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Abstract

In this work, we introduce a novel concept of magic billiards, which can be seen as
an umbrella, unifying several well-known generalisations of mathematical billiards. We
analyse properties of magic billiards in the case of elliptical boundaries. We provide
explicit conditions for periodicity in algebro-geometric, analytic, and polynomial forms.
A topological description of those billiards is given using Fomenko graphs.
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1 Introduction

The elliptic billiard [Bir1927,Bol1990,KT1991,Tab2005] is a notable example of a completely
Liouville integrable system. Thus, the Liouville-Arnold theorem implies that the phase space
of that particular billiard is foliated into invariant Liouville tori [Arn1989].

Fomenko and his school developed a beautiful theory for topological description and clas-
sification of integrable systems using what are now known as Fomenko graphs and Fomenko-
Zieschang invariants, see [Fom1987, FZ1991] and, in particular, the book [BF2004], with the
fundamentals of that theory, including a large list of well-known integrable systems, such as
the integrable cases of rigid body motion and geodesic flows on surfaces.

The use of topological tools in the study of integrable billiards was initiated by the authors
in [DR2009], see also [DR2010,DR2011]. Further details and applications to other integrable
systems can be found in the literature related to billiards [Fok2014,Rad2015,DR2017,VK2018,
FV2019b, FV2019a, PRK2021, DGR2022b, DGR2022a, BF2024]. For the applications in the
broader theory of Hamiltonian systems with two degrees of freedom see [BMF1990,RRK2008,
BBM2010].

An important milestone of this theory is the so-called Fomenko conjecture, emphasizing a
surprising universality of billiard dynamics. This conjecture is about realization of topology of
Liouville foliations of smooth and real-analytic integrable Hamiltonian systems by integrable
billiards, see e.g. [FKK2020] and [FV2023] and references therein.

In this paper, we introduce a general concept of magic billiards, where after hitting the
boundary the particle is magically transported to another point of the boundary and continues
motion from there. A formal definition of such class of systems is given in Section 2. Magic
billiards can be seen as an umbrella, unifying several well-known generalisations of mathematical
billiards (Example 2.2), see e.g. Examples 2.3 and 2.4.

In Section 3, we focus to magic billiards within an ellipse, and among them only to those
ones where the equations of motion in elliptic coordinates remain the same as for the standard
billiard, which will mean that the obtained system will be integrable. We provide conditions
for periodicity of such systems and give topological description using Fomenko graphs. We note
that one of the cases we consider, so called billiards with slipping was recently introduced and
studied by Fomenko and his school [FVZ2021,FV2021,VZ2022,Fom2023,Zav2023]. In Section
4, we consider magic billiard within elliptic annulus. The last Section 5 contains discussion.

2 Definition of magic billiards

In this section, we will introduce a new class of dynamics, where a particle moves along straight
segments by constant speed within a given domain in the plane, and when it reaches its bound-
ary, it is transported to another point of the domain boundary from where it continues the
motion within the domain.

More formally, we will introduce that dynamics as follows.
Let D be a given domain in the plane, which is bounded by a smooth closed curve. Suppose

that ϕ is a continuous bijective mapping of the boundary ∂D onto itself. Now, consider the
circle bundle S1(∂D) with the base ∂D, such that the fiber over any point p ∈ ∂D consists
of the unit vectors in the tangent space to the plane at p. Let ϕ∗ be a continuous bijective
mapping of S1(∂D) onto itself, satisfying the following:

• π ◦ ϕ∗ = ϕ ◦ π, where π : S1(∂D) → ∂D is the projection to the base points;

• ϕ∗ maps tangent vectors to the boundary ∂D to tangent vectors to that boundary curve;
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• vectors pointing outwards D are mapped to vectors pointing inwards D.

Definition 2.1. A magic billiard (D,ϕ, ϕ∗) is a dynamical system where a particle moves with
a unit speed along straight lines in the interior of D, and when it hits the boundary at a point
A with velocity ~v, it will bounce off at point ϕ(A) with velocity ϕ∗(~v).

Example 2.2. Notice that the standard billiard in D belongs to the class of just defined magic
billiards. There, mapping ϕ is the identity and ϕ∗ is the billiard reflection, i.e. reflection with
respect to the direction of the tangent line to the boundary at each point.

Example 2.3. Similarly, projective, Finsler and Minkowski billiards [Tab1997,GT2002,Rad2003,
KT2009,DR2012,DR2013,DR2017,ADR2019], see also [GM2024], are classes of magic billiards
with ϕ being the identity map.

Example 2.4. Another class of magic billiards are billiards with slipping [FVZ2021] (see also
[DGK2024]). Namely, it that case, ϕ is an isometry of the boundary ∂D, while ϕ∗ is defined
as follows.

First, choose a direction of the boundary ∂D and note that the isometry ϕ either preserves
or reverses it. If the direction is preserved, then we set that ϕ∗ maps the vectors tangent to ∂D
and pointing in the direction of ∂D to the tangent vectors also pointing in the direction of the
boundary. If the direction if reversed, then such vectors are mapped to the vectors pointing in
the opposite direction.

Now, suppose that ~v belongs to the fiber over point p ∈ ∂D of the circle bundle S1(∂D).
Denote by ~t one of the two unit tangent vectors to ∂D at p. Then ϕ∗(~v) is the unique vector
satisfying the following equality of oriented angles ∠(~t, ~v) = 2π − ∠(ϕ∗(~t), ϕ∗(~v)).

3 Magic billiards within an ellipse

Before starting the analysis of novel examples of magic elliptical billiards, we will review the
standard billiard within an ellipse.

Suppose that the ellipse is given by:

E :
x2

a
+

y2

b
= 1, a > b > 0. (3.1)

Following classical ideas of Jacobi, one can introduce the elliptic coordinates (λ1, λ2), which
are, for each given point in the plane, the parameters of an ellipse and a hyperbola from the
confocal family:

Cλ :
x2

a− λ
+

y2

b− λ
= 1, (3.2)

which intersect at that point. Note that each billiard trajectory within E has a unique caustic
Cα, which is touching each segment of the trajectory. The differential equation of the billiard
motion is separated in elliptic coordinates:

dλ1
√

(a− λ1)(b− λ1)(α− λ1)
+

dλ2
√

(a− λ2)(b− λ2)(α− λ2)
= 0. (3.3)

We are interested in magic billiards which keep those nice geometric and analytic properties
of standard elliptic billiards, so we will focus to the mappings ϕ and ϕ∗ which preserve the
equation (3.3).

In particular, we note that the elliptic coordinates remain unchanged for ϕ being one of the
following:
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• the reflection with respect to one of the axes of the billiard boundary E ; or

• the half-turn around the center of E .

Notice that such ϕ is defined as an isometry on the whole plane, not only on the boundary
of the billiard table. Thus, the differential map dϕ will preserve the circle bundle S1(∂D): in
fact it maps each fiber of S1(∂D) isometrically to another fiber. Moreover, because the elliptic
coordinates are invariant with respect to reflections with respect to the axes, the equation (3.3)
will also be invariant if ϕ∗ is the composition of the billiard reflection at the point of impact
and the differential map dϕ. Thus, for such ϕ and ϕ∗, the dynamics of the magic billiard
(E , ϕ, ϕ∗) in elliptic coordinates will be identical to the usual billiard motion. In particular,
each trajectory of such magic billiards will have a unique caustic from the family of conics
which are confocal with the boundary E .

Remark 3.1. Note that for such ϕ, the configuration space can be defined as D/ ∼, where D
is the billiard table, and x ∼ ϕ(x), for x ∈ E = ∂D. The phase space is defined, analogously,
by identifying the velocity vectors mapped into each other by ϕ∗.

Remark 3.2. Since ϕ and ϕ∗ are involutions, one can see that every second segment of a tra-
jectory of the corresponding magic billiard coincides with every second segment of the standard
billiard, as illustrated in Figure 1.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 1: A standard billiard trajectory (upper left) and three trajectories of the magic billiard
with the same initial segment. Upper right: flipping over the long axis; lower left: flipping over
the short axis; lower right: half-turn around the center. In each case, the consecutive points of
impact with the boundary are numerated.

Remark 3.3. As a consequence of Remark 3.2, we note that a magic billiard trajectory in
those cases is periodic if and only if the corresponding standard billiard trajectory is periodic.

4



Moreover, the n-periodicity conditions for even n will be the same as for the standard elliptical
billiard. For odd periods, the conditions will be different, and will be distinct for each case that
we consider.

Remark 3.4. Note that the construction of the magic billiard trajectories reminds of the con-
struction of the standard billiard trajectories within a half-ellipse or a quarter-ellipse. Namely,
in all of those cases any trajectory in part coincides with the trajectory of elliptic billiard
with the same initial conditions, while in part is symmetric to that trajectory, as illustrated
in Figures 1 and 2. Note that the trajectories of each magic billiard that we consider and the
standard billiards within ellipse, half-ellipse, and quarter-ellipse satisfy the equation (3.3), thus
they all look the same in elliptic coordinates.

Figure 2: Billiards within ellipse (upper left), half-ellipses (upper right and lower left), and
quarter-ellipse (lower right). All trajectories have the same initial conditions. Unfolding the
trajectories within the last three domains about the axes give the trajectory within the ellipse.

Remark 3.5. The billiards with flipping over one of the axes can be related to topological
billiards ∆β(2A

′

2) and ∆β(2A1) from [Fok2015], by reflecting half of the table relative to the
corresponding axis and then gluing the two halves of the disk along the isometry of the elliptic
boundary arcs.

In the following subsections, we will consider each of the three magic billiards separately. We
will derive periodicity conditions in three forms: algebro-geometric, analytic, and polynomial.
We will also present Fomenko graphs corresponding to the Liouville foliation of the phase space.

3.1 Elliptical billiard with flipping over long axis

In this system, ϕ is the reflection with respect to the longer axis. Examples of its trajectories
are depicted in Figure 3.
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A1

A2

A′

2

A3

A′
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Figure 3: Magic billiard with flipping over the long axis: each time when the particle hits the
boundary, it is reflected off the boundary and immediately magically flipped over the longer
axis.

Periodicity conditions for such trajectories can be obtained by applying the results from
[DR2019a]. In the following theorem, we represent such conditions in the algebro-geometric
form, from which the classical form of Cayley’s and in the polynomial form can be derived.

Theorem 3.6. In the billiard table bounded by the ellipse E given by (3.1), consider the magic
billiard with flipping over the long axis. Consider a trajectory of such billiard with the caustic Cβ
from the confocal family (3.2). Such a trajectory is n-periodic if and only if one of the following
conditions is satisfied:

• n is even and nQ0 ∼ nQ∞;

• n is odd, Cβ is hyperbola, and nQ0 ∼ nQb.

Here Q0, Qb, Q∞ denote the points with coordinates (0,
√
abβ), (b, 0), (∞,∞) on the elliptic

curve:
y2 = (a− x)(b− x)(β − x). (3.4)

Proof. Integrating (3.3) along a trajectory of the magic billiard, we get that the n-periodicity
condition will be equivalent to the following divisor condition:

n(Q0 −Qc1) +m(Qc2 −Qa) ∼ 0 (3.5)

on the elliptic curve (3.4). Here, we have {c1, c2} = {β, b} and c1 < c2, while Qβ, Qa, denote
the points of the curve with coordinates (β, 0), (a, 0) respectively. Note that, on the trajectory,
the elliptic coordinates λ1 and λ2 belong to the intervals [0, c1] and [c2, a] respectively. Natural
numbers n and m represent the numbers of times each of them traces back and forth its
respective interval along the closed trajectory.

Note that the short axis of the ellipse is the degenerate conic Ca of the confocal family. Since
that axis must be crossed even number of times along a closed trajectory, we have that m is
even, thus the periodicity condition (3.5) reduces to n(Q0 −Qc1) ∼ 0.

On the other hand, the sum of the number of the flippings over the long axis and the number
of times when the billiard particle actually crossed the long axis must also be even. That sum
equals n + m if Cβ is an ellipse, and 2n if Cβ is hyperbola. From there, we conclude that all
closed trajectories with ellipse as caustic must have even period.

Now, the required conditions follow from the fact that c1 = b when Cβ is hyperbola and
2Qβ ∼ 2Q∞.
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Now, analogously as in [DR2019a], we can get the conditions of Cayley’s type.

Corollary 3.7. A trajectory of the billiard within E with flipping over the long axis is n-periodic
if and only if one of the following conditions is satisfied:

• n is even and
∣

∣

∣

∣

∣

∣

∣

∣

B3 B4 . . . Bn/2+1

B4 B5 . . . Bn/2+2

. . .
Bn/2+1 Bn/2+2 . . . Bn−1

∣

∣

∣

∣

∣

∣

∣

∣

= 0; (3.6)

• n is odd, the caustic is hyperbola, and

∣

∣

∣

∣

∣

∣

∣

∣

C2 C3 . . . C(n+1)/2

C3 C4 . . . C(n+1)/2+1

. . .
C(n+1)/2 C(n+1)/2+1 . . . Cn−1

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.7)

Here, we denoted:

√

(a− x)(b− x)(β − x) = B0 +B1x+B2x
2 + . . . ,

√

(a− x)(b− x)(β − x)

b− x
= C0 + C1x+ C2x

2 + . . . ,

the Taylor expansions around x = 0, and β is the parameter of the caustic from (3.2).

The periodicity conditions can be equivalently stated in the form of polynomial equations.
Again, for details on how to obtain those equations, refer to [DR2019a]. A more general theory
connecting polynomial Pell’s equations and integrable billiards in arbitrary dimension is given
in [DR2019b].

Corollary 3.8. The trajectories of the magic billiard with flipping over the long axis with
caustic Cβ are n-periodic if and only if there exists a pair of real polynomials pd1, qd2 of degrees
d1, d2 respectively, and satisfying the following:

(a) if n = 2m is even, then d1 = m, d2 = m− 2, and

p2m(s)− s

(

s− 1

a

)(

s− 1

b

)(

s− 1

β

)

q2m−2(s) = 1; (3.8)

(b) if n = 2m+ 1 is odd, then d1 = m, d2 = m− 1, and

(

s− 1

b

)

p2m(s)− s

(

s− 1

a

)(

s− 1

β

)

q2m−1(s) = −1.

We conclude this section by a topological description of the system.

Theorem 3.9. The Fomenko-Zieschang invariant of the magic billiard with flipping over the
long axis is shown in Figure 4.
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A B
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A

r = 1

ε = 1

r =
1

2

ε =
−1

r = 1

2

ε = −1

λ = 0 λ = b λ = a

n = −1

Figure 4: Theorem 3.9: Fomenko graph for the magic billiard with flipping over the long axis.

Proof. The billiard table consists of the boundary ellipse E and its interior. According to
Remark 3.1, the configuration space is obtained when the points of E which are symmetric
to each other with respect to the long axis are identified. Thus, the configuration space is
homeomorphic to a sphere, where the boundary of the billiard table is represented by an arc.

Any level set corresponding to the trajectories having a fixed ellipse as caustic consists of a
single Liouville torus, see Figure 5.

The level set corresponding to the trajectories having a fixed hyperbola as caustic consists
of two Liouville tori: one torus contains the trajectories where motion along each segment is
downwards (as shown in the lefthandside of Figure 3), and on the other torus the motion is
upwards.

The level set corresponding to the caustic E = C0 consists of the limit motion back and
forth along the boundary. This is a single closed trajectory, thus corresponding to the Fomenko
atom A.

The level set with the caustic Ca corresponds to the motion along the short axis of the ellipse
E . When the particle hits the boundary, it is magically flipped to the opposite point on the
axis. Thus, there are two closed trajectories there: the downwards one and the upwards one.
Each of those trajectories corresponds to one Fomenko atom of type A.

The level set Cb consists of the trajectories that contain the foci of the ellipse E . Exactly one
of those trajectories is closed, corresponding to horizontal motion along the long axis, i.e. the
level set is of complexity 1. All other trajectories alternately pass through the one and the
other focus, and on each such trajectory, because of the flipping along the long axis, the motion
is either upwards along each segment or downwards along each segment. Thus, there are two
separatrices on that level set.

According to the classification of Fomenko atoms from [BF2004], there are three types of
atoms of complexity 1: atom A consisting of a single closed orbit without separatrices, atom
A∗ which has one separatrix, and atom B with two separatrices. From there, the level set Cb
must be B, which is consistent with the number of connected components of regular level sets
close to Cb – that number is 2 for λ > b and 1 for λ < b. Thus, the rough Liouville equivalence
class of this billiard is represented by the graph in Figure 4.

In order to get the numerical invariants, notice that the Liouville torus corresponding to the
motion where an ellipse is a caustic is obtained by gluing four copies of the annulus between
the billiard boundary and the the caustic, as shown in Figure 5, while the two Liouville tori
on the level set corresponding to a hyperbola as caustic are obtained by gluing two pairs of
regions within the ellipse which is between the branches of hyperbola. Choosing the coordinate

8



Figure 5: The Liouville torus corresponding to an ellipse as caustic of magic billiard with
flipping over the long axis is obtained by gluing four annuli along congruent arcs of the same
color and texture.

systems on those tori as explained in [BF2004], we calculate the numerical marks which are
shown in Figure 4.

3.2 Elliptic billiard with flipping over short axis

In this case, with ϕ is the reflection with respect to the short axis. Examples of its trajectories
are depicted in Figure 6.

A1

A2 A′

2

A3A′

3

A4A′

4

A5 A′

5
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B1

B2 B′

2

B3 B′

3

B4B′

4

B5

Figure 6: Magic billiard with flipping over the short axis of the ellipse: each time when the
particle hits the boundary, it is reflected with respect to the boundary and immediately magi-
cally flipped over the short axis.

Now, we derive the algebro-geometric condition for periodicity of the such magic billiard.

Theorem 3.10. In the billiard table bounded by the ellipse E given by (3.1), consider the magic
billiard with flipping over the short axis. Consider a trajectory of such billiard with the caustic
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Cβ from the confocal family (3.2). Such a trajectory is n-periodic if and only if n is even and
nQ0 ∼ nQ∞.

Here Q0 and Q∞ are as in Theorem 3.6.

Proof. We will use notation as in Theorem 3.6 and its proof. In the same way as explained
there, we can derive the divisor condition (3.5).

In addition to that condition, we need the following:

• the number of times that the particle crossed the long axis must be even: that number
equals m if the caustic is ellipse, or n if it is hyperbola;

• the sum n+m must be even, since that is the sum of the number of the flippings over the
short axis and the number of times when the billiard particle actually crossed that axis.

In any case, we get that both m and n must be even, so the conditions for closure reduce to
n(Q0 −Qc1) ∼ 0, which is equivalent to the stated relation.

Remark 3.11. It is interesting to note that in this case there are no odd-periodic trajectories.
Notice that, as announced in Remark 3.3, the conditions for trajectories of even period are
the same as in the case of flipping over the long axis, see Theorem 3.6, and as in the case of
standard billiard, see [DR2019a, Theorem 2].

As a consequence, the analytic and polynomial conditions can be obtained as follows.

Corollary 3.12. In the billiard table bounded by the ellipse E given by (3.1), consider the magic
billiard with flipping over the short axis. Consider a trajectory of such billiard with the caustic
Cβ from the confocal family (3.2). Such a trajectory is n-periodic if and only if n is even and
the following equivalent conditions are true:

• relation (3.6) is satisfied;

• there are polynomials satisfying the polynomial equation (3.8).

We use Fomenko graph to give a topological description of the system.

Theorem 3.13. The Liouville equivalence class of the magic billiard with flipping over the long
axis is given by the Fomenko graph in Figure 7.

A A∗∗ A
r = 1

ε = 1

r = 0

ε = 1

n = −1

λ = 0 λ = b λ = a

Figure 7: Theorem 3.13: Fomenko graph for the magic billiard with flipping over the short axis.
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Proof. Similarly as in the proof of Theorem 3.9, the configuration space is homeomorphic to a
sphere, where the boundary of the billiard table is represented by an arc.

In the phase space, any level set corresponding to the trajectories having a fixed non-
degenerate conic as caustic consists of a single Liouville torus.

The level set corresponding to the caustic E = C0 corresponds to the Fomenko atom A,
similarly as in the proof of Theorem 3.9.

The level set with the caustic Ca corresponds to the motion back and forth along the short
axis of the ellipse E , thus it corresponds to the Fomenko atom of type A.

The level set with the caustic Cb consists of the trajectories that contain the foci of the
ellipse E . First, we will show that the level set is of complexity 2, i.e. that it contains exactly
two closed orbits. One such orbit corresponds to the motion from left to the right along the
long axis: when the particle hits the boundary, it is magically flipped to the other endpoint
of the diameter, from where it continues its motion to the right. The second closed trajectory
corresponds to the motion from right to the left along the long axis. For any other trajectory
on that level set, each segment will pass through the same focus, so there are two separatrices
on that level set.

The classification of Fomenko atoms of complexity 2 from [BF2004] determines that only
one of them, A∗∗, has two separatrices. We note that this is consistent with the numbers of
connected components of non-degenerate level sets which are close to Cb: only 1 for λ < b and
also 1 for λ > b.

3.3 Elliptic billiard with half-turn around the center

In this case, with ϕ is the half-turn about the center of the ellipse. Such billiards are a case of
the billiards with slipping, see [FVZ2021].

Examples of its trajectories are depicted in Figure 8.
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A2 A′

2

A3

A′

3

A4
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A5
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B3

B′

3

B4

B′

4

B5

Figure 8: Magic billiard with slipping by half-ellipse: each time when the particle hits the
boundary, it is reflected with respect to the boundary and immediately magically transported
to the diametrically opposite point.

As in the previous cases, we will first derive the divisor conditions for periodicity.

Theorem 3.14. In the billiard table bounded by the ellipse E given by (3.1), consider the magic
billiard with half-turn about the center. Consider a trajectory of such billiard with the caustic
Cβ from the confocal family (3.2). Such a trajectory is n-periodic if and only if nQ0 ∼ nQ∞.
Here Q0 and Q∞ are as in Theorem 3.6.
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Proof. We follow the notation of Theorem 3.6 and its proof, and, as there, we can derive the
divisor condition (3.5).

In addition to that condition, we need that the number of times the particle hit the boundary,
the number of times it crossed the long axis, and the number of times it crossed the short axis,
are all odd or all even. This is equivalent to m and n being both odd or both even.

Thus, the periodicity condition for even n is equivalent to n(Q0 − Qc1) ∼ 0, and for odd n
to n(Q0 −Qc1) + (Qc2 −Qa) ∼ 0. Using 2Q∞ ∼ 2Qa ∼ 2Qb ∼ 2Qβ and 3Q∞ ∼ Qa +Qb +Qβ,
we get that the periodicity condition for any n is nQ0 ∼ nQ∞.

From divisor conditions, one can derive the analytic conditions of Cayley’s type and the
polynomial conditions, similarly as in [DR2019a]. We present them in the following two corol-
laries.

Corollary 3.15. In the billiard table bounded by the ellipse E given by (3.1), consider the
magic billiard with the half-turn about the center. Consider a trajectory of such billiard with
the caustic Cβ from the confocal family (3.2). Such a trajectory is n-periodic if and only if:

• n is even and (3.6) is satisfied; or

• n is odd and
∣

∣

∣

∣

∣

∣

∣

∣

B2 B3 . . . B(n+1)/2

B3 B4 . . . B(n+1)/2+1

. . .
B(n+1)/2 B(n+1)/2+1 . . . Bn−1

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

The coefficients B2, B3, . . . are as in the statement of Corollary 3.7.

Corollary 3.16. The trajectories of the magic billiard with flipping over the long axis with
caustic Cβ are n-periodic if and only if there exists a pair of real polynomials pd1, qd2 of degrees
d1, d2 respectively, and satisfying the following:

(a) if n = 2m is even, then d1 = m, d2 = m− 2, and (3.8);

(b) if n = 2m+ 1 is odd, then d1 = m, d2 = m− 1, and

sp2m(s)−
(

s− 1

a

)(

s− 1

b

)(

s− 1

β

)

q2m−1(s) = 1.

Finally, we give the topological description of this system.

Theorem 3.17 ([FVZ2021]). The Liouville equivalence class of the magic billiard with flipping
through the center is given by the Fomenko graph in Figure 9.

Proof. According to Remark 3.1, we define the configuration space as the billiard table where
the points of E which are diametrically symmetric to each other are identified. Such configura-
tion space is homeomorphic to the projective plane.

In the phase space, any level set corresponding to a any given ellipse as caustic consists of
two Liouville tori: one torus contains the trajectories that are winding in the clockwise direction
about the caustic, the other torus contains the counterclockwise trajectories.

The level set corresponding to hyperbola as caustic also consists of two Liouville tori: one
torus where all segments of the trajectories point downwards, and the other where they point
upwards.
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Figure 9: Theorem 3.17: Fomenko graph for the magic billiard with slipping.

The level set corresponding to the caustic E = C0 corresponds to a pair of Fomenko atoms
A: each of them contains a single closed trajectory along the boundary ellipse, winding in one
of the two directions.

The level set with the caustic Ca corresponds to the motion the short axis of the ellipse E .
It consists of two closed trajectories – the upwards and the downwards one. Thus we have two
Fomenko atoms of type A there.

The level set with the caustic Cb consists of the trajectories that contain the foci of the
ellipse E . Two of those trajectories are closed: one corresponds to motion from left to the right
along the long axis, and the other one to the motion from right to the left, so Cb is of complexity
2.

For any other trajectory on that level set, each segment will pass through the same focus,
and each segment points in the same direction: upwards or downwards. Moreover, such a
trajectory is heteroclinic, i.e. it approaches one of the closed orbits as t → +∞ and the other
one as t → −∞. Namely, the trajectories containing the left focus will approach the closed
orbit where the motion is from right to the left along the axis in the forward direction and the
other closed orbit in the backward direction of time, and vice versa for the trajectories through
the right focus.

Thus, there are four separatrices on that level set, all consisting of heteroclinic trajectories.
Now, following the classification of Fomenko atoms from [BF2004], we find that the following

ones are of complexity 2 with four separatrices: C1, C2, D1, D2. The last two atoms have two
homoclinic and two heteroclinic separatrices, thus they do not correspond to this case. The
atom C1 also can be eliminated, since level sets close to that one consist of only one Liouville
torus. Since non-degenerate level sets close to Cb have two connected components for both cases
λ < b and λ > b, we conclude that it is represented by the Fomenko atom C2.

Remark 3.18. For a more detailed proof of Theorem 3.17, together with the calculation of
the numerical invariants, see [FVZ2021].

4 Magic billiards in elliptic annulus

In this section, we discuss magic billiards in the annulus between two confocal ellipses E1 and E2,
see Figure 10. In order to preserve integrability and caustics, we will assume that the mapping
ϕ is defined as follows:

• the restriction of ϕ to E1 is the reflection with respect to one of the axes or the central
symmetry;

13



E1

E2

Figure 10: The boundary of the billiard table consists of two confocal ellipses.

• the restriction to E2 is the identity.

The mapping ϕ∗ will be defined on the velocity vectors at the points of E1 in the same way as
explained in Section 3. On E2, mapping ϕ∗ is the ordinary billiard reflection.

Remark 4.1. If magic reflection is introduced on the inner boundary, then the dynamics does
not any more depend continuously on the initial conditions. Namely, consider motion parallel
to a tangent line to E2, close to the point of tangency. If the particle does not cross E2, the
motion is continued straight along that line. If the particle reaches E2, it will be, according to
the mapping ϕ magically transported to another point of E2 and continue motion from there.
Thus, the continuity close to tangency to E2 is lost.

Example 4.2. Two trajectories when ϕ on the outer boundary is flipping over the long axis
are shown in Figure 11.

A1 A2

A3

A′

3
A4

A5

A′

5

A6 A7

B1

B2

B3

B′

3

B4

B5

B′

5

B6

B7

Figure 11: Billiard between two ellipses with magic flipping over the long axis when the particle
hits the outer boundary. The dotted curves are caustics.

Theorem 4.3. The magic billiard in the annulus between two confocal ellipses with flipping
over the long axis on the outer boundary is roughly Liouville equivalent to the magic billiard
within an ellipse with flipping over the short axis.

Proof. In the phase space, any level set corresponding to the trajectories having a fixed non-
degenerate conic as caustic consists of a single Liouville torus.

The level set corresponding to the caustic E = C0 corresponds to the Fomenko atom A,
similarly as in the proof of Theorem 3.9.
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The level set with the caustic Ca corresponds to the motion along two segments of the short
axis which are within the annulus. Each time when the particle hits the outer boundary, it is
magically flipped to the other segment, thus this level set consists of a single closed trajectory,
so we have the Fomenko atom of type A there.

The level set with the caustic Cb consists of the trajectories that contain the foci of the
ellipse E . Two of those trajectories is closed: each trajectory corresponds to the motion along
one of the segments of the long axis which are within the annulus. For any other trajectory on
that level set, the extensions of the segments will pass alternately through the two foci. In one
class of those trajectories, the segments that point from the outer boundary to the inner one
contain the left focus, and their limit as time goes to +∞ is the left segment on the long axis,
while the time limit to −∞ is the right segment. In the other class, everything is opposite.
Thus, there are two separatrices on that level set, so it is represented by the Fomenko atom
A∗∗.

Example 4.4. Two trajectories when ϕ on the outer boundary is flipping over the short axis
are shown in Figure 12.

A1 A2

A3

A′

3A4

A5 A′

5

A6 A7

B1

B2

B3B′

3

B4

B5B′

5

B6

B7

Figure 12: Billiard between two ellipses with magic flipping over the short axis when the particle
hits the outer boundary. The dotted curves are caustics.

Theorem 4.5. The magic billiard in the annulus between two confocal ellipses with flipping
over the short axis on the outer boundary is roughly Liouville equivalent to the magic billiard
within an ellipse with flipping over the long axis.

Proof. In the phase space, any level set corresponding to the trajectories having an ellipse as
caustic consists of a single Liouville torus. On the other hand, if the caustic is hyperbola, there
are two tori: each corresponding to one connected component within the annulus between the
two branches of the hyperbola.

The level sets corresponding to the caustic E = C0 corresponds to the Fomenko atom A.
The level set with the caustic Ca corresponds to the motion along two segments of the short

axis which are within the annulus. Each segment is covered by one closed trajectory on that
level set, thus both of them corresponds to the Fomenko atom A.

The level set with the caustic Cb consists of the trajectories that contain the foci of the
ellipse E . One of those trajectories is closed and it is placed on the long axis, traversing the
two segments. Any other trajectory on that level set is placed on one side of the long axis, thus
there are two separatrices. We conclude that this level set corresponds to the the Fomenko
atom B.
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Figure 13: Billiard between two ellipses with slipping by half-ellipse along the outer boundary.
The dotted curves are caustics.

Example 4.6. Two trajectories when ϕ on the outer boundary is slipping by half-ellipse are
shown in Figure 13.

Theorem 4.7. The Liouville equivalence class of the magic billiard in an elliptic annulus with
slipping by half-ellipse along the outer boundary is given by the Fomenko graph in Figure 14.

AB

A

A

r = 0

ε = 1

r = 1

2
ε = 1

r =
1

2

ε =
1

n = 0

λ = 0 λ = b λ = a

Figure 14: Theorem 4.7: Fomenko graph for the magic billiard in the annulus with flipping
over the long axis.

Proof. Any level set corresponding to the trajectories having a fixed ellipse as caustic consists
of two Liouville tori: each torus contains the trajectories the winding in one direction around
the annulus. On the other hand, if the caustic is hyperbola, there is only one torus.

The level set corresponding to the caustic E = C0 contains only two closed trajectories: each
is winding in one direction along the boundary. Thus, we have two Fomenko atoms of type A

there.
The level set with the caustic Ca corresponds to the motion along two segments of the

short axis which are within the annulus. There is only one trajectory on that level set, so it
corresponds to the Fomenko atom A.

The level set with the caustic Cb consists of the trajectories that contain the foci of the
ellipse E . One of those trajectories is closed and it is placed on the long axis, traversing the two
segments. There are two separatrices on that level set: one separatrix contains the trajectories
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where the motion is above the long axis on the left and below the axis on the right as t → +∞,
and vice versa for t → −∞. The opposite holds for the other separatrix. We can conclude that
the corresponding Fomenko atom is B.

Remark 4.8. The example of billiard within elliptic annulus with slipping along the outer
ellipse was analyzed in [FVZ2021]. There, the configuration space was defined differently: by
gluing two identical annuli along inner and the outer boundaries, so the resulting Fomenko
graph there is different.

Remark 4.9. The billiards within an annulus with flipping over one of the axes on the outer
boundary correspond to the topological billiards ∆β(2B

′′

2 )xx and ∆β(2B1)yy from [Fok2015].

Remark 4.10. Various classes of glued sets and billiard systems on them were considered in
[Kud2015].

5 Conclusions and discussion

We note that the magic billiards, as introduced in Section 2 represents a very broad class, where
various subclasses may be of interest for exciting future research.

In particular, integrable cases for magic billiards within ellipse are not exhausted by the
list considered in this paper. It would be interesting to explore a more general class of magic
billiards (E , ϕ, ϕ∗), including those which preserve caustic. One natural generalization includes
studying domains with piece-wise smooth boundaries.

We note that billiard ordered games introduced in [DR2004] and studied further in [DGR2022a]
can also be generalised using magic reflections.
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