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Abstract

Surrogate optimisation holds a big promise for building energy optimisation studies due to

its goal to replace the use of lengthy building energy simulations within an optimisation step

with expendable local surrogate models that can quickly predict simulation results. To be

useful for such purpose, it should be possible to quickly train precise surrogate models from

a small number of simulation results (10–100) obtained from appropriately sampled points

in the desired part of the design space. Two sampling methods and two machine learning

models are compared here. Latin hypercube sampling (LHS), widely accepted in building

energy community, is compared to an exploratory Monte Carlo-based sequential design

method mc-intersite-proj-th (MIPT). Artificial neural networks (ANN), also widely accepted

in building energy community, are compared to gradient-boosted tree ensembles

(XGBoost), model of choice in many machine learning competitions. In order to get a better

understanding of the behaviour of these two sampling methods and two machine learning

models, we compare their predictions against a large set of generated synthetic data. For

this purpose, a simple case study of an office cell model with a single window and a fixed

overhang, whose main input parameters are overhang depth and height, while climate type,

presence of obstacles, orientation and heating and cooling set points are additional input

parameters, was extensively simulated with EnergyPlus, to form a large underlying dataset

of 729,000 simulation results. Expendable local surrogate models for predicting simulated

heating, cooling and lighting loads and equivalent primary energy needs of the office cell

were trained using both LHS and MIPT and both ANN and XGBoost for several main hyper-

parameter choices. Results show that XGBoost models are more precise than ANN models,

and that for both machine learning models, the use of MIPT sampling leads to more precise

surrogates than LHS.
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1 Introduction

Design of contemporary energy efficient buildings relies in large part on simulations of their

energy behaviour. To optimise various building properties it is often necessary to employ gen-

eral optimisation methods, such as genetic algorithms, which may need to perform simulations

of hundreds or thousands of building variants to identify optimal combinations of their

parameters. Depending on the complexity of building properties in question, such simulations

can last from a few seconds to several hours, especially when it comes to demanding daylight-

ing or computational fluid dynamics simulations. Even in cases when a single simulation lasts

only a few seconds, it may happen that there are tens of parameters with several different feasi-

ble values each, so that tens of thousands of simulations might be necessary to arrive at optimal

parameter combinations. In such situations surrogate optimisation becomes a worthwhile

alternative that can often reach close to optimal solutions in a fraction of the time.

Surrogate optimisation, also known as black-box optimisation, uses machine learning (ML)

methods to create a surrogate model that will predict results of future simulations from the

results of existing simulations. This surrogate model, which may predict thousands of simula-

tion results in the time needed to perform a single new actual simulation, is iteratively opti-

mised and improved by balancing two different perspectives: exploitation, which focuses on

identifying optimal solutions of the current surrogate model, and exploration, which focuses

on sampling points from the unexplored areas of the design space, understanding that the sur-

rogate model predictions will be most precise in the vicinity of already simulated points. This

exploitation-exploration conundrum selects one or several new parameter combinations for

full simulation, whose results are then used to retrain the surrogate model and repeat the

above procedure.

While the choices of the optimisation method and the way of balancing exploration and

exploitation are often the main focus of surrogate optimisation [1], the ML method used to

train the surrogate model and the sampling method used to select the initial building variants

for simulation represent its essential parts and it is important that they are well chosen in the

first place, as the surrogate models should be trained quickly and with high prediction accu-

racy. These two latter steps are often used independently in building energy literature to create

global surrogate models, which also enable one to perform sensitivity and uncertainty analyses,

to either identify the most important input parameters of the building model or estimate how

the uncertainty in input parameters may propagate onto the simulation (surrogate) outcomes.

Westermann and Evins [2] give a comprehensive review of building design research studies

that use surrogate modelling for predicting aggregated design metrics (such as annual energy

use) in either conceptual design, sensitivity analysis, uncertainty analysis or building design

optimisation. They indicate that Latin hypercube sampling (LHS) is the most applied sampling

scheme, while multiple linear regression (LR) is still the most popular surrogate model type in

building related literature. However, they also point out the disadvantage of multiple LR which

has to assume that the functional relationship between the inputs and the outputs is known a

priori which is not necessary for modern ML methods such as artificial neural networks

(ANN), Gaussian process models (GP), support vector regression (SVR), multivariate adaptive

regression splines (MARS), radial basis function (RBF) networks, random forests (RF), or

model ensembles, since these create surrogate models with higher prediction accuracies a pos-

teriori by fitting the observed input-output value pairs into their much more general

frameworks.

Roman et al. [3] review the use of surrogate modelling in building energy literature, observ-

ing that researchers mostly use ANN, GP, polynomial regression, SVM, LR and MARS. Their

review points out that, over the last decade, ANN has overtaken GP and SVM as favourite
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building performance simulation (BPS) surrogate modelling method, partly due to its favour-

able trade-off between accuracy and computational cost. Vast majority of ANNs used in

reviewed BPS studies are feed-forward NNs with one hidden layer, with only a small percent

of researchers opting to use feed-forward NNs with 2–4 or more hidden layers or to use other

types of NNs. In their review, Roman et al. [3] also confirm that LHS is the most used sampling

method in building energy community.

Observing that ANNs have become the most favoured surrogate modelling method among

BPS researchers in recent years, Lu et al. [4] give an extensive review of the applications of

ANNs in more than 300 BPS studies published since 2016. They provide detailed guidance on

12 different types of ANNs used in BPS literature, which belong to the general categories of

feed-forward, recurrent and convolutional NNs. It is observed that feed-forward NNs make up

the majority of papers and usually model dependencies between energy-related building fea-

tures and energy data, while recurrent NNs and convolutional NNs, which are better suited for

predicting time series building energy data, started to gain traction in more recent studies.

While widely available graphical processing units enabled training of highly complex ANN

models during the last decade, whose capabilities raised public interest and, consequently, led

to the proliferation of ANNs in all fields of science and technology, it was independently

observed that, in the case of regression with smaller number of available input-output data

pairs, ensemble models more easily reach higher accuracy and usually generalise better than

single models, including ANNs [5]. Ensemble models iteratively train a set of simple base

models, known as weak learners, and combine them together to create a more predictive

model. Among them, gradient-boosted regression trees [6] (GBRT) quickly gained popularity

in ML community. Papadopoulos et al. [7] provide one of the earliest evaluations of GBRT

performance in predicting heating and cooling loads for 12 buildings from the data set of Tsa-

nas and Xifara [8], which have the same volume, but varying relative compactness. Their study

showed that GBRT significantly outperforms GP, SVR, RF and a SVR/ANN ensemble for both

heating and cooling loads. More recent notable example of the applicability of GBRT models

in BPS studies can be found in the recent ASHRAE Great Energy Predictor III competition

[9], which provided over 20 million of metered hourly energy data points from university,

municipal and healthcare buildings around the world as training data and asked for the most

accurate surrogate model to predict over 41 million of metered test data points. As it turned

out, the first five best solutions all used ensembles that predominantly relied on GBRT meth-

ods, which were in some cases enlarged with NNs.

XGBoost [10] is a well-known recent GBRT variant that uses Newton-Raphson boosting to

iteratively build an ensemble of regression trees. It already became a surrogate model of choice

for structured data in many ML competitions [11], and it was used in several other BPS studies

as well. Fan et al. [12] compare several surrogate modelling methods in predicting 24h ahead

building cooling load profiles for an educational building in Hong Kong. Allowing ANNs to

have between one and ten hidden layers and either rectified linear unit (ReLU), hyperbolic

tangent or sigmoid as an activation function, they observe that for their amount of available

data optimal choice of ANN has two hidden layers and ReLU as the activation function. Never-

theless, XGBoost turns out to be the superior method over ANN and SVR in their study, both

in terms of the prediction quality and the computational cost. Touzani et al. [13] train surro-

gate models on high frequency metered electricity consumption data of commercial buildings,

and show that XGBoost achieves higher accuracy than RF and piecewise LR in predicting elec-

tricity consumption time series. Wang et al. [14] further conclude that XGBoost exhibits opti-

mal efficiency, when compared to ANNs, SVR and RF, in predicting municipal hourly heating

energy consumption of a residential quarter in Tianjin, China. Song et al. [15] develop surro-

gate models to predict global solar radition from meteorological measurements. For model
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training they use solar radiation and meteorological data measured since 1993 at 130 locations

in China, and then apply developed models to predict solar radiation and assess photovoltaic

power potential for further 2,474 locations across China, where only meteorological data are

measured. They show that XGBoost with default values of its hyperparameters already outper-

forms LightGBM, ANN, SVR with radial basis function kernel and k-nearest neighbor algo-

rithm, but also that proper optimisation of XGBoost hyperparameters may further improve its

prediction quality. Robinson et al. [16] train surrogate models for predicting annual commer-

cial building energy consumption on the available sets of measured energy consumption data

in USA. Their study shows that, over all classes of commercial buildings, XGBoost predictions

outperform predictions of other surrogate models, which include ANNs with one hidden

layer, SVR, RF and LR.

The above studies clearly suggest that ANNs have become most popular surrogate models

in building energy community, while at the same time XGBoost, recommended by the ML

community, offers better performance, both in prediction quality and computational resources

necessary for training. Majority of the above studies train XGBoost surrogate models on thou-

sands or millions of available input-output data pairs. The first goal of this paper, on the other

hand, is to test whether this precedence of XGBoost over ANNs remains valid in situations

when one has access to only tens or hundreds of simulation results, which would most often

be the case during surrogate optimisation, whose basic underlying assumption is that it takes a

long time to obtain a new datapoint.

Similarly, the above studies confirm that LHS is the most popular sampling method in

building energy community. A sampling method should ideally be space-filling, so that sam-

pled data points are evenly spread over the design space, and non-collapsing, so that when

sampled points are projected along any coordinate, the minimum distance between their pro-

jections is as large as possible. LHS automatically produces non-collapsing samples, further

guaranteeing space-filling when sample is optimised with respect to one of several distance-

based criteria. However, LHS is a one-shot method whose sample size has to be known in

advance, as it is not possible to extend it with a new sample point once it is generated.

A notable, but overlooked alternative to LHS is a Monte Carlo-based sampling method mc-

intersite-proj-th (MIPT) [17], which produces samples iteratively by adding in each step an

appropriately selected point to the current sample. If the current sample has n points, the (n
+ 1)-st sample point is obtained by taking kn random candidate points for some fixed k (say

k = 100), discarding those with low projected distance from the current sample, and selecting

among the remaining candidates the one with the maximum intersite distance from the cur-

rent sample. Due to this, MIPT samples tend to have better space-filling and non-collapsing

properties than LHS samples [17]. The second goal of this paper is to test whether this expected

improvement of sample properties also leads to improvements in prediction quality of ANN

and XGBoost surrogate models.

Precedence of XGBoost over ANN and of MIPT over LHS for surrogate optimisation stud-

ies is tested here on an engineering case study using which we have prepared a large set of syn-

thetic data. Namely, in cases when one really has access to limited amount of data, it is usual to

estimate the performance of ML models by dividing the available data into training, test and

validation sets and then measure the loss metrics on test and validation sets during training.

Such approach then suggests how much the trained ML models should be generalisable to the

remaining unknown data. However, our goal here is to get an understanding of true generali-

sability of trained ML models and better judge the quality of surrogate models. From this rea-

son, we have run simulations of the case study model for parameter combinations spread

uniformly throughout its design space to create a large set of simulation results against which

we compare predictions of ML models trained on very small subsets of this data. While it is
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customary in surrogate optimisation studies to use various mathematical test functions (see,

e.g., [18]) to quickly and easily generate synthetic data, most such functions have extremal

properties that are not necessarily found in real engineering problems. Additionally, we

wanted our engineering problem to have two main and essential input parameters, with the

remaining parameters determining its subcases, in order to be able to visualise model predic-

tions for specific subcases. Our previous experience in studies of architectural shading [19, 20]

led us to devise a simple case study model of an office cell with a single window and a fixed

overhang, with overhang depth and height as two main inputs and with climate type, presence

of obstacles, orientation and setpoints as auxiliary inputs. We have simulated all 729,000 vari-

ants of this model with EnergyPlus to determine their heating (H), cooling (C) and lighting (L)

loads and equivalent primary energy needs (E), against which results we have then tested gen-

eralisability of ANN and XGBoost models trained on small samples of this data.

2 Methods

2.1 The office cell building energy model

The case study is envisaged as a single-person office cell (see Fig 1) situated in the ASHRAE

Standard 90.1-2019 PNNL large office building model [21], keeping intact most of its settings.

The exterior wall construction is defined by the PNNL model, while the remaining walls are

set as adiabatic. Additional data about the building energy model is summarised in Table 1.

EnergyPlus is set to recompute solar path, shadowing and diffuse sky modeling at each time

step, to take into account shading by exterior surfaces and to project solar rays through win-

dow to compute the transmitted beam radiation reaching each surface in the zone. The day-

light illuminance control linearly dims artificial lighting from 100% down to 20% or turns it

off, using two daylighting sensors with the illuminance set point of 377 lux. Since the single

office is considered here, its HVAC system is set to ideal loads.

Note that the choice of fixed overhang for the office cell was made primarily to facilitate

comparisons in the present study. Extensive locations with cloudy winter climates benefit

Fig 1. The office cell model used as the case study.

https://doi.org/10.1371/journal.pone.0312573.g001
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substantially from solar radiation scattered to the top of the sky dome by clouds. This benefi-

cial radiation is blocked by fixed overhangs in winter, leading to prevalent use of operable

shading for office windows in all but arid and semi-arid climates. Locations considered here

include five sunny arid and semi-arid climates and only one cloudy humid temperate climate

(NY).

The building model has several variable parameters whose possible values are listed in

Table 2. These define a total of 6 × 81 × 25 × 5 × 3 × 2 × 2 = 729, 000 variants of the building

model, whose heating, cooling and lighting loads are simulated by running EnergyPlus in par-

allel using eppy [22].

Table 1. Properties of the office cell building model in various climates.

Dubai Honolulu Tucson San Diego New York Denver

Climate zone extremely hot, dry (0B) very hot, humid (1A) hot, dry (2B) warm, marine (3C) mixed, humid (4A) cool, dry (5B)

Exterior wall 20cm concrete wall, thermal insulation R = 0.85m2K/W, 13mm gypsum board, absorptances: solar = 0.7, visible = 0.5

Interior wall 26mm gypsum board, absorptances: solar = 0.7, visible = 0.5

Floor 10cm concrete floor, rough carpet pad, absorptances: solar = 0.7, visible = 0.8

Ceiling 13mm acoustic ceiling, absorptances: solar = 0.7, visible = 0.2

Glazing

U-factor 2.84 2.84 2.61 2.38 2.04 2.04

Solar heat gain coefficient 0.23 0.23 0.25 0.25 0.36 0.38

Visible transmittance 0.25 0.25 0.275 0.275 0.396 0.418

Lighting power density 6.89W per m2 of floor area

Electric equipment 8.075W per m2 of floor area

https://doi.org/10.1371/journal.pone.0312573.t001

Table 2. The office cell building energy model parameter values.

Parameter Possible values

Climate 0: Dubai

1: Honolulu

2: Tucson

3: San Diego

4: New York

5: Denver

Overhang depth from 0m to 1.60m in 0.02m steps

Overhang height from 0.01m to 0.49m in 0.02m steps

Southern obstacle 0: none

1: medium, 11am–2pm

2: high, 11am–2pm

3: medium, 3pm–5pm

4: medium, 8am–10am and medium, 3pm–5pm

Office cell orientation 0: south

-45: south-east

45: south-west

Cooling set points 24˚C or 26˚C

Heating set points 19˚C or 21˚C

https://doi.org/10.1371/journal.pone.0312573.t002
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2.2 Training of machine learning models

Separate ANN and XGBoost models for heating, cooling and lighting loads, as well as equiva-

lent primary energy needs, are trained for each building model variant from a small number S
(initially S = 100) of sampled simulation results with surrogate model inputs based on the over-

hang depth d and height h. The samples of (d, h) pairs are chosen by maximin LHS from

scikit-optimize [23] and two variants of MIPT [17], which slightly differ in the way the

candidate points are randomly generated. Since the existing MIPT implementations are avail-

able for Matlab only [24–26], MIPT is reimplemented in Python for this study—it is accessible

from mipt.py at [27].

One set of surrogate models was trained solely with d and h as inputs, while another set was

trained with inputs expanded by the α-related values (see Fig 1): h/d (=tan α), d/h (=cot α),

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2
p

(=sin α), d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2
p

(=cos α), as well as the surface area dh and the diagonal

length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2
p

of the rectangle below the overhang and above the window. Apart from tan α
and cot α, all the inputs are normalised to the (0, 1) interval.

There is still no consensus in literature on the adequate ANN architecture for learning gen-

eral unknown functions. Feed-forward ANNs with fully connected layers are used here, with

ReLU: f(x) = max{0, x} as the activation function of neurons in hidden layers. If a0, . . ., an
denote the numbers of neurons in the ANN layers (with a0 being the number of inputs and an
being the number of outputs), then ANN has a total

Pn
i¼1

ai� 1ai þ
Pn

i¼1
ai trainable parame-

ters, accounting for link weights and neuron biases. The number of trainable parameters of

ANN has to be sufficiently smaller than the size of available training data (at most 100 here), in

order to reduce the freedom of ANN to overfit. Since each ANN has 8 inputs and 1 output

(prediction of either H, C, L or E), simple computation leads to relatively small maximum

numbers of neurons in hidden layers for ANNs with 1–3 hidden layers that were chosen for

this study (see Table 3). Each ANN uses Adam optimiser with the learning rate 0.003, as well

as dropout layers with probability of 0.3, 1D batch normalisation layers and early stopping

after 10 epochs without improvements to reduce overfitting. The ANNs are trained with

pytorch [28], with training code given in train_ann.py at [27].

XGBoost models in this study mostly use default hyperparameter values. They differ in

learning rates which range from 0.03 to 0.3 (see Table 3)—smaller learning rates enable

XGBoost to fit better to the training set, but also lead to larger number of regression trees in

the trained ensemble. Early stopping after 10 rounds without improvement is employed for

overfitting reduction. The XGBoost training code is found in train_xgb.py at [27].

ANN and XGBoost models are trained by sampling S pairs of (d, h) values from the space 0

� d� 2m, 0� h� 0.5m, with the corresponding simulated values of H, C, L or E acting as the

Table 3. Surrogate models used in the study.

Name Description

N1 ANN(8,8,1) with ReLU activation, learning rate 0.003,

30% dropout and early stopping after 10 epochs

N2 ANN(8,5,5,1) with ReLU activation, learning rate 0.003,

30% dropout and early stopping after 10 epochs

N3 ANN(8,4,4,4,1) with ReLU activation, learning rate 0.003,

30% dropout and early stopping after 10 epochs

X1 XGBoost with learning rate 0.3 and early stopping after 10 rounds

X2 XGBoost with learning rate 0.1 and early stopping after 10 rounds

X3 XGBoost with learning rate 0.03 and early stopping after 10 rounds

https://doi.org/10.1371/journal.pone.0312573.t003
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output values. To enable all sampled data points to impact both training and testing phases,

5-fold cross validation is used: the sample is randomly divided into 5 folds of S/5 data points

each, and an ensemble of 5 ML models is then trained by taking in turn each fold as the test set

and the remaining four folds as the training set. The final prediction of the surrogate model is

the average of predictions of all five ML models in this ensemble. The loss function used for

training both ANN and XGBoost models is the mean squared error

MSE ¼
1

n

Xn

i¼1

ðYi � Ŷ iÞ
2
;

between the vectors Y of simulated values and Ŷ of ML model predictions.

ANN and XGBoost models are trained separately for each of 360 combinations of climate,

obstacle type, orientation and heating and cooling set points. Since all 729,000 building model

variants are already simulated, the prediction quality of surrogate models is measured by the

coefficient of variation of the root mean squared error

CVðRMSEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

P
iðYi � Ŷ iÞ

2
q

1

n

P
iYi

;

for all 2,025 combinations of d 2 {0, 0.02m, . . ., 1.6m} and h 2 {0.01m, 0.03m, . . ., 0.49m}.

Smaller CV(RMSE) thus represents a better surrogate model.

2.3 Automating surrogate model training

Python methods developed for this study are collected into the package

overhang_surrogates [27], that can also be installed directly with pip. It allows inter-

ested researchers to produce samples with MIPT [17], train XGBoost surrogate models with

k-fold cross validation for a given pandas dataframe, and produce 3D diagrams for selected

pandas dataframe columns with vedo.

The method

MIPT(n, dim=2, alpha=0.5, k=100)

returns a sample of n points from the dim-dimensional hypercube [0, 1]dim. The values

alpha and k influence the selection of new sample points: after s points have been selected

into the sample, new ks candidate random points will be generated with projected distance at

least alpha/s from the existing s sample points, after which the candidate point with the larg-

est distance from the previous s points is selected as the (s + 1)-st sample point. An existing

sample can be extended with

MIPT_extend(sample, n, alpha=0.5, k=100)

which adds n new points to sample according to the above requirements. Due to this iter-

ative sampling strategy, if one wants to construct two samples with, say, 50 and 100 points, it is

enough to construct the larger sample by calling MIPT(n = 100), and then directly take its

first 50 points as the smaller sample. Auxiliary methods hypercube_to_indices and

indices_to_hypercube convert the sample points from [0, 1]d to the indices of d arrays

of given lengths, and back.
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Assuming the pandas dataframe df contains output values in the columns meter_cols,

that should be predicted from the input values in columns input_cols (obtained, e.g., by

using the method sample_and_simulate_overhangs), the method

train_model_ensembles(df, input_cols, meter_cols,

folds=5, learning_rate=0.1, early_stopping_rounds=10)

will train a separate ensemble of XGBoost models for each column in meter_cols, using

cross validation with given number of folds, the learning_rate and the number of

early_stopping_rounds. The method predict_meters can then be used to make

predictions for arbitrary input values.

The method

make_3d_diagram(df, xcol, ycol, zcol,

minxvalue=None, maxxvalue=None, numxticks=10,

minyvalue=None, maxyvalue=None, numyticks=10,

minzvalue=None, maxzvalue=None, numzticks=10,

aspect_ratio=(1, 1, 1), camera=(-15, 25), ...)

produces a 3D diagram for data in the columns xcol, ycol and zcol of the dataframe

df, assuming df contains a row for each pair in the Cartesian product of values in xcol and

ycol, with the whole diagram shown in a grid box described by the remaining parameters.

With the help of these methods, data and diagrams shown in Figs 9 and 10 can be obtained

basically as follows:

import overhang_surrogates as ovs

df_sampled = ovs.sample_and_simulate_overhangs(

'm1NewYork.idf', 'm1NewYork.epw',

'Office_Cell_Wall_South_Window',

np.linspace(0.0, 1.6, 81),

np.linspace(0.01, 0.49, 25), 10.5, 100)

models = ovs.train_model_ensembles(df_sampled,

['depth', 'height'],

['DistrictHeating:Facility',

'DistrictCooling:Facility',

'InteriorLights:Electricity']

df_predicted = ovs.predict_meters(models,

{'depth': np.linspace(0.0, 1.6, 81),

'height': np.linspace(0.01, 0.49, 25)}

ovs.make_3d_diagram(df_predicted, 'depth', 'height',

'DistrictHeating:Facility')

ovs.make_3d_diagram(df_predicted, 'depth', 'height',

'DistrictCooling:Facility')

ovs.make_3d_diagram(df_predicted, 'depth', 'height',

'InteriorLights:Electricity')
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3 Results and discussion

EnergyPlus simulations of the 729,000 variants of the office cell building energy model were

run in parallel on four Ubuntu Linux PCs with 8-core i7 processors for approximately one

week (simulation results are available online at [29]). Separate ML model ensembles were fur-

ther trained for each of the 8,640 combinations of the following office cell parameters: climate,

presence of obstacles, orientation, heating and cooling set points, as well as the number of

input columns, sampling method and load type. Training three XGBoost models for these

8,640 combinations lasted about two days in total on a MacBook Air laptop with the 8-core

M1 processor. In comparison, training three ANN models (with 1, 2 or 3 hidden layers) using

pytorch for these 8,640 combinations lasted about seven days in total on the same computer.

Fig 2 shows the average time needed to train these ML models using 5-fold cross validation,

depending on the sample size, for one combination of parameters of the building model. As

one can see from this figure, training different XGBoost models for a given sample size takes

relatively similar time regardless of the learning rate, while time needed to train ANN models

strongly depends on the number of hidden layers.

This section presents estimates of the prediction quality of obtained surrogate models, and

discusses the impact of the number of inputs, the sampling method, the ML model architec-

ture, the office cell parameters, and the sample size on the surrogate prediction quality.

3.1 Impact of the number of inputs

Each ML model for each building model variant was trained separately for the case of two

inputs normalised to the interval [0, 1]: d/2 and 2h, and for the case of eight inputs:d/2, 2h and

their derived functions h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2
p

¼ sin a, d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2
p

¼ cos a,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ h2Þ=4:25

p
, dh,h/d =

tan α and d/h = cot α, among which the first six are normalised to [0, 1]. The same model

architecture was used for both cases of two and eight numerical inputs, so that in the case of

Fig 2. Average time needed to train various ML models using 5-fold cross validation for all four simulated values

(H, C, L and E) for one combination of climate, obstacle type, orientation and heating and cooling set points of

the building model, depending on the sample size. The ML models N1, N2 and N3 are ANNs with one, two and

three hidden layers of neurons, respectively, while X1, X2 and X3 are XGBoost models with learning rates set at 0.3, 0.1

and 0.03, respectively.

https://doi.org/10.1371/journal.pone.0312573.g002
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two inputs, the additional numerical inputs expected by the ML models were filled with con-

stant zero values.

Fig 3 shows that the presence of additional varying numerical inputs, in a sense, “confuses”

ANN-based models which return significantly higher CV(RMSE) values than their counter-

parts which use only d/2 and 2h as inputs. Possible explanation for this behaviour may be that

ANN-based models with larger number of varying numerical inputs need to be trained for a

larger number of epochs to reach appropriate levels of dependence of their predictions on the

input values. Since the overarching goal is to create acceptable surrogate models for H, C, L
and E from a relatively small sample size and in relatively short time, the case of ANN-based

models with eight inputs was discarded in the sequel.

On the other hand, one can also see from Fig 3 that additional numerical inputs do slightly

decrease the average CV(RMSE) values of the XGBoost-based models. This improvement in

the average CV(RMSE) values is on average 2.63% across all XGBoost-based models and all

loads, with the only increase of 0.05% in the average CV(RMSE) values present while predict-

ing heating loads with the XGBoost model with the learning rate 0.3. Thus in the sequel only

XGBoost models trained with all eight numerical inputs are considered.

3.2 Impact of the sampling method

Each ML model was also trained separately with three sampling methods: LHS, MIPT and

MIPT with avoidance of forbidden hypercubes (MIPTf, see [17]). LHS is one-shot method that

simultaneously selects all sample points, while MIPT and MIPTf are iterative methods that

Fig 3. Distribution of CV(RMSE) values for the cases of 2 inputs and 8 inputs over different ML models and different loads. The ML models N1, N2

and N3 are ANNs with one, two and three hidden layers of neurons, respectively, while X1, X2 and X3 are XGBoost models with learning rates set at 0.3, 0.1

and 0.03, respectively.

https://doi.org/10.1371/journal.pone.0312573.g003
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select a new sample point with respect to the previously selected sample points. As a result, the

samples produced by MIPT and MIPTf tend to have larger minimum intersite and minimum

projected distance between the sample points than the samples produced by LHS, albeit at the

expense of a somewhat longer running time: approximately 1.1s for 100 sample points pro-

duced by LHS compared to 10.2s for 100 sample points produced by either MIPT or MIPTf on

a MacBook Air laptop with the M1 processor. Fig 4 confirms that larger minimum intersite

and minimum projected distance between sample points offered by MIPT and MIPTf sam-

pling methods, which translates to more evenly spread sample points over the input domain,

has noticeably positive effects on the prediction capabilities of almost all considered ML mod-

els. The differences between MIPT and MIPTf sampling methods are negligible in all three

aspects: in the running time, in the quality of samples and in the impact on prediction capabili-

ties of ML models (with MIPTf leading to slightly better prediction capabilities). Theoretically,

it is possible for MIPT to discard all candidate points from one iteration, provided they all hap-

pen to be too close in projected distance to the already sampled points. On the other hand,

MIPTf avoids this (highly unlikely) possibility by specifically choosing candidate points from

regions with sufficiently large projected distance from already sampled points, and thus

chooses a new sample point in each iteration, which is why MIPTf is used in the sequel.

3.3 Impact of the ML model architecture

Fig 5 shows the box plots of the distributions of CV(RMSE) values for the ANN models with

two inputs and the XGBoost models with eight inputs, trained on the samples selected by

Fig 4. Distribution of CV(RMSE) values for the cases of LHS, MIPT and MIPTf sampling methods over different ML models and different loads. The

ML models N1, N2 and N3 are ANNs with one, two and three hidden layers of neurons, respectively, while X1, X2 and X3 are XGBoost models with

learning rates set at 0.3, 0.1 and 0.03, respectively.CV(RMSE) values were computed for the ANN models with two inputs and the XGBoost models with

eight inputs, as suggested in Subsection 3.1.

https://doi.org/10.1371/journal.pone.0312573.g004
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MIPTf. From the very high variability of CV(RMSE) values for models N2 and N3 (and a large

number of their outliers which are not shown in Fig 5), one can immediately see that ANNs

with several hidden layers of neurons require far longer training time to reach convergence

than what is allowed by the early stopping criterion here. In such restricted training time set-

ting, the model N1 with a single hidden layer achieves far better prediction capabilities than its

deeper counterparts N2 and N3.

On the other hand, Fig 5 clearly indicates that the XGBoost models with the appropriately

selected learning rates significantly outperform the ANN models in this limited setting: for all

loads, the upper quartile of X2 is positioned lower than the lower quartile of N1. Similar ascen-

dancy was also observed in the ASHRAE Great Energy Predictor III competition [9], which

showcased the predominance of gradient-boosted tree models in predicting whole building

energy consumption. In addition, the XGBoost models sport more uniformly distributed CV
(RMSE) values with significantly narrower inter-quartile ranges than their ANN counterparts.

Fig 5 also shows the importance of properly setting the learning rate for the XGBoost models:

while the increase of the learning rate from 0.1 to 0.3 only slightly decreases the predictive

capabilities of X1 model, the decrease of the learning rate from 0.1 to 0.03 significantly worsens

the predictive capabilities of X3 model. Since the best learning rate for XGBoost models in this

case study appears to be situated in the vicinity of 0.1, X2 is selected as the ML model of choice

in the sequel.

3.4 Impact of the office cell model parameters

Fig 6 shows the distribution of CV(RMSE) values for the best performing XGBoost models X2

with learning rate 0.1, eight inputs and MIPTf sampling) for different loads in different cli-

mates. These models turn out to be most certain when predicting lighting loads and equivalent

primary energy needs, while their predictions of cooling and, especially, heating loads have

much higher variability of root mean squared error (RMSE). This becomes even more interest-

ing when one takes into account that the equivalent primary energy need is actually a linear

combination of these loads.

A general observation is that the model X2 tends to achieve better predictive capabilities

when the simulated loads for the whole population are less dispersed (and thus, with high

Fig 5. Distribution of CV(RMSE) values for different ML models and different loads. The ML models N1, N2 and N3 are ANNs with one, two and three

hidden layers of neurons, respectively, while X1, X2 and X3 are XGBoost models with learning rates set at 0.3, 0.1 and 0.03, respectively. The axes for CV
(RMSE) values were set individually due to differences in their ranges for different loads. Outliers, which are especially present for models N2 and N3, are

not shown. Following suggestions in Subsections 3.1 and 3.2, the coefficients of variation were computed for the sample points selected by the MIPTf

sampling method, the ANN models with two inputs and the XGBoost models with eight inputs.

https://doi.org/10.1371/journal.pone.0312573.g005
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probability, also the loads of the sampled points on which the model is trained). This may be

visually inspected in Fig 6, where next to the distribution of CV(RMSE) values each inset, for

each load type in each climate, further shows the distribution of the coefficient of variation

(CV, the ratio of the standard deviation to the mean value) of the loads simulated by Energy-

Plus. These insets reveal a strong visual resemblance between the dispersion of the root mean

squared error between the predicted and simulated loads and the dispersion of the simulated

loads per se. This resemblance also appears when other office cell model parameters are varied,

apart from the building model orientation.

A probable explanation for this resemblance may lie in the structure of XGBoost ensemble

models. They consist of a collection of regression trees, each of which uses decision rules on

the components of the input data to assign a constant score from some of its leaves to an

Fig 6. Distribution of CV(RMSE) values for the best performing XGBoost models X2 with learning rate 0.1, eight

inputs and MIPTf sampling for different loads in different climates. Insets shows the distributions of CV values of the

simulated loads for the office cell model in these climates.

https://doi.org/10.1371/journal.pone.0312573.g006
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instance of the input, with the final prediction being the sum of scores assigned from each

regression tree. Hence the prediction function of an XGBoost model is a sum of piecewise con-

stant functions, which in itself is a piecewise constant function on the input domain parti-

tioned by the conjuction of the decision rules used in the constituent regression trees. Thus, if

the values to be predicted have smaller dispersion or, which is more-or-less equivalent, have

smaller gradients, then it could be expected that the smaller number of piecewise constant

functions may be sufficient for a good prediction. Put in another way, the same number of

regression trees in an XGBoost model could be expected to yield more precise predictions for

data that is less dispersed and has smaller gradients.

Heating and cooling loads for the office cell model in this study, have almost constantly

slanted shapes, with gradients bounded away from zero, when considered as functions of d
and h. On the other hand, the diagrams of equivalent primary energy needs have larger nearly

horizontal areas with much smaller gradients (an example of the diagrams of these loads is

shown in Figs 9 and 10). This apparently makes it easier for the X2 models to better predict the

equivalent primary energy needs as piecewise constant functions, than the heating and cooling

loads as its constituent terms.

Note that the above discussion does not refer to the actual magnitude of the loads, but only

to their relative dispersion with respect to the mean value. Heating loads in New York

(mean = 48.51kWh/m2) and Denver (mean = 36.61kWh/m2) are definitely higher than in San

Diego (mean = 1.59kWh/m2) and Tucson (mean = 2.99kWh/m2), but they are far less dis-

persed (with CVs equal to 0.21, 0.26, 0.97 and 0.63 in New York, Denver, San Diego and Tuc-

son, respectively), implying more precise XGBoost predictions of heating loads for New York

and Denver than for San Diego and Tucson. The X2 models similarly achieve better prediction

performance for the climates of Dubai, Honolulu and Tucson, which have larger, but less dis-

persed cooling loads than for the climates of San Diego, New York and Denver, whose cooling

loads are much smaller, but more dispersed.

3.5 Impact of the sample size

Fig 7 shows distributions of CV(RMSE) values for the predictions of heating, cooling and light-

ing loads and equivalent primary energy needs of the four XGBoost models with learning rate

0.1, eight inputs and MIPTf sampling, but this time trained on samples of different sizes: with

either 12, 25, 50 or 100 (d, h) pairs out of 2,025 (d, h) combinations for each building model

Fig 7. Distribution of CV(RMSE) values for the best performing X2 models with learning rate 0.1, eight inputs and MIPTf sampling, trained over the

samples with varying sizes containing 12, 25, 50 and 100 points, respectively.

https://doi.org/10.1371/journal.pone.0312573.g007
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variant. These XGBoost models will be aptly named X12, X25, X50 and X100 in this

subsection.

It can be immediately noticed that CV(RMSE) values of these surrogate models tend to

decrease exponentially with the doubling of the sample size. Results of building energy simula-

tions are valuable in decision making even though they do not always replicate the actual per-

formance of built products. Actually, results of EnergyPlus simulations for shading and

interior solar distribution may deviate by up to 4.44% from the analytically obtained results

[30, Sections 2.8 & 2.10]. Fig 7 shows that CV(RMSE) values for heating and cooling loads fall

within this range already for X50 (apart from a handful of outliers for heating load), and for

lighting loads and equivalent primary energy needs already for X25 and even X12. This suggest

that, to obtain useful surrogate models for the actual problem at hand, one should first train

XGBoost model ensemble on a sample of smaller size and check its CV(RMSE) performance

on the test set, before deciding whether to continue training with the doubled sample size.

3.6 Visualising actual predictions

Since CV(RMSE) is a global indicator that summarises quality of model predictions over the

larger set of 360 office cell model variants (with different climates, types of obstacles, orienta-

tions, and heating and cooling set points), the actual predictions of X12, X25, X50 and X100

models for a particular case of the New York climate with southern orientation, no obstacles,

hsp = 21˚C and csp = 24˚C are illustrated in Figs 8–10.

Fig 8 clearly indicates the evolution of relative errors of cooling load predictions for these

four models when the sample size is doubled. Important characteristic of the diagrams in this

figure is their division into smaller parts using a collection of vertical and diagonal (and occa-

sionally horizontal) lines that serve as their boundaries, in such a way that the relative error is

continuously changing within these parts, but experiencing smaller or larger jumps when

crossing the boundary between two parts. This division is an artefact of the already mentioned

structure of XGBoost model ensembles that constrains their predictions to be piecewise con-

stant functions. From the boundary lines observable in the diagrams of Fig 8 it can be seen

that the most important input features used in the decision rules turn out to be the overhang

depth d (leading to vertical lines), the ratio d/h (leading to diagonal lines of varying slopes) and

the overhang height h (leading to horizontal lines). Analogous boundary lines appear in the

diagrams of relative errors of predictions for H, L and E, which is why we skip them here.

The fact that the predictions of XGBoost models are piecewise constant functions is easily

observable from the visualisations of actual predictions of the models X12, X25, X50 and X100

for heating and cooling loads in Fig 9, and lighting loads and equivalent primary energy needs

in Fig 10. These diagrams also illustrate how the increase in the sample size makes it possible

to introduce additional decision rules into regression trees, which in turn decreases areas of

individual horizontal parts of prediction functions and leads to better fit between model pre-

dictions and actual loads. Although increased sample size quickly leads to more than accept-

able levels of discrepancy between model predictions and actual loads, it is apparent from

these diagrams that the piecewise constant XGBoost model predictions can hardly evoke

smoothness of the shapes of heating and cooling loads and equivalent primary energy needs

that are shown in these diagrams as well. Moreover, comparing the sequence of predictions of

lighting loads from Fig 10 with the simulated lighting loads, it can be seen that these XGBoost

models, despite their increasing accuracy, fail to converge to the shape of simulated lighting

loads, which is probably the consequence of the fact that their constituent regression trees

mostly use decision rules based on d, h or d/h (with latter leading to “rays” emanating from the
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Fig 8. Relative errors of cooling load predictions for the four X2 models with learning rate 0.1, eight inputs and

MIPTf sampling, trained over the samples of sizes 12, 25, 50 and 100, respectively, for the particular case of New

York climate with southern orientation, no obstacles, hsp = 21˚C and csp = 24˚C. Black diamond shapes depict the

sample (d, h) points whose simulated loads were used for training the models. The samples were built iteratively, so

that the sample of size 12 represents the first 12 points of the largest sample of size 100, etc.

https://doi.org/10.1371/journal.pone.0312573.g008
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Fig 9. Diagrams of the predictions of heating loads (left column) and cooling loads (right column) of the XGBoost

model ensembles X12, X25, X50 and X100, together with the actual simulated loads shown in the last row, for the office

cell model in the New York climate with southern orientation, no obstacles, hsp = 21˚C and csp = 24˚C.

https://doi.org/10.1371/journal.pone.0312573.g009
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Fig 10. Diagrams of the predictions of lighting loads (left column) and equivalent primary energy needs (right column) of the

XGBoost model ensembles X12, X25, X50 and X100, together with the actual simulated loads shown in the last row, for the office

cell model in the New York climate with southern orientation, no obstacles, hsp = 21˚C and csp = 24˚C.

https://doi.org/10.1371/journal.pone.0312573.g010
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point (d, h) = (0, 0) in Fig 10), while the “waterfall” shape of lighting loads follows straight lines

determined by the ratios of d and h which are shifted by different amounts each.

4 Conclusions

This study compared the quality of predictions of ANN and XGBoost surrogate models for

heating, cooling and lighting loads and equivalent primary energy needs, trained on relatively

small number of results of EnergyPlus simulations for different variants of the office cell

model that was used as a case study.

The immediate outcome is that XGBoost models provided more precise predictions for

these loads. It was further observed that the use of Monte Carlo-based mc-intersite-proj-th

[17] method for sampling, instead of the maximin Latin hypercube sampling, led to slightly

improved quality of model predictions for both ANN and XGBoost models.

Being essentially collections of piecewise constant functions, XGBoost models tend to

achieve better predictive capabilities when the simulated loads are less dispersed or have

smaller gradients on the greater part of the design space. In such cases it could be expected that

a smaller number of regression trees would be sufficient for a good prediction, or alternatively,

that the same number of regression trees in an XGBoost model would yield more precise pre-

dictions. Consequently, XGBoost models for the present case study are more precise for the

lighting loads and the equivalent primary energy needs than for the heating and the cooling

loads, whose simpler slanted shapes have higher gradients bounded away from zero.

XGBoost models here were trained on samples with exponentially increasing sizes: 12, 25,

50 and 100, and it was observed that CV(RMSE) values of their predictions tend to decrease

exponentially with a doubling of the sample size. This suggests that, in general, a binary search

procedure could be used in training of XGBoost surrogate models: first train on smaller sam-

ples, and then double the sample size and retrain until satisfactory prediction quality is

attained. For the present case study, taking into account inherent inaccuracies of EnergyPlus

simulations, surrogate models of acceptable quality were obtained with samples of size 50 for

heating and cooling loads, while samples of size 25 were sufficient for lighting loads and equiv-

alent primary energy needs.

To conclude, XGBoost has already started to take hold in BPS community, as mentioned in

the references, mostly in the domain of prediction models trained on large amounts of mea-

sured data. This study points out that, in combination with MIPT sampling, XGBoost has a

substantive potential to yield good quality surrogate models also in the cases when only a few

simulations are run, making it a good choice for surrogate modelling for building performance

studies in general.
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