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Abstract
We show that the system of difference equations

xn+k =
xn+lyn – ef

xn+l + yn – e – f
, yn+k =

yn+lxn – ef
yn+l + xn – e – f

, n ∈ N0,

where k ∈N, l ∈ N0, l < k, e, f ∈ C, and xj , yj ∈C, j = 0, k – 1, is theoretically solvable and
present some cases of the system when the general solutions can be found in a
closed form.
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1 Introduction
Let N = {1, 2, . . .}, N0 = N∪{0}, Z be the set of integers, R be the set of real numbers, and C

be the set of complex numbers. Throughout the paper we also employ the notation j = r, s
instead of r ≤ j ≤ s in the case when r, s, j ∈N0 and r and s satisfy the condition r ≤ s.

The problem of solvability of difference equations is quite old. Book [15] contains the
majority of the solvability results up to 1800 (see also [11, 16]). Many results up to the
end of the nineteenth century can be found in [8, 20, 40]. In some later books such as
[10, 12, 21, 24] we can mostly find some old solvability methods and see how the theory
of difference equations continued to develop during the first half of the twentieth century.
Although some solvable nonlinear difference equations were known at the end of the eigh-
teenth century and in the beginning of the nineteenth century [15–19], there has not been
a considerable progress in the direction since that time.

It seems that the majority of solvable nonlinear difference equations are connected, in
this or that way, with the solvability of some linear ones (see, for instance, [2–4, 13, 16,
36, 42–44, 46–54] as well as some of the references quoted therein). The linear difference
equations, especially the ones with constant coefficients, are also useful in estimating so-
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lutions to some nonlinear difference equations (see, e.g., [5–7, 41]). Some of the solvable
equations stem from the methods in numerical mathematics [9, 49], whereas some are
connected with the trigonometric functions [8, 16, 18, 19, 37, 52]. The impossibility of
finding closed-form formulas for solutions to nonlinear difference equations motivates
some authors to find their invariants instead [26, 28, 29, 33, 38, 39, 45], from which some
information on the long-term behavior of their solutions can be obtained. However, gen-
erally speaking, unlike the linear difference equations, the majority of solvable nonlinear
difference equations are obtained and studied in some ad hoc ways without forming some
unifying theories.

On the other hand, because of this, it is always of some interest, not only to the experts in
the area of difference equations but also to a wide audience, to find a new class of solvable
equations in this or that way and present a method for finding its general solution.

Since the mid of the 1990s there have been some investigations of concrete nonlinear
systems of difference equations, some of which are symmetric or closely related to the
symmetric ones (see, for instance, [25, 27, 30–32, 34, 35, 38, 39] and the literature quoted
therein). The investigations have motivated us to investigate the problem of solvability of
such type of systems of difference equations (see, for example, [42–44, 46–48, 50, 51, 54]
and the related references therein).

The solvability of the difference equation

zn+k =
zn+lzn – ef

zn+l + zn – e – f
, n ∈N0, (1)

where k ∈ N, l ∈ N0, l < k, e, f ∈R (or C), and zj ∈ R (or C), j = 0, k – 1, was recently studied
in [53].

Our motivation for considering equation (1) stemmed, among other things, from some
investigations of the so-called hyperbolic-cotangent class of difference equations

zn =
zn–kzn–l + f
zn–k + zn–l

, n ∈ N0, (2)

where k, l ∈N, f ∈R (or C) and z–j ∈R (or C), j = 0, max{k, l} (see, for instance, [37, 52]).
Motivated by it, we started investigating solvability of some two-dimensional systems

of difference equations that are obtained from equation (2) in some natural ways (see [43,
44, 46–48, 53]).

Bearing in mind the above-mentioned studies of concrete nonlinear systems of differ-
ence equations, it is also a natural problem to investigate the solvability of the systems
obtained from equation (1). In [50] we dealt with the problem by studying a system of
nonlinear difference equations related to equation (1). There we presented several inter-
esting ideas connected with some classes of difference equations and systems of difference
equations and employed some of them in the study of the system.

All the above-mentioned motivates us to study solvability of the following symmetriza-
tion of equation (1):

xn+k =
xn+lyn – ef

xn+l + yn – e – f
, yn+k =

yn+lxn – ef
yn+l + xn – e – f

, n ∈N0, (3)

where k ∈N, l ∈N0, l < k, e, f ∈ C, and xj, yj ∈C, j = 0, k – 1.
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Our aim is to show that the system in (3) is theoretically solvable for any k ∈N and l ∈N0

satisfying the condition l < k. Beside this, we also present several cases of the system of
difference equations when the general solution can be found in a closed form, extending
and complementing some results in the literature (see, for instance, [50, 53]).

2 Solvability of system (3) in a theoretical sense
This section considers the solvability of system (3) in a theoretical sense. Namely, we find
a connection of the system with a homogeneous linear difference equation with constant
coefficients, as well as with a product-type difference equation with integer powers, which
both are theoretically solvable. Recall that the basic result on solvability of homogeneous
linear difference equations (see, e.g., [10, 16, 23]) says that these equations are solvable in
a closed form if we know the roots of the associated characteristic polynomials, which is,
as is well known, not always the case [1]. However, the form of the general solution of the
linear equation is known, so we can speak about its theoretical solvability.

Before we start with our analysis, we quote a useful auxiliary result, which can be found,
for example, in [43] (see also [54]).

Lemma 1 Let m ∈N, l ∈ Z, and (xn)n≥l–m be the solution to

xn = a1xn–1 + a2xn–2 + · · · + amxn–m (4)

for n ≥ l such that

xj–m = 0, j = l, l + m – 2, and xl–1 = 1,

where aj ∈C, j = 1, m, am �= 0.
Suppose that rk , k = 1, m, are the zeros of the polynomial

qm(r) = rm – a1rm–1 – a2rm–2 – · · · – am,

such that ri �= rj when i �= j.
Then

xn =
m∑

k=1

rn+m–l
k

q′
m(rk)

for n ≥ l – m.

Remark 1 Note that the Fibonacci sequence (see, e.g., [14, 22, 55]) is a solution of a special
case of equation (4) satisfying the above initial conditions. Recall that it satisfies the second
order linear difference equation

xn = xn–1 + xn–2, n ≥ 2, (5)

with the initial values

x0 = 0 and x1 = 1.
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Note that these initial conditions produce the same solution (xn)n∈N to equation (5) as the
initial conditions x1 = 1 and x2 = 1, that is, when the domain of indices is N.

Now we conduct an analysis of the solvability of system (3) in a theoretical way. We
would like to say that from now on we will ignore not well-defined solutions to the system.
The following result is the main one in this direction.

Theorem 1 Suppose k ∈ N, l ∈ N0, l < k, and e, f ∈ C. Then system (3) is theoretically
solvable.

Proof If e = f , then we have

xn+k – e =
(xn+l – e)(yn – e)

xn+l + yn – 2e
, (6)

yn+k – e =
(yn+l – e)(xn – e)

yn+l + xn – 2e
(7)

for n ∈N0.
Let

μn =
1

xn – e
, νn =

1
yn – e

(8)

for n ∈N0.
Then from (6), (7), and (8) it follows that

μn+k = μn+l + νn, νn+k = νn+l + μn (9)

for n ∈N0.
It is not difficult to see that the relations in (9) imply that μn and νn are two solutions to

the equation

ωn+2k – 2ωn+k+l + ωn+2l – ωn = 0 (10)

for n ∈N0.
According to the basic results in the theory of linear difference equations with constant

coefficients, we get the theoretical solvability of equation (10) and consequently of (9),
which together with (8) implies the theoretical solvability of system (3) in this case.

If e �= f , then we have

xn+k – f =
(xn+l – f )(yn – f )

xn+l + yn – e – f
,

xn+k – e =
(xn+l – e)(yn – e)

xn+l + yn – e – f
,

yn+k – f =
(yn+l – f )(xn – f )

yn+l + xn – e – f
,

yn+k – e =
(yn+l – e)(xn – e)

yn+l + xn – e – f
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for n ∈N0 and consequently

xn+k – f
xn+k – e

=
(xn+l – f )(yn – f )

(xn+l – e)(yn – e)

and

yn+k – f
yn+k – e

=
(yn+l – f )(xn – f )

(yn+l – e)(xn – e)

for n ∈N0.
Let

μn =
xn – f
xn – e

, νn =
yn – f
yn – e

(11)

for n ∈N0.
Then we have

μn+k = μn+lνn, νn+k = νn+lμn (12)

for n ∈N0.
Since

μn =
νn+k

νn+l
,

then from (12) we get

νn+2k = ν2
n+k+lν

–1
n+2lνn (13)

for n ∈N0.
Due to the symmetry of (12), we also have

μn+2k = μ2
n+k+lμ

–1
n+2lμn (14)

for n ∈N0.
Since the product-type difference equation

ωn+2k = ω2
n+k+lω

–1
n+2lωn, n ∈N0, (15)

is with integer exponents, it is theoretically solvable, from which together with the follow-
ing consequences of (11)

xn =
eμn – f
μn – 1

, yn =
eνn – f
νn – 1

, n ∈N0, (16)

the theoretical solvability of system (3) in this case follows. �
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3 Some special cases of system (3)
This section deals with the practical solvability of system (3). A natural problem is to find
special cases of system (3) for which it is possible to find some closed-form formulas for
their general solutions.

As we have already mentioned, such problems are frequently connected to the roots of
some specific polynomials, which is also the case with system (3). Therefore, to do this,
note that the characteristic polynomial associated with (10) is

q2k(r) = r2k – 2rk+l + r2l – 1.

We have

q2k(r) = (rk – rl)2 – 1 = (rk – rl – 1)(rk – rl + 1). (17)

Hence, equation (10) is solvable in a closed form if we can find the roots of the polynomials

rk – rl – 1 and rk – rl + 1.

This can be certainly done when k ≤ 4.
Thus, if we assume that k ≤ 4, due to the assumption 0 ≤ l < k, we see that one of the

cases must hold: 1◦ k = 1, l = 0; 2◦ k = 2, l = 0; 3◦ k = 2, l = 1; 4◦ k = 3; l = 0; 5◦ k = 3; l = 1;
6◦ k = 3; l = 2; 7◦ k = 4; l = 0; 8◦ k = 4; l = 1; 9◦ k = 4; l = 2; 10◦ k = 4; l = 3.

We will consider some of the cases in detail and leave the other ones to the reader as
some exercises.

The case k = 1 and l = 0 is known [50], because of which we give only a sketch of the
proof of the following theorem on solvability.

Theorem 2 Suppose k = 1, l = 0, e, f ∈C. Then the following statements hold:
(a) If e = f , then the general solution to system (3) is

xn = e +
(x0 – e)(y0 – e)

2n–1(x0 + y0 – 2e)
, (18)

yn = e +
(x0 – e)(y0 – e)

2n–1(x0 + y0 – 2e)
(19)

for n ∈N.
(b) If e �= f , then the general solution to system (3) is

xn =
e
(

(x0–f )(y0–f )
(x0–e)(y0–e)

)2n–1

– f
(

(x0–f )(y0–f )
(x0–e)(y0–e)

)2n–1

– 1
, (20)

yn =
e
(

(x0–f )(y0–f )
(x0–e)(y0–e)

)2n–1

– f
(

(x0–f )(y0–f )
(x0–e)(y0–e)

)2n–1

– 1
(21)

for n ∈N.
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Proof Note that xn = yn, n ∈N, which implies μn = νn, n ∈N. The relations in (9) become

μn+1 = μn + νn, νn+1 = νn + μn

for n ∈N0, so that μn+1 = 2μn, n ∈N, and consequently

μn = 2n–1μ1 = νn

for n ∈N. From this and by employing (8) we get formulas (18) and (19) when e = f .
If e �= f , then (14) implies

μn+2 = μ2
n+1, n ∈N0,

so that μn = μ2n–1
1 = νn, n ∈N, from which together with (16) formulas (20) and (21) follow.

�

Corollary 1 Suppose e, f ∈C, l = 0, k ∈N\{1}. Then system (3) is solvable in a closed form.

Proof System (3) in this case becomes

xn+k =
xnyn – ef

xn + yn – e – f
, yn+k =

ynxn – ef
yn + xn – e – f

(22)

for n ∈N0.
Now note that (22) is a system with interlacing indices (for the terminology see, for

instance, [51]).
Let

x(j)
m = xmk+j, y(j)

m = ymk+j

for m ∈N0 and j = 0, k – 1.
Then (x(j)

m , y(j)
m )m∈N0 , j = 0, k – 1, are k solutions to the system

xm+1 =
xmym – ef

xm + ym – e – f
, ym+1 =

ymxm – ef
ym + xm – e – f

, m ∈ N0,

which, in fact, is system (3) in the case k = 1 and l = 0.
Employing Theorem 2, we have that in the case e = f the general solution to the system

is given by

x(j)
m =e +

(x(j)
0 – e)(y(j)

0 – e)

2m–1(x(j)
0 + y(j)

0 – 2e)
,

y(j)
m =e +

(x(j)
0 – e)(y(j)

0 – e)

2m–1(x(j)
0 + y(j)

0 – 2e)
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for m ∈ N, j = 0, k – 1, whereas in the case e �= f the general solution to the system is given
by

x(j)
m =

e
(

(x(j)
0 –f )(y(j)

0 –f )

(x(j)
0 –e)(y(j)

0 –e)

)2m–1

– f
(

(x(j)
0 –f )(y(j)

0 –f )

(x(j)
0 –e)(y(j)

0 –e)

)2m–1

– 1

,

y(j)
m =

e
(

(x(j)
0 –f )(y(j)

0 –f )

(x(j)
0 –e)(y(j)

0 –e)

)2m–1

– f
(

(x(j)
0 –f )(y(j)

0 –f )

(x(j)
0 –e)(y(j)

0 –e)

)2m–1

– 1

for m ∈N, j = 0, k – 1, that is, in the case e = f we have

xmk+j =e +
(xj – e)(yj – e)

2m–1(xj + yj – 2e)
,

ymk+j =e +
(xj – e)(yj – e)

2m–1(xj + yj – 2e)

for m ∈ N, j = 0, k – 1, whereas in the case e �= f the general solution to the system is given
by

xmk+j =
e
(

(xj–f )(yj–f )
(xj–e)(yj–e)

)2m–1

– f
(

(xj–f )(yj–f )
(xj–e)(yj–e)

)2m–1

– 1
,

ymk+j =
e
(

(xj–f )(yj–f )
(xj–e)(yj–e)

)2m–1

– f
(

(xj–f )(yj–f )
(xj–e)(yj–e)

)2m–1

– 1
,

finishing the proof of the corollary. �

The case k = 2, l = 1 considers the following result. This is the main example in this
paper concerning the practical solvability of a special case of system (3). Namely, we prove
in detail that for system (3) in this case its general solution in a closed form in all possible
cases (the two cases e = f and e �= f are considered separately) can be found.

Theorem 3 Suppose k = 2, l = 1, e, f ∈C. Then system (3) is solvable in a closed form.

Proof Case e �= f . Relations (13) and (14) imply that (μn)n∈N0 and (νn)n∈N0 are two solutions
to the equation

ωn+4 = ω2
n+3ω

–1
n+2ωn (23)
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for n ∈N0 with the following initial values:

μ0, μ1, μ2 = μ1ν0, μ3 = μ1ν0ν1, (24)

ν0, ν1, ν2 = ν1μ0, ν3 = ν1μ0μ1, (25)

respectively.
Let

a1 := 2, b1 := –1, c1 := 0, d1 := 1. (26)

Then we have

ωn = ω
a1
n–1ω

b1
n–2ω

c1
n–3ω

d1
n–4 (27)

for n ≥ 4.
Using (23), where n is replaced by n – 5 in (27), we have

ωn =(ω2
n–2ω

–1
n–3ωn–5)a1ω

b1
n–2ω

c1
n–3ω

d1
n–4

=ω
2a1+b1
n–2 ω

–a1+c1
n–3 ω

d1
n–4ω

a1
n–5

=ω
a2
n–2ω

b2
n–3ω

c2
n–4ω

d2
n–5 (28)

for n ≥ 5, where

a2 = 2a1 + b1, b2 = –a1 + c1, c2 = d1, d2 = a1.

Assume that

ωn = ω
ak
n–kω

bk
n–k–1ω

ck
n–k–2ω

dk
n–k–3 (29)

for n ≥ k + 3 and

ak = 2ak–1 + bk–1, bk = –ak–1 + ck–1, ck = dk–1, dk = ak–1 (30)

for k ≥ 2.
Using (23), where the index n is replaced by n – k – 4, in (29), and the method of math-

ematical induction, it is not difficult to see that assumptions (29) and (30) are correct.
Take k = n – 3 in (29). Then (30) yields

ωn =ω
an–3
3 ω

bn–3
2 ω

cn–3
1 ω

dn–3
0

=ω
an–3
3 ω

an–2–2an–3
2 ω

an–5
1 ω

an–4
0 (31)

for n ≥ 6.
Using (30) we obtain

ak = 2ak–1 – ak–2 + ak–4 (32)
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for k ≥ 5, whereas the initial values are

a1 = 2, a2 = 3, a3 = 4, a4 = 6. (33)

The characteristic polynomial associated with (32) is

q4(λ) = λ4 – 2λ3 + λ2 – 1, (34)

and its roots are

λ1,2 =
1 ± √

5
2

and λ3,4 =
1 ± i

√
3

2
(35)

(they are the roots of the polynomials λ2 – λ – 1 and λ2 – λ + 1, respectively).
From (32) we have

ak–4 = ak – 2ak–1 + ak–2, (36)

from which together with (33) ak for k ≤ 0 are calculated. From (33), (36), and some simple
calculations, we get

a–3 = a–2 = a–1 = 0 and a0 = 1. (37)

From (37) we see that the solution of equation (32) satisfies the conditions of Lemma 1.
Hence,

an =
λn+3

1
q′

4(λ1)
+

λn+3
2

q′
4(λ2)

+
λn+3

3
q′

4(λ3)
+

λn+3
4

q′
4(λ4)

(38)

for n ∈ Z.
Further, we have

q′
4(λ) = 4λ3 – 6λ2 + 2λ = 2λ(λ – 1)(2λ – 1),

from which along with some simple calculations we obtain the relations

q′
4(λ1) =2

1 +
√

5
2

(√
5 – 1
2

)√
5 = 2

√
5, (39)

q′
4(λ2) =2

1 –
√

5
2

(√
5 + 1
2

)√
5 = –2

√
5, (40)

q′
4(λ3) =2

1 + i
√

3
2

( i
√

3 – 1
2

)
i
√

3 = –2i
√

3, (41)

q′
4(λ4) =2

1 – i
√

3
2

( i
√

3 + 1
2

)
i
√

3 = 2i
√

3. (42)

Employing (39)–(42) in (38) it follows that

an =
λn+3

1 – λn+3
2

2
√

5
–

λn+3
3 – λn+3

4

2i
√

3
(43)



Stević et al. Journal of Inequalities and Applications        (2024) 2024:108 Page 11 of 17

for n ∈ Z. From this it easily follows that formula (31) holds not only for n ≥ 6 but also for
n = 0, 5.

From (24) and (31) we have

μn =μ
an–3
3 μ

an–2–2an–3
2 μ

an–5
1 μ

an–4
0

=(μ1ν0ν1)an–3 (μ1ν0)an–2–2an–3μ
an–5
1 μ

an–4
0

=μ
an–4
0 μ

an–2–an–3+an–5
1 ν

an–2–an–3
0 ν

an–3
1

=μ
an–4
0 μ

an–1–an–2
1 ν

an–2–an–3
0 ν

an–3
1 (44)

for n ∈N0, whereas from (25) and (31) and because of the symmetry of the system we have

νn = μ
an–2–an–3
0 μ

an–3
1 ν

an–4
0 ν

an–1–an–2
1 (45)

for n ∈N0.
We have

an – an–1 =
(λ1 – 1)λn+2

1 – (λ2 – 1)λn+2
2

2
√

5
–

(λ3 – 1)λn+2
3 – (λ4 – 1)λn+2

4

2i
√

3

=
–λ2λ

n+2
1 + λ1λ

n+2
2

2
√

5
+

λ4λ
n+2
3 – λ3λ

n+2
4

2i
√

3

=
λn+1

1 – λn+1
2

2
√

5
+

λn+1
3 – λn+1

4

2i
√

3
(46)

for n ∈ Z.
Using (43) and (46) in (44) and (45) we obtain

μn =μ

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

0 μ

λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3

1

× ν

λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

0 ν

λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3

1 , (47)

νn =ν

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

0 ν

λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3

1

× μ

λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

0 μ

λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3

1 (48)

for n ∈N0.
From (47) and (48) and (11) with n = 0, 1, it follows that

μn =
(x0 – f

x0 – e

) λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

(x1 – f
x1 – e

) λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3

×
(y0 – f

y0 – e

) λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

(y1 – f
y1 – e

) λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3 , (49)

νn =
(x0 – f

x0 – e

) λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

(x1 – f
x1 – e

) λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3
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×
(y0 – f

y0 – e

) λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

(y1 – f
y1 – e

) λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3 (50)

for n ∈N0.
Employing (49) and (50) in (16) we got the following closed-form formulas for the gen-

eral solutions to system (3) in this case:

xn =
e(

x0–f
x0–e )

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3 (

x1–f
x1–e )

λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3 (

y0–f
y0–e )

λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3 (

y1–f
y1–e )

λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3 – f

(
x0–f
x0–e )

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3 (

x1–f
x1–e )

λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3 (

y0–f
y0–e )

λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3 (

y1–f
y1–e )

λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3 – 1

,

yn =
e(

y0–f
y0–e )

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3 (

y1–f
y1–e )

λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3 (

x0–f
x0–e )

λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3 (

x1–f
x1–e )

λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3 – f

(
y0–f
y0–e )

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3 (

y1–f
y1–e )

λn
1 –λn

2
2
√

5
+

λn
3 –λn

4
2i

√
3 (

x0–f
x0–e )

λn–1
1 –λn–1

2
2
√

5
+

λn–1
3 –λn–1

4
2i

√
3 (

x1–f
x1–e )

λn
1 –λn

2
2
√

5
–

λn
3 –λn

4
2i

√
3 – 1

for n ∈N0.
Case e = f . From the proof of Theorem 1 we see that in this case system (9) becomes

μn+2 = μn+1 + νn, νn+2 = νn+1 + μn (51)

for n ∈N0.
Hence, the sequences (μn)n∈N0 and (νn)n∈N0 satisfy the following linear difference equa-

tion:

ωn+4 – 2ωn+3 + ωn+2 – ωn = 0 (52)

for n ∈N0.
The general solution to equation (52) is

ωn = c1λ
n
1 + c2λ

n
2 + c3λ

n
3 + c4λ

n
4 (53)

for n ∈N0, where cj, j = 1, 4, are some arbitrary constants, whereas λj, j = 1, 4, are given in
(35).

From (51) we have

μ2 = μ1 + ν0, μ3 = μ1 + ν1 + ν0, (54)

ν2 = ν1 + μ0, ν3 = μ1 + ν1 + μ0. (55)

From (53) and (54) a closed-form formula for the solution (μn)n∈N0 can be obtained,
whereas from (53) and (55) a closed-form formula for the solution (νn)n∈N0 can be ob-
tained.

The formulas can be obtained similar to the case e �= f . Namely, we can iterate the rela-
tion

ωn =2ωn–1 – ωn–2 + ωn–4

=a1ωn–1 + b1ωn–2 + c1ωn–3 + d1ωn–4
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and show that

ωn = akωn–k + bkωn–k–1 + ckωn–k–2 + dkωn–k–3 (56)

for n ≥ k +3, where the sequences (ak)k∈N, (bk)k∈N, (ck)k∈N, and (dk)k∈N satisfy the relations
in (26) and (30). Hence, the sequence (ak)k∈N is given by formula (43).

Taking k = n – 3, we get

ωn = an–3ω3 + (an–2 – 2an–3)ω2 + an–5ω1 + an–4ω0 (57)

for n ≥ 6.
From (54) and (57) we obtain

μn =an–3(μ1 + ν0 + ν1) + (an–2 – 2an–3)(μ1 + ν0) + an–5μ1 + an–4μ0

=an–4μ0 + (an–2 – an–3 + an–5)μ1 + (an–2 – an–3)ν0 + an–3ν1

=an–4μ0 + (an–1 – an–2)μ1 + (an–2 – an–3)ν0 + an–3ν1 (58)

for n ∈N0.
Due to the symmetry we have

νn = an–4ν0 + (an–1 – an–2)ν1 + (an–2 – an–3)μ0 + an–3μ1 (59)

for n ∈N0.
Using relation (8) with n = 0, 1 and formula (43) in (58), and finally relation (59), we

obtain

μn =
λn–1

1 –λn–1
2

2
√

5 – λn–1
3 –λn–1

4
2i

√
3

x0 – e
+

λn
1 –λn

2
2
√

5 + λn
3 –λn

4
2i

√
3

x1 – e

+
λn–1

1 –λn–1
2

2
√

5 + λn–1
3 –λn–1

4
2i

√
3

y0 – e
+

λn
1 –λn

2
2
√

5 – λn
3 –λn

4
2i

√
3

y1 – e
, (60)

νn =
λn–1

1 –λn–1
2

2
√

5 – λn–1
3 –λn–1

4
2i

√
3

y0 – e
+

λn
1 –λn

2
2
√

5 + λn
3 –λn

4
2i

√
3

y1 – e

+
λn–1

1 –λn–1
2

2
√

5 + λn–1
3 –λn–1

4
2i

√
3

x0 – e
+

λn
1 –λn

2
2
√

5 – λn
3 –λn

4
2i

√
3

x1 – e
(61)

for n ∈N0.
From (8) we have

xn =
eμn + 1

μn
, yn =

f νn + 1
νn

(62)

for n ∈N0.
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From the relations in (62) together with the formulas in (60) and (61) it follows that

xn =
e
( λn–1

1 –λn–1
2

2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

x0–e +
λn

1 –λn
2

2
√

5
+

λn
3 –λn

4
2i

√
3

x1–e +
λn–1

1 –λn–1
2

2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

y0–e +
λn

1 –λn
2

2
√

5
–

λn
3 –λn

4
2i

√
3

y1–e

)
+ 1

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

x0–e +
λn

1 –λn
2

2
√

5
+

λn
3 –λn

4
2i

√
3

x1–e +
λn–1

1 –λn–1
2

2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

y0–e +
λn

1 –λn
2

2
√

5
–

λn
3 –λn

4
2i

√
3

y1–e

,

yn =
e
( λn–1

1 –λn–1
2

2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

y0–e +
λn

1 –λn
2

2
√

5
+

λn
3 –λn

4
2i

√
3

y1–e +
λn–1

1 –λn–1
2

2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

x0–e +
λn

1 –λn
2

2
√

5
–

λn
3 –λn

4
2i

√
3

x1–e

)
+ 1

λn–1
1 –λn–1

2
2
√

5
–

λn–1
3 –λn–1

4
2i

√
3

y0–e +
λn

1 –λn
2

2
√

5
+

λn
3 –λn

4
2i

√
3

y1–e +
λn–1

1 –λn–1
2

2
√

5
+

λn–1
3 –λn–1

4
2i

√
3

x0–e +
λn

1 –λn
2

2
√

5
–

λn
3 –λn

4
2i

√
3

x1–e

for n ∈N0.
These formulas are closed-form formulas for the general solution to system (3) under

the condition e = f . �

Corollary 2 Assume e, f ∈ C, k = 2s, l = s for some s ∈ N. Then system (3) is solvable in a
closed form.

Proof Since k = 2s and l = s for an s ∈N, system (3) becomes

xn+2s =
xn+syn – ef

xn+s + yn – e – f
, yn+2s =

yn+sxn – ef
yn+s + xn – e – f

(63)

for n ∈N0.
Now note that system (63) is a system of difference equations with interlacing indices.
Let x(j)

m = xms+j, y(j)
m = yms+j for m ∈N0 and j = 0, s – 1.

Then (x(j)
m , y(j)

m )m∈N0 , j = 0, s – 1, are s solutions to the system

xm+2 =
xm+1ym – ef

xm+1 + ym – e – f
, ym+2 =

ym+1xm – ef
ym+1 + xm – e – f

(64)

for m ∈N0.
Now note that system (64) is nothing but system (3) in the case k = 2 and l = 1.
Employing Theorem 3, if e �= f , we have

x(j)
m =

e(
x(j)

0 –f

x(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

x(j)
1 –f

x(j)
1 –e

)

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

y(j)
0 –f

y(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

y(j)
1 –f

y(j)
1 –e

)

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –f

(
x(j)

0 –f

x(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

x(j)
1 –f

x(j)
1 –e

)

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

y(j)
0 –f

y(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

y(j)
1 –f

y(j)
1 –e

)

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –1

,

y(j)
m =

e(
y(j)
0 –f

y(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

y(j)
1 –f

y(j)
1 –e

)

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

x(j)
0 –f

x(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

x(j)
1 –f

x(j)
1 –e

)

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –f

(
y(j)
0 –f

y(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

y(j)
1 –f

y(j)
1 –e

)

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

x(j)
0 –f

x(j)
0 –e

)

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

x(j)
1 –f

x(j)
1 –e

)

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –1
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for m ∈N0 and j = 0, s – 1, whereas if e = f , we get

x(j)
m =

e
( λm–1

1 –λm–1
2

2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

x(j)
0 –e

+

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3

x(j)
1 –e

+

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3

y(j)
0 –e

+

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

y(j)
1 –e

)
+ 1

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

x(j)
0 –e

+

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3

x(j)
1 –e

+

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3

y(j)
0 –e

+

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

y(j)
1 –e

,

y(j)
m =

e
( λm–1

1 –λm–1
2

2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

y(j)
0 –e

+

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3

y(j)
1 –e

+

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3

x(j)
0 –e

+

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

x(j)
1 –e

)
+ 1

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

y(j)
0 –e

+

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3

y(j)
1 –e

+

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3

x(j)
0 –e

+

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

x(j)
1 –e

for m ∈N0 and j = 0, s – 1, that is, if e �= f , we have

xms+j =

e(
xj–f
xj–e )

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

xs+j–f
xs+j–e )

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

yj–f
yj–e )

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

ys+j–f
ys+j–e )

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –f

(
xj–f
xj–e )

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

xs+j–f
xs+j–e )

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

yj–f
yj–e )

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

ys+j–f
ys+j–e )

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –1

,

yms+j =

e(
yj–f
yj–e )

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

ys+j–f
ys+j–e )

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

xj–f
xj–e )

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

xs+j–f
xs+j–e )

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –f

(
yj–f
yj–e )

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3 (

ys+j–f
ys+j–e )

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3 (

xj–f
xj–e )

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3 (

xs+j–f
xs+j–e )

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3 –1

for m ∈N0 and j = 0, s – 1, whereas if e = f , we get

xms+j =
e
( λm–1

1 –λm–1
2

2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

xj–e +

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3
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λm–1
1 –λm–1

2
2
√
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4
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√
3
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1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

ys+j–e

)
+ 1

λm–1
1 –λm–1

2
2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

xj–e +

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3

xs+j–e +

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3

yj–e +

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

ys+j–e

,

yms+j =
e
( λm–1

1 –λm–1
2

2
√

5
–

λm–1
3 –λm–1

4
2i

√
3

yj–e +

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3
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1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
2i

√
3
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λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
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√
3
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)
+ 1
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1 –λm–1

2
2
√

5
–
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3 –λm–1

4
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√
3

yj–e +

λm
1 –λm

2
2
√

5
+

λm
3 –λm

4
2i

√
3

ys+j–e +

λm–1
1 –λm–1

2
2
√

5
+

λm–1
3 –λm–1

4
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√
3

xj–e +

λm
1 –λm

2
2
√

5
–

λm
3 –λm

4
2i

√
3

xs+j–e

for m ∈N0 and j = 0, s – 1. �

Remark 2 The other cases, that is, the cases 5◦, 6◦, 8◦, and 10◦, are dealt with in a simi-
lar fashion. The only difference is that there are more technical details than in the above
considered cases. We leave the details to the interested reader as some exercises.

Remark 3 Note that the above analyses and proofs show that the solvability of system (3)
is also closely connected to the solvability of linear difference equations, as it was the case
in many previous investigations in the area [2, 3, 16, 36, 37, 42–44, 46–54].
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50. Stević, S.: Application of equilibrium points in solving difference equations and a new class of solvable nonlinear

systems of difference equations. J. Nonlinear Convex Anal. 23(1), 1–17 (2022)
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