Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 242 (2024) 460465

www.elsevier.com/locate/procedia

11th International Conference on Information Technology and Quantitative Management
(ITQM 2024)

Lua APIs for mathematical optimization

Milan Stanojevi¢®, Bogdana Stanojevié®P*

% University of Belgrade, Faculty of Organizational Sciences, Jove Ilica 154, 11000 Belgrade, Serbia
b Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia

Abstract

In this paper we present our Lua programming language libraries that enable modeling and solving mixed integer
linear and nonlinear mathematical optimization problems. On one side, these libraries provide a framework for
developing algorithms written in Lua that use certain well known solvers within more complex procedures. On
the other side, they facilitate the transformation of both input and output data of a mathematical programming
problem, in order to compute the standardized coefficients that have to be transmitted to the solvers or prepare
solution of solved problems for further data processing. Both of these use cases, together with Lua programming
language simplicity, versatility and performance, make Lua a suitable programming language for use in scientific and
engineering researches.

© 2024 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 11th International Conference on Information Technology and
Quantitative Management

Keywords: Dynamic callable library; AMPL/GMPL languages; CBC solver; ALGENCAN; mathematical optimization

1. Scientific programming

Scientific programming (SP) is the development of programs intended to be used in scientific and engi-
neering research. A programming language that is suitable for this kind of programming is called a scientific
programming language (SPL). In a wide sense an SPL is able to efficiently implement algorithms for com-
putational science or computational mathematics, but in stronger sense is a language optimized to permit
easy implementations of complex mathematical calculations.

Some of the main properties of SP and the demands of the SPLs that follow them are:

* Corresponding author. Tel.: 4+381-11-2630170 ; fax: +381-11-2186105.
E-mail address: bgdnpop@mi.sanu.ac.rs

1877-0509 © 2024 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)

Peer-review under responsibility of the scientific committee of the 11th International Conference on Information
Technology and Quantitative Management

10.1016/j.procs.2024.08.160

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2024.08.160&domain=pdf

Milan Stanojevié et al. / Procedia Computer Science 242 (2024) 460—465 461

Relative performances with respect to C

100000 .
Relative performances with respect to LuallT

10000 45

» ®iteration_pi_sum 40 & 4
Looo » ®matrix_multiply 35
» : matrix_statistics Zg
100 - - -
. [® parse_integers 20 A Lasa
10 ' LI] : ® print_to_file 15 ol aJI;I'
u
L § H [} recursion_fibonacci 10 Bvithon 3
1 * 2 : - s 3z 3 : e » ®recursion_guicksort 5: * i g . . Py 4 Python
. userfunc_mandelbrot o x
& @ 'y &
0.1 5 & oF & o4 o §
S P F 0§ FPF S T © czﬁ'\\ & @Z@ c‘f‘@b @’Z\ (‘ﬁ @C\D
3:5 Sl SH 57‘:‘\ » & ‘\\\:\o i o ‘-'(\\) & 3‘9 & &z@\
S & W &9 o & o
~F R & hGy
K I
&

Fig. 1. Julia micro-benchmark results in a logarithmic scale to compare the performances of several programming languages.

e Those who develop the software are also its users, thus the programs do not have to have sophisticated
or graphic interface. In the most cases they are just console applications that take input data from
files or a database and store the results in a similar fashion.

e Those who develop the software are not necessary professional developers, thus the programming
language has to have a simple and yet expressive syntax. For this demand the interpreted languages
have a clear advantage over compiled and strong typed ones. On the other side, the drawback is that
interpreted languages are several orders of magnitude slower.

e The need for high computation performances is inconsistent with the previous demand. A possible so-
lution is to identify extremely complex parts of procedures, implement them in some high performance
languages (typically C/C++, FORTRAN), and then merge them as dynamic libraries with the rest
of the code. So, the possibility and easiness of linking libraries developed in other languages is a key
demand for this compromise solution.

o Even with libraries for fast calculation, the rest of the code should be as fast as possible. In the
interpreted languages world, a high running speed can be achieved by Just In Time (JIT) compilers.

Matlab together with its open source variants Octave and SciLab, Mathematica, R, Prolog, AMPL are some
example of specialized languages for SP. On the other side, Julia, Python and Lua are general programming
languages which are suitable for SP.

Figure 1 shows some comparative results about the performances of several programming languages. The
implementations of the algorithms were downloaded from [7] and run on the same computer. On the left, the
performances were reported to to the performance of the C language, while on the right, they are presented
with respect to LuaJIT.

One may conclude that LuaJIT performed better than both Lua 5.3 and Python 3 for all tests with only
one exception. Python 3 succeeded to outperform LuaJIT for reverse-complement benchmark due to the
wise use of co-routines for reading in the 500 MB input file.

2. Lua programming language

Lua programming language [6] has all mentioned qualities needed for a SPL in a wide sense. Although Lua
has a small footprint (i.e. the size of its interpreter is only 600 kB), it has many features that the modern SPLs
have. Among these features it is worth mentioning the expressiveness, dynamic typing, simplicity, speed and
extensibility. Most of all, Lua is freely available as an open source project. Lua interpreter itself is written
in C programming language, so its support for integration with C programs is quite natural and intuitive.
To combine Lua and C one can either embed Lua into C programs, thus extending it with advanced syntax
capabilities; or expand Lua with libraries written in C, thus speeding up critical complex computation.
Lua does not incorporate in the language all the desirable possibilities of SPLs like mathematical formulas
with matrices manipulation. It rather uses external libraries that extend the language capabilities. And

462 Milan Stanojevié et al. / Procedia Computer Science 242 (2024) 460—465

25

20

Running time

15
10
5]
m m
N <] Lol v &
&

Solvers

Fig. 2. Speed comparison of commercial and open source solvers

here the Lua’s extensibility shines. There are several available libraries that provide some SPL capabilities
to Lua. NumLua [10] and Torch [14] are two of them. NumLua is focused on complex numbers, matrices
computation, statistics, random numbers generation; while Torch, in addition is directed to neural networks,
image manipulation, graphical representation and some rudimentary optimization algorithms.

The usefulness of Lua in implementing algorithms within scientific computing can be concluded from the
recent literature (see for instance Ono et al. [11] who describe a modular visualization framework for large-
scale data sets that uses Lua as scripting language). Cacho et al. [4] developed a Lua-based aspect-oriented
programming infrastructure by creating an aspect class used to define aspects that are dynamically weaved
by a meta-object protocol.

The main reasons for using Lua were summarized by the team that designed, implemented and maintain
it [6] as it follows: Lua is a proven, robust language; fast, portable, embeddable, powerful (but simple), small,
and free. Moreover, Lua is multi paradigm programming language. It supports procedural programming,
object-oriented programming, functional programming, data-driven programming, and data description.

3. Optimization solvers

Mixed integer programming (MIP) open source solvers, beside their flexibility of use and lack of cost, lag
behind their commercial counterparts considering performance. Figure 2 shows the speed span of several
commercial (red bars) and open source (blue bars) MIP solvers. The numerical values used in Figure 2 are
recalled from [1]. Meindl and Templ [9] explained how the data was collected. Briefly, the maximal running
time for each solver was limited to 1h; and the times were scaled such that the running time for GUROBI®
- which was the fastest solver in the experiment - was set to 1. Smaller values are better. GUROBI®,
XPRESS® and CPLEX® are well known high performance commercial MIP solvers that are constantly
fine-tuned and improved by building in the state of art techniques and algorithms. On the other hand CBC,
LP_SOLVE and GLPK are mature and reliable open source solvers, but the effort put in their improvement
is a way smaller comparing to commercial ones.

Solver SCIP can solve constraint programming, MIP and mixed integer nonlinear programming (MINLP)
problems using branch-cut-and-price method, but uses an external LP solver. In the benchmark represented
in Figure 2, SCIP used CPLEX (-C), CLP (-L) and SoPlex (-S) LP solvers. SCIP-C can be considered as a
commercial solver since it needs a valid license for CPLEX.

The comparison of nonlinear optimization solvers is much harder than for the linear ones.

4. Optimization in Lua programming language

We have implemented a set of libraries that enable the use of both open source and commercial solvers
in Lua with a decent modeling and model manipulation capabilities. Among others, we developed APIs for
AMPL and all the solvers that can be used from it, CBC solver, and ALGENCAN.

Milan Stanojevié et al. / Procedia Computer Science 242 (2024) 460—465 463

Table 1. Running times comparison on TSPLIB benchmarks

’ TSPLIB instance ‘ n ‘ Gurobi ‘ CPLEX ‘ CBC ‘ GLPK ‘

ftv3 34 0.51 0.65 1.30 0.57

ftv47 48 5.88 9.69 66.66 | 30.85

ftvs5 56 8.05 4.23 37.43 | 108.45
Total | 14.44 14.57 105.39 | 139.87

4.1. AMPL

One of our libraries is a wrapper of the AMPL’s C++ API version adjusted to the Lua style data
manipulation. The dynamic library ampliua is written in C++ and can be loaded in Lua (5.1 and newer and
LuaJIT) code. The main purpose of our API is to provide the procedural portion of modeling in optimization
processes. The mathematical problem remains written in AMPL but data manipulation for both preparing
and afterwards analytic is done in Lua. All entities from the model can be accessed from Lua directly, in Lua
fashion. The input values can be read in many ways, combining AMPL’s native .dat files and assignments
in Lua code, preceded by database or any data files reading [12].

4.2. CBC solver

CBC is a project of COIN-OR Foundation [5] that supports open source software for the operations
research community. It is written in C++ and issued under Eclipse Public License [2]. COIN-OR stands
for Computational Infrastructure for Operations Research. COIN-OR successfully supports researchers to
develop mathematical applications. The COIN-OR includes tools for linear programming, nonlinear pro-
gramming, mixed integer programming, and algebraic modeling environments.

The CBC API wrapper was developed as a dynamic Lua library, called cbclua, which can be imported
and used within any Lua program. We developed corresponding Lua functions for the majority of CBC API
functionalities [13]. In the wrapper creation the attention was put on the simplicity of input data structure
with accent on native Lua collection structures — tables.

The GLPK (GNU Linear Programming Kit) is a well-known open source package for solving large-scale
linear programming (LP), MIP, and other related problems. It is a set of routines organized as a callable
library written in ANSI C. For mathematical modeling it uses the GMPL (GNU MathProg modelling
language) a derivative and a subset of the commercial AMPL language. Defining an optimization problem
by forming a constraint matrix is convenient for dense matrices, but is not suitable for sparse ones. For such
models, a mathematical modeling language is more appropriate to be used. In cbclua library that ability is
introduced by incorporating GMPL. We opted for using GMPL due to its syntax which is very similar to
AMPL, and its quality of being part of an open source package. Combining the CBC solver with GLPK
modeling environment enables: (i) to define complex mathematical models and insert data in GMPL format;
(ii) to read in both the model and the data into a CBC mode within Lua code; and finally (iii) to perform
the optimization with CBC solver (that is faster then GLPK native MIP solver, see Figure 2) and extract
the results.

Table 1 reports the running time (in seconds) needed by two commercial and two open-source solvers to
solve three instances of Asymmetric TSP problem taken from the well known library TSPLIB [15]. CBC
solver was run using the developed Lua interface, while the others were run from the available modeling
environments.

The values reported on the bottom row of Table 1 properly illustrate the performances of the compared
solvers: the commercial solvers are much better then the free ones; and CBC solver outperforms the GLPK
solver. However, some anomalies can be noticed analyzing the results obtained for each instance separately:
Gurobi needed almost double time than CPLEX to solve ftv55, and vice versa for ftv47 instance; GLPK
behaved better than CBC on instance ftv47; and GLPK outperforms CPLEX when solving the instance
ftv33. However, these anomalies well illustrate the capriciousness of combinatorial optimization problems

464 Milan Stanojevié et al. / Procedia Computer Science 242 (2024) 460—465

as well as the dependence of solving algorithms on their tuning parameters (all used solvers were run with
their default settings).

4.8. ALGENCAN solver

ALGENCAN ([3] is a procedure based on traditional ideas and written in FORTRAN for general con-
strained optimization. It is able to solve extremely large optimization problems within reasonable time. At
each iteration, the algorithm minimizes the objective function plus a quadratic penalty function, thus being
an approximate minimizer. The optimization algorithm is based on the Augmented Lagrangian method for
nonlinear programming problems. It involves many parameters that highly influence the algorithmic behav-
ior. ALGENCAN has interfaces with AMPL, C/C++, CUTEr, Matlab, Python, Octave and R (statistical
computing).

Unlike the previous two libraries that use the external modeling environments AMPL and MathProg, re-
spectively, luaalgencan implements an original modeling environment for formulating mathematical models.
For this purpose, it utilizes native Lua data structures, the tables — the associative arrays (in other lan-
guages known as: dictionary, hash array, etc.). Beside Lua’s C API and Algencan, luaalgencan incorporates
the mathematical expression parser and evaluator TinyExpr [16].

The basic modeling objects in luaalgencan environment are:

1. Parameters (denoted by par) are numerical values that can be changed during run-time,
2. Variables (denoted by var) are the decision variables of the mathematical model,
3. Functions (denoted by fun) are used to represent both the objective function and constraints.

Each of the objects must have a name and may have some attributes. Reserved name for the objective
function is min if the function is minimized, or max if it is maximized. All other names are arbitrary (excluding
some keywords).

The body of the function objects are formulated as strings with the help of iterators that provide more
concise expressions. The iterators may be used to defining variables, too.

The example luaalgencan code for Model (1)

n n
Z cos? (z;) — 2H cos? (z;)
=1 =1

min f (z) = —|* ' .

subject to

g1 (%) = 0.75 — Hﬂfz <0,

i=1

n
g2 (x) = le —7.5n <0,
i=1

where n. =20 and 0 < x; < 10,4 =1,...,n, is given in Figure 3. Problem (1) was recalled from [8].

Note that two dots “..” is the operator for string concatenation; and “ub” and "1b” are attributes for
upper and lower bounds for both variables and constraints. The argument 100 of m:solve command is
number of optimization multi starts with randomized initial variables values. The initial values can be given
as the unnamed argument of variable declaration (in line 2 at Figure 3, initial value for all variables is 0.1).
The second optional argument of m:solve command can be a random seed.

Milan Stanojevié et al. / Procedia Computer Science 242 (2024) 460—465 465

1 require "luaalgencan"

2 m = newModel ()

3 m:varSet{xi = {0.1, 1b = 0, ub = 6.5}, {i =1, 20}}

4 m:funSet{min = {"-abs((" .. sum({i=1,20}, "(cos xi)~4") .. " - 2 x "
prd({i=1,20}, "(cos xi)~2") .. ") /sqrt("
sum({i=1,20}, "i * xi~2") .. "))"}}

5 m:funSet{gl = {prd({i=1,20}, "xi"), 1b = 0.75}}

6 m:funSet{g2 = {sum({i=1,20}, "xi"), ub = 150}}

7 m:solve(100)

8 m:showSolution(true)

Fig. 3. Lua code for solving mathematical problem 1

5. Conclusion

We developed three libraries: ampllua, cbclua, and luaalgencan. The libraries that enable the use of the
CBC solver and solvers supported by AMPL within Lua code, thus facilitating the solving of MIP problems
with unbounded number of variables using Lua, incorporate external modelling environments: MathProg
language from GLPK, and AMPL. On the other side, the library that enables the use of the non-linear solver
Algencan with Lua includes our new developed modelling environement that facilitates the mathematial
formulations.

By developing these libraries we aimed to improve Lua’s performances toward mathematical optimization.

In our future research we will focus on incorporating the access to an open-source non-linear solver
through Lua libraries. The main difficulty that has to be overcome is related to reading in the mathematical
model. An algebraic language is desirable to be developed in order to permit a very general input form for
non-linear expressions that describe the objective functions and constraints.

References

[1] , . The computer language benchmarks game, lua versus python 3 fastest programs. URL: https://benchmarksgame-team.
pages.debian.net/benchmarksgame/index.html. last accessed 2 May 2024.

[2] ,t.E.,. URL: https://wwu.eclipse.org/legal/epl-2.0/.. last accessed 2 May 2024.

[3] ALGENCAN, . TANGO project. URL: https://www.ime.usp.br/~egbirgin/tango/codes.php. last accessed 2 May 2024.

[4] Cacho, N., Batista, T., Fernandes, F., 2005. A Lua-based AOP infrastructure. Journal of the Brazilian Computer Society
, 7-20.

[5] COIN-OR, . Computational infrastructure for operations research - open-source software for the operations research
community. URL: www.coin-or.org. last accessed 2 May 2024.

[6] Ierusalimschy, R., . The programming language lua. URL: https://www.lua.org. last accessed 2 May 2024.

[7] Julia, . Mikro-benchmarks. URL: https://julialang.org/benchmarks/. last accessed 2 May 2024.

[8] Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C., Deb, K., 2006. Problem definitions and
evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Nangyang Technological
University, Singapore, Tech. Rep 41.

[9] Meindl, B., Templ, M., 2012. Analysis of commercial and free and open source solvers for linear optimization problems.
URL: http://hdl.handle.net/20.500.12708/37465.

[10] Numlua, . Numeric lua. URL: https://github.com/carvalho/numlua. last accessed 2 May 2024.

[11] Ono, K., Nonaka, J., Kawanabe, T., Fujita, M., Oku, K., Hatta, K., 2020. HIVE: A cross-platform, modular visualization
framework for large-scale data sets. Future Generation Computer Systems , 875—-883.

[12] Stanojevié, M., Stanojevié, B., 2020. Mathematical optimization in lua programming language environment, in: Proceedings
of SYM-OP-IS 2020, Saobracajni fakultet, Belgrade. pp. 473-478.

[13] Stanojevié, M., Stanojevié¢, B., 2023. Mathematical optimization using cbc solver in Lua programming language, in:
Proceedings of SYM-OP-IS 2023, Media centar Odbrana, Belgrade. pp. 903-908.

[14] Torch, . A scientific computing framework for luajit. URL: http://torch.ch/. last accessed 2 May 2024.

[15] TSPLIB, . Instances for the TSP (and related problems). URL: http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/. last accessed 2 May 2024.

[16] Winkle, L.V., . Tinyexpr. URL: https://codeplea.com/tinyexpr. last accessed 17 June 2024.

