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Abstract—The selection of an optimal Electric 

Vehicle Charging Station (EVCS) improves user 

experience, decrease costs and emissions, and 

contribute to sustainable urban mobility and 

energy efficiency. In solving this optimization 

problems, the application of decision support 

methods has an important role. This study focuses 

on the problem of selecting the best EVCS by 

analyzing real data from five stations in a specific 

area in Nis, Serbia. The most optimal station was 

chosen based on eight factors divided into two 

categories: benefit and cost. Their weights were 

determined using the Shannon Entropy objective 

approach. The PROMETHEE II approach was 

used to complete the ranking process. 

Keywords - electric vehicle, charging station, 
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I.  INTRODUCTION  

Along with rise of urban environmental 
problems related to carbon emission and climate 
change effects, the sustainable transport initiative 
has gained increased attention in recent years 
worldwide [1]. Sustainable transport discourse 
considers various concepts like expansion and 
diversification of transportation network, 
promotion of energy efficient vehicles and 
“green” transport options like walking and 
cycling [2-4]. 

The current transportation sector is one of the 
most significant contributors to global 
greenhouse gas (GHG) emissions with an 
approximate share of 23% in the world's total 
energy-related CO2, and adds considerably to 

climate change and global warming [5,6]. 
Sustainable transport solutions attempt to 
mitigate these consequences by diversifying fuel 
options and using renewable energy sources 
(RES), playing a significant role in improving 
public health. The increasing issues of air quality 
in urban areas, followed by numerous respiratory 
and cardiovascular diseases, largely come from 
vehicle emissions [7]. Transition to cleaner 
forms of transport, can reduce the prevalence of 
these health issues, improve quality of life and 
reduced healthcare costs for governments.  

Transition process considers the 
development of smart infrastructure. In line with 
that, one of the most discussed issues is 
establishing an extensive network of EV 
charging stations (EVCS) [8,9]. With the 
expanding market of EV demand for accessible, 
reliable, and fast-charging options increases. The 
poor charging infrastructure is the major obstacle 
to the adoption of EV, since it may produce range 
anxiety [10,11]. To address this, investments in 
the widespread deployment of EVCS, ensure 
they are strategically located to meet the needs of 
urban, suburban, and rural areas alike. 

Another significant segment of transition 
represents the integration of smart technologies 
into existing transportation infrastructure, which, 
among others includes connected vehicles, 
intelligent traffic management systems, and 
digital payment platforms. This, and other 
technologies will contribute to better efficiency 
and safety of transportation networks [12-14], 
enabling real-time monitoring and management 
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of traffic flows, contribute to the reduced energy 
consumption, and better driver’s experience.  

Selecting the optimal EVCS plays a key role 
in protecting the environment and helping drivers 
pick the best choices. When drivers can choose 
optimal EVCSs considering criteria like 
proximity, cost, or charging speed, they're more 
likely to make choices that cut down on their 
impact on the environment. Informed selection 
cuts back on extra driving, lowers emissions, and 
makes sure drivers can finish their trips without 
a hitch striking a balance between ease and being 
“sustainable”. By giving drivers the information, 
they need to make smart choices, we can keep 
drivers satisfied and help the environment at the 
same time. 

The goal of this paper is to offer a multi-
criteria decision support approach for selection 
for the optimal charging station from the driver’s 
perspective. Study employs a real-world data 
from the city of Niš, Serbia. The paper firstly 
presents a brief literature review, secondly 
explain methodology, thirdly applies 
methodology on the case study and finally 
discuss results.  

II. LITERATURE REVIEW 

As a site selection problem, as far as literature 
suggests selecting optimal EVCS inevitably 
consider multi-criteria decision-making 
(MCDM) methods because this problem 
involves evaluating multiple, often conflicting 
factors that cannot be easily aggregated into a 
single metric. There are numerous studies that 
considers single or hybrid approach with more 
than one MCDM method to solve the site 
selection problem. Some of them are             
presented below. 

For instance, in evaluating performances of 
nine EVCS in Istanbul [15] applied three 
MCDM: Analytic Hierarchy Process (AHP), 
Decision Making Trial and Evaluation 
Laboratory (DEMATEL), and Technique for 
Order of Preference by Similarity to Ideal 
Solution (TOPSIS) to compare four main and 
twenty-one sub-criteria. Solving the charging 
problem for taxi service in [16], integrate fuzzy 
AHP to weight six main and twenty-five sub 
criteria, GIS for spatial analysis and TOPSIS for 
final ranking of electric taxi charging stations. To 
assess the effectiveness and applicability of 
EVCSs suggested for the Shanghai region [17] 
developed a Pythagorean fuzzy 
VIseKriterijumska Optimizacija I Kompromisno 

Resenje (PF-VIKOR) model, while VIKOR and 
TOPSIS methodologies were applied to assess 
feasibility, as well as economic, social, and 
environmental issues. Evaluating the EVCSs in 
the [18] combined Analytic Network Process 
(ANP), Preference Ranking Organization 
Method for Enrichment Evaluation 
(PROMETHEE) and integrated cloud model 
considering geographical, environmental, social, 
service, engineering, and economic issues. 
Reference [19], introduced another integrated 
approach utilizing gray DEMATEL, to 
determine criterion weights, and UL - Multiple 
Objective Optimization on the basis of Ratio 
Analysis plus Full Multiplicative Form (UL-
MULTIMOORA) to assess and rank the best 
EVCS location based on several linked 
parameters. Studying current and most suitable 
potential EVCS locations in Ankara. Reference 
[20] combined AHP method for weighting 
fifteen criteria, GIS for create a suitability map, 
while potential EVCS locations were identified, 
and alternative EVCSs were rated using the 
TOPSIS methodology. Reference [21] suggested 
a practical model for location decision of EV 
photovoltaic charging station combining a GIS 
for suitability analysis and entropy and Interative 
Multi-criteria Decision Making (TODIM) 
method are extended to the mixed attribute value 
environment. For selecting island photovoltaic 
charging station [22] applied the hybrid fuzzy 
approach that include AHP, entropy weight 
method, λ- fuzzy measure method and VIKOR. 
To evaluate criteria for site selection for shared 
charging and swapping stations [23] utilized 
Simultaneous Evaluation of Criteria and 
Alternatives (SECA) method to determine the 
weight of each secondary criterion, and the 
TRUST method to rank the alternatives. While 
planning the establishment of battery swapping 
station in Kolkata, [24] applied fuzzy based TFN 
method with consideration of the preference 
within the criteria; weights of the criteria are 
obtained, and Complex Proportional Assessment 
(COPRAS) methodology is applied to rank the 
selected locations. In their research, [25] studied 
location decision framework of electric vehicle 
battery swapping station fuzzy DEMATEL 
method is applied to determine the weights of 
criteria then, the Fuzzy ordered Weighted 
Averaging (FOWA) operator is adopted to 
aggregate the evaluation values on alternatives of 
experts and the fuzzy MULTIMOORA is used to 
rank the alternatives. In analyzing location of the 
offshore wind station [26] utilized a hybrid fuzzy 
ANP fuzzy DEMATEL and fuzzy Elimination 
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and Choice Expressing Reality (ELECTRE) 
techniques. Reference [27] applied the Weighted 
Suitability Analysis (WSA) and Grey Relation 
Analysis (GRA) method to find the most suitable 
site of industrial wastewater discharge in coastal 
regions. Reference [28] proposed a model to 
evaluate the site selection problem of car sharing 
stations using Weighted Aggregated Sum 
Product Assessment (WASPAS) based TOPSIS 
method. In analyzing optimal site selection in 
Istanbul [29] employed FUCOM-GIS hybrid 
method.  

III. METHODOLOGY 

For selecting the optimal EVCS this study 
employs a real word data for the city of Niš 
Serbia, where all of the analyzed criteria are 
quantifiable. Therefore, a hybrid Shannon 
Entropy - PROMETHEE II method is applied   to 
secure objective distribution of criteria weights, 
based on the variability of observed data and 
enable efficient balance between costs and 
benefits criteria. 

The Shannon entropy method is often applied 
in MCDM and for objective determination of the 
weights of various criteria based on the data set. 
Shannon was the first scientist to develop the 
notion of entropy in information theory in the 
mid-twentieth century. The Shannon entropy 
technique assesses the disorder in existing data 
[30]. The authors Claude Shannon and Warren 
Weaver (1948) illustrate the following steps 
involved in applying this method below [31]. The 
initial step in the calculation of weight 
coefficients is the normalization of the decision 
matrix. Then, in the next step, the share of the 
value of the alternatives in the total value of the 
criteria is calculated. Based on the obtained 
values, entropy is calculated for each criterion, 
and then the calculated entropy value is 
subtracted from the maximum possible entropy 
value. This step indicates the calculation of the 
degree of variation among the entropy values, on 
the basis of which the weighting coefficients are 
calculated.  

In this example, the PROMETHEE II method 
was used to solve the set multi-criteria problem. 
The PROMETHEE II method enables the 
prioritization of alternatives in relation to a larger 
number of criteria, taking into account the 
preferences of the decision maker [32]. The 
choice in the application of the PROMETHEE II 
method was based on the assumption that this 
method enables a complete ranking of 

alternatives even in situations where conflicting 
criteria appear [33]. 

There are several basic steps in 
PROMETHEE II. These are (1) defining criteria 
and alternatives, (2) giving each criterion a 
weight value, (3) picking a preference function, 
(4) calculating preference indices, (5) calculating 
positive and negative preference flows, (6) 
calculating net preference flow, and (7) ranking 
the alternatives [34]. PROMETHEE II offers six 
preference functions that define the preference 
relationship between alternatives: the usual 
criterion (Type I), the U-shape criterion (Type 
II), the V-shape criterion (Type III), the level 
criterion (Type IV), the linear criterion (Type V), 
and the Gaussian criterion (Type VI) [34]. The 
choice of the preference function depends on the 
nature of the available data and the research 
problem [35]. The net preference flow is 
obtained by subtracting the positive preference 
flow from the negative preference flow [34]. In 
order for an alternative to be highly ranked, it is 
necessary to have the highest possible value of 
the positive flow of preference, because it shows 
how much this alternative outranks the other 
alternatives, and the lowest value of the negative 
flow of preference, because it indicates how 
much this alternative is outranked in relation to 
the others [34]. This step enables a complete 
ranking of the alternatives. 

For selection of EVCS infrastructural, spatial 
and environmental criteria are considered. 

A. Infrastructural Criteria  

Charger type. The EV charger type is 
important criterion for EVCS selection. It is 
reciprocal to charging time and cost. There are 
different types of chargers like Level 1, Level 2 
or DC fast chargers, with its pros and cons. 
However, network with variety of chargers types 
can satisfy different needs that consequently can 
encourage adoption of EVs.  

Number of chargers. More chargers at 
EVCSs increase drivers’ chances of finding an 
available port, especially during peak hours, and 
decrease congestion that in turn improves the 
drivers experience and charging predictability. 
This is especially important in high-density 
urban area where the larger volume of traffic and 
users are expected. Stations with more chargers 
makes a better use of the infrastructure and 
distribution of load, optimizing the energy use 
and overall environmental impact.  
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Charging Price. Charging affordability 
increases the likelihood of driver selecting 
particular station. The price affects the total cost 
of the ownership of EV, especially the ones who 
totally relay on public EVCSs. It also influences 
competitiveness between the stations; thus, 
driver may give lower priority to stations with 
higher charging prices that do not offer some 
additional benefits (e.g. membership tokens, 
faster charging, proximity to important                   
POIs etc.).  

Available chargers’ information. The access 
to real time information about EVCS contribute 
to the driver’s convenience in several ways: 
prevent unnecessary trips, minimize waiting 
time, optimize route planning, book a charging 
spot in advance, allow price comparison and 
avoid unexpected costs. 

B. Spatial Criteria  

Distance. The range anxiety may 
considerably affect driver’s psychological 
comfort, thus the proximity and accessibility to 
the EVCSs is an important criterion. Closer 
station is more probable choices for EV drivers, 
since it adds to less deviation from the planned 
route, saves time and energy. 

Population density. EVCSs located in high-
density areas my experience higher load that can 
affect the efficiency of service (e.g. waiting 
time), since larger number of residence (potential 
EV owners) are in higher proximity to the 
station. Also, higher usage rates influence station 

demand, and economic viability which can result 
in better maintenance and service in the long run.  

Proximity to arterial road. Strategic 
placement of EVCS along arterial road enhances 
accessibility, increases utilization rates, and 
improves convenience for drivers, encouraging 
EV adoption. Furthermore, accessibility to 
EVCS in high-traffic areas supports more 
efficient energy distribution and can optimize 
operational costs for charging networks. 

C. Environmental Criteria  

Charging Efficiency. The conversion from 
Alternating Current (AC) to Direct Current (DC) 
during the charging process cause energy losses. 
DC fast chargers, perform lower efficiency than 
slower Level 2 chargers. Additionally, inefficient 
charging practices, particularly frequent use if 
fast chargers, accelerate battery degradation i.e. 
shorten their life. The production of new batteries 
considers high emissions from mining essential 
materials, and thus, contribute to environmental 
degradation. 

Renewable energy source. EVCS powered by 
RES reduce carbon emission and contribute to 
environmental sustainability, energy efficiency 
and encourage sustainable behavior of drivers 
promoting cleaner transportation.   

IV. CASE STUDY 

For the selected criteria case study is 
conducted for the city of Niš, Serbia. Though 
online and on-site analysis fourteen EVCSs are 
identified. Ten of them are located within the 

 

Figure 1.  Locations of EVCSs in Niš and position of randomly selected location for driver.  
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commercial facilities lots (like hotels or 
factories), while only four that are located in the 
wider city central zone. Only the former are 
considered for this example, since the remaining 
ones either includes additional costs (like any 
kind of service in hotel) or are strictly allocated 
for the employees (Fig. 1). For the selected 
EVCSs criteria info are shown in Table I. 

In the first iteration conceptual model 
considered EVCS powered by RES. However, 
field study showed that in the given context none 
of the identified EVCS is powered by RES, thus, 
we decided to omit this criterion from the final 
model since all of the selected cases would 
receive equal weight.  

The initial decision matrix was formed for the 
purposes of creating the hybrid Entropy-
PROMETHEE II in order to select the most 
optimal charging station for an EV. The criteria 
are divided according to whether they are 
positive/benefit or negative/cost in relation to the 
decision-making objective. The usual type of 
preference function was chosen because even 
minor differences in the alternatives affect the 
choice [35]. In accordance with the defined units 

of measure in the previous table, this decision 
matrix was transformed into a form where all 
criteria have numerical values (Table II). 

V. RESEARCH RESULTS AND DISCUSSION 

The Shannon entropy method was used to 
calculate the value of the weighting coefficients 
of the criteria. The calculation was carried out on 
the basis of eight criteria and five alternatives. 
The initial decision matrix is normalized to show 
uniform values of the comparison criteria. The 
weight coefficients' values are presented in the 
Table III. The results indicate that the decision-
maker places significant importance on the 
calculated price of charging an EV. The 
importance of charging efficiency and charger 
type is approximately equal, with the former 
having a slight preference. The type of charger is 
then the next important criterion in choosing the 
most optimal station. Charging speed carries 
more weight because rapid chargers are more 
convenient than slower chargers and provide 
significant savings in charging time. The least 
important in the prioritization process is the 
proximity to arterial roads. 

TABLE I. CRITERIA INFO. 

Criterion Unit Abbreviation 

Charger type kW/hour C1 

Number of chargers number C2 

Price RSD/minute C3 

Distance km C4 

Population density Low (0), Medium (1), High (2) C5 

Available charger information No (0), Yes (1) C6 

Charging Efficiency Low (0), Medium (1), High (2) C7 

Proximity to arterial road Low (0), Medium (1), High (2) C8 

TABLE II. INITIAL DECISION MAKING MATRIX. 

ID EVCS C1 C2 C3 C4 C5 C6 C7 C8 

Criterion 

type 
- Benefit Benefit Cost Cost Cost Benefit Cost Benefit 

Preference 

function 
- Usual Usual Usual Usual Usual Usual Usual Usual 

CS_1 
Goran 

Ostojic 
11 2 0 1.3 High No High Medium 

CS_2 Delta Planet 11 10 15 0.95 High Yes High High 

CS_3 StopShop 100 2 153 2.7 Medium Yes Low High 

CS_4 
Liikennevirta 

Oy (CPO) 
120 2 153 2.7 Medium Yes Low High 

CS_5 Kemoimpex 22 2 15 2.5 Medium Yes Medium High 
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The application of the PROMETHEE II 
method necessitates the normalization of the 
decision matrix based on the benefit and cost 
type criteria. The next step, based on the values 
of the normalized matrix and the selection of the 
preference function, calculates the preference 
indices whose aggregate results can be seen in 
the Table IV. 

The Table V shows the results of the 
calculation of the positive and negative flow of 
preference for each offered alternative. In order 
to approach the final ranking, the net value of the 
preference flow was calculated, which is 
obtained by subtracting the positive preference 
flow from the negative preference flow. The 
ranking prioritizes higher values of the net flow 
of preference, placing CS_2 Delta Planet at the 
top. The lowest-ranked station is CS_1                    
Goran Ostojic. 

The results obtained using the hybrid 
Entropy-PROMETHEE II model show the 
feasibility of prioritizing the optimal EV 
charging station according to criteria of diverse 
characteristics. Considering the weight values 
determined objectively in this case study, the 
price of charging is a crucial factor in the 
decision-making process, highlighting the 
importance of cost criteria. Another criterion that 
prioritizes chargers with high charging efficiency 
approves the use of slower charger types because 
they cause less energy losses. In addition, the 
type and number of chargers play a significant 
role in selecting the most optimal EVCS, because 
a faster type of charger with a larger number of 
free charging stations allows for a shorter waiting 
time and more efficient use of resources. The 
wide availability of the option to monitor the 
state of free chargers has significantly reduced 
the influence of this criterion on the ranking. 

TABLE III. OBJECTIVE CRITERIA WEIGHT CALCULATED BY SHANNON’S ENTROPY METHOD. 

Abbreviation Criterion Weight coefficient 

C1 Charger type 0.193 

C2 Number of chargers 0.144 

C3 Price 0.288 

C4 Distance 0.035 

C5 Population density 0.028 

C6 Available charger information 0.105 

C7 Charging Efficiency 0.194 

C8 Proximity to arterial road 0.013 

TABLE IV. AGGREGATED PREFERENCE FUNCTION RESULTS CALCULATED BY PROMETHEE II. 

 CS_1 CS_2 CS_3 CS_4 CS_5 

CS_1 1 0.028 0.317 0.317 0.052 

CS_2 0.268 1 0.439 0.439 0.175 

CS_3 0.498 0.380 1 0.000 0.235 

CS_4 0.533 0.415 0.035 1 0.270 

CS_5 0.262 0.145 0.264 0.264 1 

TABLE V. PRIORITIZATION RESULTS BY PROMETHEE II. 

ID 
Charging 

station 

Positive flow 

(Phi+) 

Negative flow 

(Phi-) 
Net flow (Phi) Rank 

CS_1 Goran Ostojic 0.178 0.390 -0.212 5 

CS_2 Delta Planet 0.330 0.242 0.088 1 

CS_3 StopShop 0.278 0.264 0.014 4 

CS_4 
Liikennevirta 

Oy (CPO) 
0.313 0.255 0.059 2 

CS_5 Kemoimpex 0.234 0.183 0.051 3 

 



321 

Decision-making places less emphasis on 
distance from users and population density, 
suggesting that even more distant stations or 
those in highly urbanized locations that are close 
to high priority roads could be suitable options if 
the other criteria are satisfied. Accordingly, using 
the PROMETHEE II method, the choice was 
reduced to the Delta Planet station, which offers 
a low EV charging price, with slow types of 
chargers, but with the largest number of installed 
charging points. Charging efficiency of this 
station is high leading to the energy-saving 
charging process. The station offers the 
possibility to check the availability of chargers, 
with services being covered by a smartphone 
application. Although the station is located in a 
densely populated area that is close to high-order 
roads, its distance from users is the shortest 
compared to other stations.  

VI. CONCLUSSION 

In conclusion, the application of the hybrid 
Entropy-PROMETHEE II method for selecting 
optimal EVCS demonstrates to be a useful 
MCDM approach in EVCSs optimization 
problems. This study analyses the importance of 
numerous parameters, with the cost of charging 
calculated as the crucial one. The analysis finds 
that, while charger type and energy efficiency are 
essential, cost efficiency and the number of 
available charging lots are more relevant in 
identifying the best option. 

The presented model can be applied in other 
regions, but with context-specific adaptation that 
takes into consideration local infrastructure, 
energy polices and socio-economic conditions. 
For instance, in cities/regions with highly 
developed EVCS infrastructure factors like 
station density, network interoperability, or 
integration with smart grid networks may 
become more relevant. On the other side in 
region with poor EVCS network accent can be on 
accessibility, availability of public land and 
network capacity. The PROMETHEE II method 
can easily accommodate these additional criteria 
without compromising the decision-making 
logic, while Shannon Entropy can dynamically 
reflect the varying relevance of these factors 
based on regional data availability. 

Further studies should consider more further 
analysis of the relevant criteria that are out of 
scope of the presented research, and consider 
several axis: 

Analysis of the environmental impact (like 
source of electricity) i.e., how different EVCS 
locations and technologies (existing and 
emerging) impact the environment, supporting 
more informed decisions that align with 
sustainability goals. 

A detailed geospatial analysis to understand 
how spatial factors like infrastructure, spatial 
distribution (density and proximity) of EVCS, or 
traffic pattern and population density influence 
EVCS placement and accessibility. 

Exploration of the potential integration of 
EVCS with renewable energy sources, and its 
effect on station selection, i.e., how green energy 
solutions can enhance the sustainability and 
attractiveness of charging stations. 
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