Riemannian Space
	Symmetric and Non-Symmetric Affine Connection Spaces
	Almost Complex Manifolds
	Motivation
	Research Purposes

	Results in Almost Hermitian Spaces
	Conclusions
	References

