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ABSTRACT This paper presents a new class of erasure-correcting codes (ECCs) aimed at enhancing
cryptographic security of certain encryption schemes. The proposed ECCs employ integer arithmetic to
encode and decode data bits and can correct all data bytes, each affected by exactly two erasures. In the
enhanced encryption scheme, the ciphertext produced by the initial encryption undergoes further processing.
The enhancement leverages specific fragmentation, the proposed ECCs and a simulated noisy channel. For
legitimate users, the simulated noisy channel functions as a binary erasure channel, while for an attacker
without the secret key, it acts as a channel with random deletions. Security notation and evaluation follow
the traditional approach, assessing the attacker’s advantage in distinguishing between two ciphertexts versus
random guessing. This evaluation employs dedicated analysis based on information-theoretic findings on
the capacity of certain deletion channels and is supported by illustrative numerical examples.

INDEX TERMS Integer codes, erasure correction, binary erasure channels, binary channel with
random deletions, channel capacity, cryptographic security evaluation, lightweight encryption, security
enhancement.

I. INTRODUCTION

In coding theory, there are many examples in which practical
communication channels can be modeled as erasure channels.
One example is modern communication networks, where

receiver to reconstruct a certain number of packets that
may be lost during transmission (see [1] and references
therein). Similarly, in large-scale storage systems, where
data is distributed across multiple storage units (such as

messages are segmented into packets that are subsequently
transmitted over the network. Some of these networks
use erasure correcting codes (ECCs), thus enabling the

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen

disks or servers), ECCs are used to add redundant data
segments. If some storage units fail, the constraints among
the remaining units can be utilized to recover the original data
(see [2] and references therein).

In the scenario described in this paper, the communica-
tion channel is modeled as an erasure channel from the
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receiver’s perspective, whereas from the attacker’s viewpoint
it appears as a deletion channel. This is implemented by
omitting two bits from each b-bit data byte (b > 2) at
known erasure positions before transmitting the codeword.
The positions of the omitted bits are known to both the
transmitter and the receiver but remain concealed from the
attacker.

In order for the receiver to be able to reconstruct the
described codeword, the data must be encoded/decoded
with ECCs having a very large minimum distance (MD).
This requirement renders capacity-approaching (CA) codes,
such as Polar and Low-Density Parity-Check (LDPC) codes,
unsuitable for the potential application (CA codes do not have
a clearly defined MD, while those for which it is possible
to numerically determine the MD have high redundancy
and/or enormous code lengths [3], [4], [5]). On the other
hand, Reed-Solomon (RS) codes have a predefined MD and
code rate. However, these codes would also be impractical
in the present case, as correcting k erasure byte errors
would require the use of k check-bytes [6]. An additional
drawback of all these codes is that they are complex to
encode/decode. In particular, in [7] and [8] it was shown
that LDPC codes can be encoded in linear or quasi-linear
time, whereas their decoding algorithms run in linear or log-
linear time [9], [10]. Polar codes, on the other hand, can
be encoded/decoded in log-linear time [11], [12], while the
encoding/decoding procedures for RS codes have quasi-log-
linear time complexity [13], [14].

Given all the above, in this paper, we will use dedicated
integer ECCs that can correct k b-bit data bytes, each affected
by exactly two erasures. The construction method of these
codes is similar to those presented in [15], [16], and [17],
which means that the codeword consists of k data bytes
and only one check byte. Besides being rate-efficient, the
proposed codes have the potential to run very fast in software,
as they can be encoded/decoded in logarithmic time using
one’s complement arithmetic [18].

A. MOTIVATION FOR THE WORK

The growing need for frequent encryption and decryption
operations in cyberspace underscores the importance of
improving these techniques. This demand brings two key
requirements: (i) minimizing implementation and operational
overheads, and (ii) enhancing the security of encryption
methods. Reducing overheads suggests the use of lightweight
encryption techniques, which might only offer claimed
computationally security. Recently, several methods have
been proposed to construct encryption techniques, with
a particular emphasis on coding-based methods to boost
cryptographic security. Our goal is to provide additional
advances within this direction proposing a suitable ECC
and its application for enhancing cryptographic security.
In addition, a targeted objective regarding ECC is the
minimization of implementation and operational overhead,
based on a design that employs integer arithmetic and exhibit
exceptionally low redundancy.
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B. SUMMARY OF THE RESULTS
The main contributions of this paper are summarized as
follows.

1) A novel ECC is developed that belongs to the class of
integer codes, which means that the codeword consists
of k data bytes and one check byte. The proposed
ECC employs integer arithmetic to encode and decode
data bits and is capable of correcting k data bytes,
each affected by exactly two erasures. The proposal
provides a detailed explanation of the encoding and
decoding algorithms, presents examples that illustrate
the operation of the proposed codes, and explains the
implementation advantages of the proposed codes over
standard ones.

2) We employ the developed code as a dedicated one
for the simulated noisy channel to enhance the cryp-
tographic security of certain lightweight encryption
schemes. In the security enhanced scheme, the noisy
channels simulator degrades the encoded ciphertext by
omitting certain bits. The simulator’s control ensures
that the party with the secret key knows the positions of
the omitted bits, while an attacker without the key faces
a difficult decoding challenge after a binary channel
with deletion errors, thereby enhancing security.

3) Security evaluation is performed using traditional
adversarial indistinguishability experiments and results
on the capacity of communication channels with bit
deletions. The considered indistinguishability experi-
ment addresses the attacker’s advantage in distinguish-
ing between two ciphertexts versus random guessing.

4) The obtained security gain and implementation com-
plexity are analyzed. The analytical results on the
security gain are also illustrated numerically. The anal-
ysis provides guidelines for selecting the parameters
of the proposed encryption scheme in order to achieve
the desired cryptographic security and implementation
complexity goals.

C. ORGANIZATION OF THE PAPER

Section II provides a summary of previous work relevant to
this study. Section III proposes an error correction coding
scheme for certain binary channels with erasures. Section IV
introduces a security-enhanced encryption scheme based
on the developed code. Section V evaluates the security
of the proposed encryption scheme, while Section VI
discusses the obtained security gain. The implementation
complexity of the security enhancement components is
addressed in Section VII. Finally, Section VIII concludes with
several remarks. All proofs are given in the Appendix.

Il. BACKGROUND

Enhancing the security and expanding the security mar-
gin of cryptographic primitives by integrating randomness
has been explored in various designs, initially discussed
in [19] and [20], as well as within the context of wiretap
channel coding.
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In symmetric key encryption techniques, two primary
approaches can be identified. The first approach involves
using a cryptographic key to govern error correction coding
algorithms, as demonstrated in several studies, including [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32].
The second approach emphasizes using error correction
coding and noisy channels to enhance the security of an
encryption scheme, as reported in sources such as [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], and [44].
These security enhancements are based on the paradigms
of additive noisy channels or channels with synchronization
errors.

In the first approach, where encoding and decoding are
controlled by a secret key, long secret keys are necessary
because the error correction coding scheme must remain
confidential. Conversely, the second approach, which uses
error correction coding and noisy channels for security
enhancement, allows for shorter secret keys, since the coding
scheme itself does not need to be kept secret.

Several encryption techniques based on secret coding
schemes have been proposed. The Rao-Nam (RN) cryp-
tosystem [31] uses simple codes and employs a random
non-singular invertible matrix, a generator matrix of a block
code, and a permutation matrix for encryption. A variant
of the RN cryptosystem using quasi-cyclic (QC) LDPC
(QC-LDPC) codes was proposed in [32], and a nonlinear
RN-like symmetric key encryption scheme was reported
n [28], where QC-LDPC lattice codes are used. QC-LDPC
codes have also been utilized in other encryption schemes,
such as the one in [22], which eliminates permutation and
scrambling matrices, and the scheme in [23], which randomly
inserts and deletes bits in a QC-LDPC codeword.

Polar codes have been the foundation for several encryp-
tion designs. These codes have been employed in efficient
secret key cryptosystems, where the generator matrix is kept
secret from potential attackers, as seen in [21], [25], [26],
[271, [29], and [30]. For example, some of these designs have
utilized polar codes for physical layer encryption (PLE) [27],
encryption based on chaotic sequences [29], and in conjunc-
tion with the Learning with Errors (LWE) problem [30].
Additionally, a scheme based on a linear block code and
a simulator of a channel with synchronization errors was
proposed in [24], where the simulator performs operations
such as bit flipping, deletion, and insertion based on secret
key-controlled Linear Feedback Shift Registers (LFSRs).
However, it has been shown in [45] that this particular
approach is vulnerable. A review of polar code-based
encryption approaches is provided in [21].

The concept of introducing adjustable noise into encrypted
data, known as the wiretap channel, has been explored
for enhancing the security of the Data Encryption Stan-
dard (DES) and other block ciphers. For instance, the secrecy
enhancement of the DES block cipher operating in cipher
feedback mode (CFB) with adjustable noise is examined
in [42]. The statistical properties of errors in block-ciphered
cryptosystems are analyzed in [46].
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Two paradigms for security enhancement have been
discussed: encode — encrypt — degrade and encrypt —
encode — degrade. These paradigms involve the use of
additive noise, error correction coding, and simulations
of various channels. Certain encryption techniques based
on hard learning problems, such as Learning Parity in
Noise (LPN) and LWE problems, have been used to achieve
provable security guarantees. The security enhancements
have been evaluated from both information-theoretic and
computational complexity perspectives. The enhancement of
security in stream ciphers is addressed using the “encode
— encrypt — degrade” paradigm in [33], [34], [36],
[41], and [43], while the “encrypt — encode — degrade”
paradigm is discussed in [35], [37], [38], [39], and [44].

This paper focuses on encryption approaches that involve
non-secret channel coding combined with noisy channels
for security enhancement. The key components of these
schemes include the initial encryption method, the employed
channel coding, and the paradigm of the noisy channel.
In the case of this paper, the noisy channel is modeled
such that, from the receiver’s perspective, it appears as
an erasure channel, whereas from the attacker’s viewpoint,
it is effectively a deletion channel. In such a scenario, the
use of integer codes is significantly more efficient than
the use of traditional codes. The reason lies in the fact
that integer codes are application-specific, i.e. that they are
always constructed for particular (desired) types of channels
in order to correct errors of a given type. Recently, in [47],
integer codes that can correct up to two bit errors in a b-
byte and can simultaneously correct some configurations
of three or more erroneous bits, though not all possible
ones, have been reported. The codes presented in this paper,
however, are much more similar to the integer codes proposed
in [48], [49], and [50].

Ill. INTEGER CODES FOR CORRECTION TWO ERASURES
PER DATA BYTE

A. CONSTRUCTION

Before describing the encoding and decoding algorithms,
we give two definitions that are necessary for understanding
the concept of integer ECC.

Definition 1: An error is called a 2/k—erasure if each of
the k data bytes is affected by two erasures.

Definition 2: [39] Let Zy_; = {0, 1,...,2° — 2} be the
ring of integers modulo 2°~1 and let B; = Zﬁ;lo a, - 2" be
the integer representation of a b-bit byte, where a, € {0, 1}
and 1 < i < k. Then, the code C(b,k, c), defined as
Cb.k.c) = {(B1.By.....Bi. Biry) € 25+ X0, G-
B; = Biyi(mod 22 — 1)} is an (kb + b, kb) integer ECC,
where ¢ = (1,C,,C3,...,Cy) € Zé‘,,il is the coefficient
vector and By € Z,»_; 1S an integer.

Before transmitting the codeword, the sender will omit two
bits from each b-bit data byte at predetermined positions (the
check-byte will be sent in the original form). Due to this, the
sent codeword will have (b—2)-k + b bits instead of (b+1)-k
bits (Fig. 1).
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FIGURE 1. The codeword structure after: (a) the encoding process and
(b) the bit omission process.

Upon receiving such a codeword, the decoder will insert 2k
zeros into the known erasure positions. This means that
the integer value of each “‘reconstructed” data byte will be
reducedby £ =2" - -x+2%-.y,where0 < r <s <b—1and
0 < x,y < 1. Having this in mind, we can give the following
definitions.

Definition 3: LetV = {0,1} and P = {0, 1,...,b — 1}.
Then, the vectors representing the values and positions of
the bits omitted at known erasure positions are respectively
defined by

.., Vok) € Y2k
., p) € P,

v=(vi,V2,.
p=P1,p2,..

.y B, Bry1) € zZkH pe

Definition 4: Letx = (B, Ba, .. b

the original codeword and let y = (B1, By, ..., B, Bk+1) €
Zé‘::ll be the received codeword in which two bits (of the
known position) within each b-bit data byte are replaced by
binary zeros. Then, the syndrome S of the received codeword
is defined as
k
S =By — Y Bi- Ci(mod2” — 1)
i=1
k
= > (B — B)) - Ci(mod2’ — 1)
i=1

k
=> e~ Ci(mod 2" — 1)
i=1
where e; € {vy;_1 - 2P2-1 4 vy; . 2P},
Definition 5: The set of syndromes corresponding to
2 /k—erasures is defined as

k
£=> (i1 - 271 vy - 27) - Cy(mod 2" — 1),
i=1

From the above it is clear that the original codeword will
be instantly reconstructed if S = 0. However, since the value
of the vector v is not pre-known to the decoder, the question
arises under which conditions it can reconstruct the original
codeword when S # 0. The answer is given by the following
theorem.
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Theorem 1: Let& € ¢\ {0} be the error set for (kb + b, kb)
integer codes correcting 2/k-erasures. Then, || = 4% — 1,
where |£| is the cardinality of §.

The proof is given in the Appendix A. Theorem 1 shows
that the number of elements & is known in advance, but
not their values. They will be known when the vector c is
found with the help of a computer. The vector ¢ is also
needed to construct the syndrome table (ST) that enables
the decoder to reconstruct the original codeword. Although
it may seem complicated, the process of generating the
ST is very simple and can be guessed from the proof
of Theorem 1. Namely, since there is a 1:1 mapping
between the syndrome S and the vector v, the ST can be
automatically constructed by generating the elements of the
set & (Fig. 2).

Element of theset £(S) | Omitted bits (v)

-« h——————— a2 ———»
FIGURE 2. Bit-width of one ST entry.

Based on this fact, it is easy to conclude that the process
of reconstructing the original codeword consists of two
steps: finding the entry with the first b bits as that of
the syndrome S and modifying the initially reconstructed
codeword by XORing the vector v with the inserted binary
Zeros.

B. ENCODING & DECODING PROCEDURES AND
ILLUSTRATIVE EXAMPLES

The pseudocodes of the encoding and decoding processes are
shown in Fig. 3, while Fig. 4 illustrates the application of the
proposed codes in a communication system.

To further clarify the operation of the proposed codes,
we provide the following illustrative examples.

Example 1. Letb = 7,k = 3 andp = (3,4, 3,5,2,5).
By using a computer search, the sender and receiver will
generate the coefficient vector ¢ = (1,3, 22), while the
receiver will additionally generate the ST having |§| =
43-1=63 entries (Table 1). Now, suppose that the sender
wants to transmit 21 bits, say m = (By,B2,B3) =
(01010102, 11011115, 10001002) = (42,111, 68). In that
case, the value of the check-byte will be equal to

Biy1=By=1-4243 111 +22-68 (mod127)
=93 = 10111001,

and the codeword will have 28 bits, x = (By, By, Bs,
B4) = (0101010, 11011115, 1000100,, 1011101;) = (42,
111, 68, 93). Given the value of the vector p, the sender
will omit the 4th and 5th bits from the first byte, the
4th and 6th bits from the second byte and the 3rd and
6th bits from the third byte. As a result, the shortened
codeword will have 22 bits, x; = (Bys, B, B3s, B4) =
(010105, 110115, 100105, 10111015). When it receives such

104731
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ENCODER
//Encoding process//
Input: m= (B}, By, ..., By), c=(1, Cs, ..., C), p = (P1, P25 s P20)
Bii1=0;
fori=1tok
By = C;+ Bi + B
end
x = (B, By, ..., By, Bi1); // the codeword with bk + b bits
// Omitting two bits per data byte at agreed erasure positions //
fori=1tok
omit two bits within the B; at positions p,;.; and p,;
end
Output: x,= (B, Bas, ..., Bis, Bi1):// the codeword with (b -2)-k + b bits

FIGURE 3. Pseudocodes of encoding and decoding procedures.

DECODER
// Inserting binary zeros at agreed erasure positions //
Input: x, = (Bis, Bas, - Biss Birr), ¢ = (1, Ca, ooy G, p = (P15 P25 - P), ST
fori=1tok
insert two binary zeros within the B; at positions p,;; and py;
end
vy =By, By, ..., By, Bys1) // the initially reconstructed codeword (IRC)
// Reconstructing the original codeword //
B =0;
fori=1tok
By =Ci By + B
end _
S'=Bi1—Brn;
Step 1. Use the value of S and lookup the ST to get the vector v
Step 2. Modify the IRC by XORing the vector v with the inserted binary zeros
Output: y =x= (B, By, ..., By, Bi+1);

Sender (Encoder)

m=(By, By, ..., BY) Calculating

.

x=(By, By, ..., B, Bi1)

Omitting two bits per .= (Big, Boes s Bisy Bisr)

the check-byte By,

Calculating the
syndrome § and

y= (El, Ez, tee 1_31(, Byi1)

data byte at agreed
erasure positions

| .

‘ Communication
- - - - - - - — — . channel

Inserting binary

L)Cs: (BIS)BZSV“:B/\'SSBIHl)

searching the ST to |
find the vector v

!

XORing the vector v
with all inserted zeros

y=x=(By, By, ..., B, Biy1) €——

zeros at agreed
erasure positions

<

Receiver (Decoder)

FIGURE 4. Framework of the proposed integer ECC employment.

a codeword, the receiver will first insert binary zeros at the
known erasure positions,

y = (01000105, 11001015, 1000100,, 10111015)
= (34, 101, 68, 93).

After that, it will calculate the value of the syndrome S
§$=93—-(1-34+3-101 +22-68) (mod127) = 38

and lookup the ST to get the value of the vector v. When
this procedure is completed, the receiver will modify the
initially reconstructed codeword by XORing the vector v =
(1,0,1,1,0,0) with the inserted binary zeros. As a result,
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the codeword will have the form y = x = (By, B2, B3, B4) =
(0101010,, 11011115, 10001002, 10111015).

Example 2. Letb = 7,k = 3and p = (1,6,2,5, 3,4).
By using a computer search, the sender and receiver will
generate the coefficient vector ¢ (1, 3, 46), while the
receiver will additionally generate the ST having |£|
43-1 = 63 entries (Table 2). Suppose the sender wants to
send the same data again, m = (B1, B>, B3) = (0101010,,
1101111,, 1000100,) = (42, 111, 68). In that case, it will
calculate the check-byte

Bis1 =Bs=1-42+3.111 446 - 68 (mod127)
= 1001010,

VOLUME 13, 2025
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TABLE 1. The ST for the (28, 21) integer 2/7-erasure correcting code when p = (3, 4, 3,5, 2, 5).

N v N v N % S v S v
1[11]001110 1418 110100 27136 111000 40|53 [ 101111 53186 | 111101
2131101010 151191010011 28138 | 101100 41541010101 54| 98 | 000010
314 |010000 16 [ 21| 000111 29139 | 001011 42|56 110001 5511021 010010
415 1011110 17123 | 100011 30042111100 43|57 111111 56 [104] 000110
516 |000100 18 {24 | 001000 31143 011011 441581100101 57 [106] 100010
6171111010 19[25] 010111 32|44 | 000001 451621110101 58 [108] 010110
718 | 100000 201271110011 331451001111 46|68 | 001001 59 [110] 110010
8191101110 2128011000 341471101011 471721011001 60 [112] 100110
9110 010100 221291100111 35148 | 010001 48741 001101 61[116]110110
10| 12 | 110000 23130 001100 36149 | 011111 49|76 101001 62 [122] 001010
1113111110 241321101000 371501000101 50|78 011101 631126] 011010
121141 100100 251331 110111 38|51 111011 51180 111001
131151 000011 261341011100 39152 | 100001 521821 101101

TABLE 2. The ST for the (28, 21) integer 2/7-erasure correcting code when p = (1, 6, 2, 5, 3, 4).

S v S v N v S v S v
1/ 11010000 14 {32 | 100000 271511010111 4080 101000 53199 | 011111
213 101111 15133 [ 110000 28154 1 001100 4181111000 541105 001001
314 111111 16 35| 001010 29551011100 421821 100111 55[106] 011001
4|6 |000100 17 {36 | 011010 30 [ 57 | 000001 43183 110111 156 [111] 001101
5171010100 18 |38 | 100100 31|58 (010001 44186 101100 57(112] 011101
61101101001 19 {39 110100 32163 | 000101 451871 111100 58[114] 000010
7111]111001 20 (411001110 331641010101 46|89 | 100001 59[115] 010010
8116( 101101 21(42 1011110 34|67 (101010 47190 110001 160 [120] 000110
9 [17] 111101 22 {44 | 000011 35168 [ 111010 48192 | 001011 61{121] 010110
10/ 19| 100010 231451010011 36|73 (101110 491931011011 62(124] 101011
11[20] 110010 24 [48 | 001000 37174 [ 111110 150[95] 100101 63[125] 111011
121251 100110 251491 011000 38176 | 100011 511961 110101
13126 110110 26 (501 000111 391771110011 521981 001111

after which the codeword with 28 bits will be formed, x = (B,
B>, B3, B4) = (0101010, 11011115, 10001005, 1001010,) =
(42, 111, 68, 74).

Given the value of the vector p, the sender will omit
the 2nd and 7th bits from the first byte, the 3rd and 6th
bits from the second byte and the 4th and 5th bits from
the third byte. As a result, the shortened codeword will
have 22 bits, x; = (Bys, Bas, B3s, B4) = (001015, 111115,
100002, 1001010;). After receiving such a codeword, the
receiver will first insert binary zeros at the known erasure
positions, y = (00010105, 11011015, 10000005, 1001010,) =
(10, 109, 64, 74), and then calculate the value of the
syndrome S

S=74—(1-10+3- 109 + 46 - 64) (mod 127) = 95.

Since § # O, the receiver will lookup the ST to get the
value of the vector v. After that, in the next step, it will
modify the initially reconstructed codeword by XORing
the vector v = (1,0,0, 1,0, 1) with the inserted binary
zeros. As a result, the codeword will have the form y =
x = (B, B2,B3,Bs) = (01010107, 11011115, 1000100,
1001010,).

For the sake of completeness, we note that experiments
have shown that the proposed codes can be constructed for
values of b > 6, where the inequality 2k + 1 < b always
holds.

VOLUME 13, 2025

IV. EMPLOYMENT OF THE PROPOSED INTEGER CODE
FOR THE ENCRYPTION SECURITY ENHANCEMENT
Building on previously reported methods for enhancing the
cryptographic security of lightweight encryption techniques
(see for example [37], [38], [39]), this section summarizes a
novel variant of the approach.

The considered security enhancement is based on post-
processing, of the initially generated ciphertext, that includes
dedicated error-correction coding and a simulated noisy
channel. We employ the ECC presented in Section III, and
the simulated noisy channel that appears as a binary erasure
channel for legitimate receivers and a random deletion
channel for potential adversaries, resulting in a substantial
increase in the difficulty of cryptanalysis.

The proposed security-enhanced encryption scheme is
displayed in Fig. 5.

The encryption operates as follows:

- The encryption algorithm generates ciphertext segments
¢ = Ency(m) and pseudorandom sequence segments s, where
k and m are the secret key and message, respectively. The
segments of s are arguments for certain functions that control
the fragmenter and generate the vector p = [p1, p2, - . ., P2k]-

- The fragmeter, controlled by the sequence s, organizes ¢
bits into g-bits segmants of k, b-bits bytes where k and b,
q = kb, are the parameters and: (i) with the probability A
sends a g-bits fragment to the sub-channel 1, i.e. towards
the encoder, or (ii) with the probability 1 — A to the
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FIGURE 5. Security enhanced encryption with the error correction code
proposed integer ECC.

error-free sub-channel 2 directly to the defragmenter, where
A, 0.5 < A < 1, is the parameter.

- The ciphertext ¢ is encoded using erasure correction
Encode(c), producing a codeword x.

- The codeword x is then passed through a binary erasure
channel controlled by the sequence s (the vector p), resulting
in a degraded version y of the codeword x, where in each
byte B;, i = 1,2, ..., k, two bits are erased on the positions
controlled by the sequence s, and the parity byte By is kept
error-free.

- The defragmenter, for each input segment of the
sequence ¢, outputs the corresponding vector y.

The decryption process, corresponding to this encryption
procedure, includes the following basic steps:

- The decryption algorithm generates pseudorandom
sequence segments s identical to those produced during
encryption.

- The received vector y is subjected to fragmentation and,
with the probability \, erasure correction decoding Decode(y)
if required, which recovers the error-free ciphertext c.

- The recovered ciphertext ¢ is then used to retrieve the
original message m as m = Decy(c).

The security enhancement method is general and can
be applied directly to block cipher encryption techniques
involving block-by-block processing, as well as to certain
stream ciphers where the encoded ciphertext segments are
self-contained.

Note that an attacker does not have access to the secret
key k and, therefore, cannot determine the vector s. As a
result, while the legitimate receiver observes y™ as the
codeword x( after passing through the binary erasure
channel, the attacker, lacking the sequence s, perceives y(”)
as the codeword x™ after passing through a binary deletion
channel. To support this asymmetry in perception and enable
secure decoding on the legitimate side, the system operates
in a block-wise manner. While a traditional stream cipher
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processes the plaintext bit-by-bit, the proposed security
enhancement relies on block-by-block processing of the
initial ciphertext stream. This approach does not limit the
total length of the ciphertext but, in order to maintain an
efficient and implementable coding scheme, each block must
be limited in size so that the memory requirements for storing
the ST remain within practical bounds.

V. SECURITY EVALUATION OF THE ENHANCED
ENCRYPTION

An attacker is confronted with the challenge of cryptanalysis
in a known plaintext attack scenario, as illustrated in Fig. 6.

m

O

Encryption

=

‘ Erasure Correction Encoding

k=2 ) = s=?

Secret Key

Deletion Channel

FIGURE 6. Model of encryption from the attacker’s perspective under a
known plaintext attack.

It’s important to note that while the legitimate parties deal
with the challenge of decoding after a binary erasure channel,
the attacker faces a significantly more difficult task of
decoding after a deletion channel. The attacker’s knowledge
is limited to the following: each byte of a codeword
is independently transmitted through noisy sub-channel 1
with probability A or through error-free sub-channel with
probability 1 — A, If transmitted through sub-channel 1,
in each codeword byte, except the last-parity byte, two bits
are omitted and each one with the probability d. The attacker
does not know the specific realization of the “individual
channel selection events,” meaning unawareness of from
which sub-channel each output symbol was received.

A. PRELIMINARIES AND SECURITY NOTATION

Referring to Fig. 6 we consider a statistical model where m,
¢, x and y are realizations of the stochastic variables M, C, X
and Y, respectively. and the main corresponding background
statements are given in Table 3.

We use a traditional framework for analyzing crypto-
graphic security that focuses on two key aspects: (i) defining
what constitutes a “‘break” of the scheme, and (ii) outlining
the assumed capabilities of the adversary. A cryptographic
scheme is considered computationally secure if, for every
probabilistic polynomial-time adversary A conducting a
specified type of attack, and for any polynomial p(n), there
exists an integer N such that the probability of .4 succeeding
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TABLE 3. Preliminaries.

Pr(M = mo|Y =yo) =

Pr(M =mo,Y = yo)
Pr(Y = yo)

Zx ZLPr(M = m07Y :y07X :X,C = (,‘)

Pr(Y =yo)

D2 Pr(Y =yolM =mo,X =x,C =c)Pr(M =mg,X =x,C =c)

Pr(Y = yo)

S Pr(Y =yo|X =x)> . Pr(M =mo,X =x,C =c)

Pr(Y = yo)

S Pr(Y =yolX =x)> . Pr(M =mg|X =x,C =c)Pr(X =x,C =c¢)

Pr(Y =yo)

S Pr(Y =yolX =x)> ,Pr(M =mg|C = c)Pr(X =x|C =c)Pr(C =¢)

Consequently, when C takes value cg, we have:

Pr(Y =yo)

Pr(M = molY = yo)

= Pr(M = mg|C = co)Pr(C = co)

> Pr(Y = yolX = x)Pr(M = mo|C = co)Pr(C = co)
Pr

(Y =yo)
D Pr(Y =yolX =x)
Pr(Y =yo)

Further on, we consider the security of encryption in the above statistical model.

(where the success of the attack is clearly defined) is less
than ﬁ for all n > N. The following two definitions out-
line the security evaluation scenario and the corresponding
security assertion.

Definition 6 ([51]): The Adversarial Indistinguishability

Experiment consists of the following steps:

1) The adversary A chooses a pair of messages (mq; mp)
of the same length n, and passes them on to the
encryption system for encrypting.

2) A bit b € {0,1} is chosen uniformly at random, and
only one of the two messages (mq; m1), precisely mp,
is encrypted into ciphertext Enc(mjp) and returned to A;

3) Upon observing Enc(my), and without knowledge of b,
the adversary .4 outputs a bit bo;

4) The experiment output is defined to be 1 if by = b,
and O otherwise; if the experiment output is 1, denoted
shortly as the event (A — 1), we say that A has
succeeded.

Definition 7 ([51]): An encryption scheme provides indis-

tinguishable encryptions in the presence of an eavesdropper,
if for all probabilistic polynomial-time adversaries .4

1
Pr[A — 1|Enc(mp)] < > + &, ()

where ¢ = negl(n) is a negligibly small function.

Definitions 6 and 7 are more precisely discussed in [51].
Please note that the encoding method used is a deterministic
algorithm, ensuring it does not compromise the overall
security of the encryption scheme. Assuming the decoding
algorithm provides error-free decoding, it neither enhances
nor diminishes the security of the encryption. The increase
in the security margin arises from the use of a noisy channel,
with the encoding simply correcting errors on the legitimate
receiver’s side.
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B. ANALYSIS

We analyze the encryption system depicted in Fig. 5,
considering that the legitimate parties share pseudo-random
secret sequences instead of truly random ones. Our objective
is to assess the advantage of the adversary A in the
indistinguishability game defined in Definition 1, when
y <— Enc(myp), where y is a specific realization of the random
variable Y. This assessment assumes that the advantage
of A is known when mg and m are chosen realizations of
the random variable M.

Proposition 1: Let the encryption mapping from M to C
be such that the adversary A’s advantage in the indistin-
guishability game (as defined in Definition 6) is % + €
(as specified in Definition 7). Let Pr(X = x|Y = y) and
Pr(Y = y|Z = z) represent the probability distributions
associated with the noisy channels in the security-enhanced
encryption scheme. Under these conditions, we have:

1
Pr[A — 1Y =y] = > +e-Pr(X =xp|Y =y).

Proposition 2: Let U and V be discrete random variables
representing the input and output, respectively, of a commu-
nication channel. Suppose u and v are possible realizations
of U and V, respectively, and the decision rule on U given V
involves identifying a realization u given v. In the statistical
model considered, the probability of correctly identifying v
among 29 categories, where ¢ > 1, satisfies the following
inequality:

Cap* — 1)+ 1 +log,(2¢ — 1)\ ?
Pr(U:u|VZV)<(q( ap )+ 1+ logo( ))‘

10g, (29— 1)

where Cap denotes the capacity of the noisy channel from the
attacker’s perspective.
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Theorem 2:
PrfA — 1Y =y] <

—q(log, %@)(212721 Apdp) + 1+ 10gy(27 — 1)
B log, (24 — 1) ’

q

where g = kb, \,, 0 < d, < 1, p = 1, 2, are the parameters,
2
szl Ap =1,

VI. ANALYSIS OF A GAIN ON THE CRYPTOGRAPHIC
SECURITY
It is important to note that implementing the security
enhancement reduces the probability that an attacker can
make a correct decision in the security game outlined in
Definition 6. As stated in Proposition 1 and Theorem 2,
the security enhancement diminishes the bias in favor of
the attacker winning the game, and the reciprocal of this
reduction can be interpreted as the security gain. Based on
this, we define the security gain as follows.

Definition 8: The security gain y is a measure of the
lower bound on the parameter ¢ reduction, (in Definition 7)
specified as follows:

)/(‘L dpa )\p’P = 15 2)
—q(logy 1220y Apdp) + 1+ 108227 — 1)
log,(29 — 1)

—-q

Certain numerical illustrations of y(q, Ay, dp, p = 1,2) are
given in the following Table 4.

The following Figures 7 and 8 illustrate y (g, dy, A\p,p =
1,2) and ﬁ as the function of ¢ and A when g = kb, b =7,

di=%d=0adX\ =X\ \=1-X05<\<Ll

TABLE 4. Numerical illustration of the cryptographic security gain

v(q, Xp. dp, p = 1, 2) when the erasure-correction codes with the
parameters k and b = 7 are employed, and g = kb, b =7, d, = %, d, =0,
andA\; =X A =1-)05<X<1.

lower bound on the security gain
k, (g ="Tk), A ~
k=3(¢g=21),A=0.6 58.617
k=3(g=21),A=0.7 155.13
k=3,(g=21),A=0.8 430.46
k=4(g=28),A=0.6 342.28
k=4(g=28),A=0.7 1277.7
k=4(g=28),A=0.8 5089.8
k=5(g=35),A=0.6 2005.8
k=5(g=35),A=0.7 10564
k=5(qg=35),A=0.8 60445
k=6 (q=42),A=0.6 11776
k=6(qg=42),A=0.7 87528
k=6(q=42),,A=0.8 719430
k=T(q@=419),A=0.6 69213
k=7(g=49),A=0.7 726040
k=7(qg=49),A=0.8 8573800

Since the security gain function exhibits exponen-
tial growth, which, when plotted on a linear scale,
tends to obscure certain characteristics of the graphics
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2@ ) 0"

FIGURE 7. lllustration of y(q,dp, \p,p=1,2,3) whenq=kb,b =17,
dy=2,dy=0,and \; =X\ X =1-105<X<1.

1y(a, )

: 1 = = =2
FIGURE 8. lllustration of Y @dppp=T123) wheng=kb,b=1,d; = 3,
dy=0,and \; =X\, =1-X05<Xx<1.

in Figures 7 and 8, it appears suitable to consider its log-
arithmic form, as well. Therefore, for simplicity in both
presentation and analysis, instead of directly examining
v(q.dp, \p,p = 1,2), we use the following security gain
measure a(q, dp, \p,p =1, 2):

alg, dp, \p,p=1,2)
1
v(q. dp, \p,p =1,2)
~4(108y 5 2)(X 5y Apdp)+1+l0gy (27 — 1)
108227 — 1)

= log,

q

= logy

14+4/5

+10g,(29 — 1)) — log,(logy(29 — 1>))

8 2
= q(logz( — qllogy———=) D" N\pdy) + 1
p=1

Figures 9 and 10 illustrate a(q,dp, \p,p = 1,2) as the
function of ¢ and A when g = kb, b = 7, d| = %, d =0,
and A\ =AM =1-X05<A<1

The examples shown in Fig. 9 and Fig. 10 suggest the
potential for optimizing certain parameters of the security
gain.
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a=log,(1/)

a =log,(1/7)
3

n=
%
]

FIGURE 9. lllustration of «(q,dp, \p,p=1,2,3) whenq=kb,b =17,
di=2dy=0,and\; =X\ =1-XA05<X<1.

lal=1log,(1/3)|

FIGURE 10. Numerical illustration of |a(q, dp, \p, p = 1,2, 3)| when
q=kbb=17,dy=2,dy=0,and \; =\ Ny =1-X\05<X<1.

VII. IMPLEMENTATION COMPLEXITY OF THE
COMPONENTS FOR THE SECURITY ENHANCEMENT

A. A SUMMARY ON TIME COMPLEXITY OF THE
ENCODING AND DECODING PROCEDURES

In the analyzed scenario, the use of traditional linear
codes (LCs), such as Polar, LDPC, and RS codes, would be
problematic not only in terms of redundancy and the com-
plexity of the encoding/decoding procedures, but also from
the perspective of practical implementation. Specifically,
if LCs were used, a hardware-based receiver would be
extremely complex, while a software-based receiver would
significantly reduce data transmission rates. This is because
traditional LCs rely on finite field (FF) arithmetic, which
general-purpose processors (GPPs) do not natively support.
As a result, GPPs must emulate FF arithmetic, and thus to
perform tens of operations to process one bit [52], [53], [54].
On the other hand, [18] demonstrated that all integer codes
are well-suited for implementation on GPPs. Furthermore,
it was shown in [18] that, if a binary tree structure is used:
(i) any integer encoder requires [log, k] + 1 operations
to compute the check byte By41, (ii) any integer decoder
requires [logo(k + 1)] + 1 operations to generate the
syndrome S, and in addition |log>|&|] + 2 operations for the
codeword recovery.
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TABLE 5. The coding average computational overheads per a bit of
ciphertext and memory overhead in the proposed security enhancement
encryption scheme.

proposed
encryption scheme

computational
encoding overhead
per a bit of ciphertext

~ 5 (Mogy k1 +1)

computational
decoding overhead
per a bit of ciphertext

~ 1 ([oga(k +1)] + [log2 (4" — 1)] +3)

memory overhead (4% — 1) x (2k +b)

for decoding

Essentially, this means that the only difference among
various classes of integer codes lies in the amount of memory
required by the decoder to store the ST. In the case of
the proposed codes, the size of the ST grows exponentially
with the number of data bytes [the ST has 4k — 1 entries,
where each entry is (2k + b)-bits wide]. Because of this, the
direct application of the proposed codes to long ciphertexts
becomes memory-demanding. However, this limitation can
be effectively addressed by partitioning the ciphertext into
smaller blocks, typically a few hundred bits each, which are
then individually encoded. This strategy allows the proposed
codes to be applied even to long ciphertexts, while keeping
the memory requirements within reasonable bounds (on the
order of a few megabytes)

B. IMPLEMENTATION COMPLEXITY OF SIMULATED
NOISY CHANNEL AND A SUMMARY OF THE OVERHEAD
The implementation of the simulated noisy channel includes:
(1) the implementation of the output function that provides
the sequence s from the encryption scheme; (ii) the imple-
mentation of the functions that map segments s; and (iii) the
byte-by-byte implementation of the simulated noisy channel.

The output function that provides the control sequence for
the simulation of the noisy channel could be a simple look-up
table that implements a substitution box for example, and
accordingly, it can be efficiently implemented.

The functions that map segments s perform certain hashing
operations over the successive segments of the sequence s
of length a, where a is a parameter. Taking into account
that a is small, one option is to evaluate these functions
employing two column look-up tables with 2¢ rows. Another
option is to employ, as the mapping functions those with a
low-complexity algebraic evaluation. Final implementation
of the noisy channel is simple because it requires just erasure
of two bits from each data byte. So, the noisy channel
simulator has a low complexity of the implementation.
According to the above discussion, the implementation
complexity of the coding dominates over the implementation
of the noisy channel simulation.
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Table 5 summarizes the implementation complexity over-
head of the proposed security enhanced encryption scheme.

VIil. CONCLUSION

This paper presents a novel integer ECC and its application
for enhancing the security of certain encryption schemes.
The codeword of the proposed code consists of k data
bytes and a single check byte. In addition to being rate-
efficient, the proposed codes are well-suited for software
implementation, as both encoding and decoding can be
performed in logarithmic time using one’s complement
arithmetic.

The security enhancement arises from the asymmetry
in how the ciphertext is perceived: while the legitimate
receiver obtains the encoded ciphertext degraded by a binary
erasure channel, an attacker, lacking access to the secret
key, observes a sequence resembling transmission through a
random deletion channel. It is shown that this construction
provides a provable enhancement of cryptographic security in
the information-theoretic sense. This statement results from
the analysis based on combination of the traditional notation
of the encryption security and results on capacity bounds of
the deletion channels. The derived analytical results on the
security gain are illustrated with numerical examples.

From a practical standpoint, the main constraint of the
proposed security-enhanced scheme lies in the memory
required to store the ST. This limitation, however, can be
effectively addressed by partitioning long ciphertexts into
smaller blocks, which are then individually encoded. Under
this approach, the overall memory overhead remains modest,
making the scheme suitable for a wide range of real-world
applications Also, certain implementation issues, includ-
ing diverse and implementation-related attacking scenarios,
as well as evaluation of ECC implementation, could be
subject of further work for enhancing the overall robustness
and applicability of the proposed scheme.

APPENDIX A

THE PROOFS

Proof of Theorem 1: From Definition 5 we indirectly know
that the error set can be expressed as

4k —1
§= U:] N

i
where
s1=1{0+0+ ...+ 0+ (02721 4 [ .2P%)
- Cx (mod 2P — 1)},
$5={04+0+...4 0+ (1-27%1 4(.2P%)
- Cx (mod 2P — 1)},
53 ={0+0+... 40+ (12721 4 1 .2P%)
- Cy (mod 2° — 1)},
54 ={04+0+... 404 (0273 4 1.2P%2). Cp_4
+(0-2P%-1 40 2P%) . Ct (mod 20 — 1)},
s5={0+0+...4+0+(0-2P%=3 4 1.2P2%=2). C}_
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4+ (0 - 2P%=1 4 1.2P%) . Cy (mod 2° — 1)},

56 ={04+0+... 404 (0-27%3 4 1.2P%2). Cp_4
4 (1 -2P%=1 4 (. 2P2%) . Cp(mod 2° — 1)},

s57={04+0+... 404 (0273 4 1.2P%2). Cp_4
4 (1-2P%=1 4 1.2P%) . Cr(mod 2" — 1)},

Sqe_g ={(1- 2PV 4 1.2P2) . 1 4 (123 4 1.2P%)

.C2+...+(1,2[72k—1 +1,2P21<)
- C (mod 20 — 1)},

Since the value of the vector p = (p1,p2,...,p2%) € P%* s
pre-known to the decoder, it is clear that the above subsets
will be nonzero and mutually different only if there exists the
coefficient vectorc = (1, C», C3, ..., Cy) € Zé‘,,il such that
SINS2Ns3 -+ - NS = Q.

If we add to this the fact that each subset has only one
element, we obtain that

4k 1

€= D lsil =@ —D-1=4"-1.
i=1

Q.E.D.
Proof of Proposition 1: For simplicity, Proposition 1
addresses a restricted case where the adversary A’s advantage
in the indistinguishability game is % +¢. Let the index b of the
selected message be a realization of the random variable B,
reflecting the output distribution of the adversary A. The
probability Pr(B = b|Y = y) that 4 wins the game is
determined as follows:

Pr(B=0,Y =
PV(B=b|Y=y)=u

Pr(Y =y)
> Pr(B=bY=y,X=x)
N Pr(Y =y)
> Pr(B=0bY =y, X =x)Pr(Y =y, X =x)
N Pr(Y =y)
B > Pr(B=0bX =x)Pr(Y =y, X =x)
B Pr(Y =y) '

Considering that ¢ — x is a one-to-one error-correction
encoding mapping, and under the assumption of the propo-
sition, we have:

1
Pr(B = b|X = xp) = 3 + &,
where x;, corresponds to the selected m;, and

1
Pr(B=>b|X =x) = 3 for any x # xp.

Consequently,
Pr(B=0blY =y)
_ Pr(B=b|X =x)Pr(Y =y, X = xp)
B Pr(Y =y)
. Pr(B=b|X =x)Pr(Y =y,X =x)
+ Zx.x;ﬁxb y , (2)
Pr(Y =y)
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and

Pr(B=>0lY =y)

B (% +e)Pr(Y =y, X =xp) — %PV(Y =y, X =xp)
N Pr(Y =y)
%ZxPr(Y =y, X =x)

Pr(Y =y)

1 PriX =xp,Y =y)
— + £ -
2 Pr(Y =y)
1 n Pr(X =xp|Y =y)Pr(Y =y)
2 Pr(Y =y)

+

1
3 +¢&-Pr(X =xp|Y =y).

Q.E.D.

Proof of Proposition 2: The equivocation, or the con-

ditional entropy H(U|V), represents the average amount

of information lost about U when V is given. According

to [57] and [58], we have the following upper bound on the
equivocation:

H(U|V) = h(Perr) + Perr10g2(2q - 1) (3)

where A(-) < 1 is the binary entropy function, P, is the bit
error probability, and the conditional entropy is defined as

HUIV)= > Pr(Vv=wHU|V =v)

yesupp(V)
where
1
= Z Pr(U:M|Vzv)log2 ,
xesupp(X) Pr(U =ulV =v)

and Pr(-) denotes the probability of the considered event.
Recall that

HU|V)=HU)—-I(U,V)

where

1
H(U): Z Pr(UZM)Ingm,

and the mutual information /(U, V) is upper-bounded by the
capacity Cap of the channel as follows:

I(U,V) < qgCap.

xesupp(U)

In the evaluation scenario considered in (3), the inequality
above can be rewritten as:

q(1 —Cap) <1 +Perr10g2(2q -1
yielding

qg(1 — Cap) — 1
log,(29 — 1)

where Cap is the capacity of the employed channel.
Accordingly, from

Pr(U =ulV =v) = — Per)?

Pepr >

VOLUME 13, 2025

we obtain

Cap* — 1)+ 1 +10g,(24 — 1)\4
Pr(U=u|VZV)<(q( ap* — 1)+ 1 + log,( )).

log,(27 — 1)

where Cap* is the channel capacity from the attacker’s
perspective. Q.E.D.
Proof of Theorem 2: Propositions 1 and 2 imply that

Pr[A — 1Y =yl < F(Cap™*, q. \p, dp,p = 1,2)

where F(-) is certain function and Cap* is the channel capac-
ity from the attacker’s perspective, modeled as a structure of
parallel deletion channels. According to [55] and [56], this
structure is equivalent to a single deletion channel with a
deletion probability d, given by:

2
de =D Npdp.
p=1

Considering that the capacity Cap(d,) < 1 — d,, for each
p = 1,2, is less than the corresponding erasure channel
capacity, we have

Cap(dy) <1 —d,, p=1,2.

On the other hand, according to the reported in [59] we
have

2
8
cap*<1—(1og —) > Md
1445 o Per

Combining the above results with the statements of Proposi-
tions 1 and 2, we arrive at the theorem’s conclusion. Q.E.D.
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