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A B S T R A C T

Metamaterials find applications across diverse domains such as electromagnetics, elasticity, and acoustics
by creating band gaps. Lattice-based metamaterials also exhibit band gaps, which have a great potential to
influence engineering design in vibration and noise reduction problems. The geometry of the repetitive unit
cell in the lattice plays a crucial role in diversifying the location and number of stop bands across the frequency
range. One of the key hurdles is devising unit cell architectures that can effectively suppress vibrations across
diverse frequency ranges. This work proposes an innovative two-dimensional hexagonal lattice with tailored
band gap characteristics through curved beam members and auxiliary cantilever beams at the nodes. We have
thoroughly explored the impact of various design parameters on dispersion characteristics, wave directionality
through iso-frequency contours of dispersion surfaces, and the transmission loss considering finite lattice. The
investigation demonstrates an improvement in band gap characteristics, indicating the generation of more
band gaps across the entire frequency range and the widening of the same. This study has the potential to
serve as a future benchmark in the development of lattice-based elastic/acoustic metamaterials, particularly
for addressing vibration reduction challenges at user-defined frequencies.
1. Introduction

Metamaterials have extensive engineering applications due to their
distinct mechanical attributes, which are not naturally available [1,2].
The applications of these materials span diverse fields such as struc-
tural, aerospace, automobile, civil industries, crystallography, and ma-
terial sciences [3–5]. Two-dimensionally architectured lattices are also
a kind of metamaterial that is formed by tessellating a periodic unit cell.
The unit cell’s geometry dictates the lattices’ material properties [6].
Researchers have exploited different unit cell geometry to develop
unique properties such as negative Poisson’s ratio, vibration attenua-
tion, shock resistance, noise mitigation, and energy absorption [7–11].
The advent of additive manufacturing has accelerated research on
these complex materials, opening the door to designing and manu-
facturing innovative materials based on specific requirements [12].
In recent years, researchers have actively explored the capabilities of
lattice-based metamaterials for addressing vibration attenuation and di-
rectional wave propagation challenges [13–15]. Numerous studies have
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proposed various lattice designs and investigated their properties in
terms of wave propagation and dispersion. Triangular and square pat-
terns in one-dimensional [16], and two-dimensional lattices [17], along
with hexagonal or re-entrant structures [18] and chiral lattices [19],
have been common designs. The unit cell’s topologies influence the
band structure, directional wave propagation, and wave speed. Besides
geometry, external fields such as thermal and magnetic forces and ex-
ternally applied loads causing structural deformation can also regulate
the dispersion pattern. The literature reports instability-driven manipu-
lation of wave propagation behavior [20,21]. Modifying the unit cell’s
architecture can result in diverse wave propagation behaviors, allowing
for the tuning of wave filters. This outcome has influenced researchers
in acoustics and structural engineering.

Different research groups have conducted detailed investigations
into the propagation of plane waves and directional behavior within
hexagonal and re-entrant beam-based lattices [18,19,22]. Apart from
the classic geometry for the lattices, researchers have explored new
vailable online 6 July 2024
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Fig. 1. (a) Hybrid hexagonal lattice and its corresponding unit cell and (b) geometric details of the unit cell: the direct lattice vectors (𝐞1 and 𝐞2), cell angle 𝜃, curvature angle

. inclination angle of the added beam members 𝜙, length of the main constituent beam 𝐿, and length of the extra added beams (vertical beam 𝐿𝑣, slant beam 𝐿𝑠).
topologies to obtain desired band gap properties [17,23–25]. Mukher-
jee et al. [26] have proposed a combination of conventional and
auxetic cores to widen the band gaps. Furthermore, scholars are in-
terested in developing lattice-based metamaterials that can provide
low-frequency vibration reduction [27]. To achieve that both local
resonance and Bragg-type gaps or their combination are explored over
the period [28–30]. Existing literature demonstrates the manipulation
of band gaps by altering the lattice’s unit cell through changes in the
geometry of constituent beam-like members [31]. The researchers have
explored both forward and topology optimization methods to achieve
this objective [32–36]. Additionally, fractal-inspired [37,38] and bio-
inspired [39] lattice structures are also investigated to understand
wave propagation behavior in sub-wavelength frequency ranges. These
studies delved into the impact of various geometric parameters on band
structures, phase and group velocities, and directional properties, em-
ploying Bloch’s theory. Researchers consider the irreducible Brillouin
zone, obtained by constructing the reciprocal lattice and considering
the symmetry of the unit cell of the lattice to obtain the dispersion
behavior. Choosing an irreducible Brillouin zone (IBZ) reduces the
computational cost for the periodic analysis.

Most works are based on the lattice with straight constituent struc-
tural members for the unit cell. Although undulated constituent ele-
ments are explored to control the waves in the low and high-frequency
regions [40], several types of research can be found, which consist
of unit cells with zig-zag elements [41,42] and curved structural el-
ements to manipulate the static, dispersion behavior and directional
wave propagation for the lattice [43–45]. There are works on wave
propagation for triangular chiral lattices with zig-zag beams [46], hy-
brid infrastructures with mass inclusion [47], structures with variable
cross sections [48], and reentrant-chiral lattices with and without mass
inclusion to enhance the wave propagation characteristics [49–51]. Re-
cently, Mukherjee et al. [52] have proposed a modified hexagonal and
re-entrant hexagonal lattice considering the combination of straight and
curved beams for the unit cell. It influenced the band gap characteris-
tics, obtaining more stop bands in both low and high-frequency regions
and widening it. Slesarenko [53] also have utilized curved elements
2

considering Bezier splines to obtain diverse band gap structures. Our
previous work [52] showed promising wave propagation characteristics
compared to the regular hexagonal lattice by modifying the topology,
introducing a combination of curved and straight beam elements in the
unit cell. The curved elements result in local reflection and interference
with the propagating wave, followed by the formation of new stop
bands, thus changing the lattice’s wave propagation behavior. Karli-
cic et al. [54] have explained the effect of added inertia on the regular
hexagonal lattice to alter the dispersion behavior. Liu et al. [55] have
introduced a square lattice with resonating beams to alter the band gap
characteristics, obtaining extra stop bands in the low-frequency region.
However, the results are insignificant regarding the number and width
of the stop bands.

Following the previous works, we want to conceive lattices that
could further control and manipulate wave propagation. The moti-
vation of the work is how the wave propagation behavior can be
influenced by keeping the same lattice base and the total area utilized
by the corresponding conventional design. In this work, we propose a
modified geometry consisting of a combination of curved and straight
beams in the unit cell along with auxiliary straight cantilever beams
at the nodes of the unit cell to obtain enhanced band gap behavior.
The curved beams will act as a local scatterer apart from the scattering
of the joints. To visualize it, we can think of a curved beam as an
assembly of a straight beam, and the junctions will act as a scatterer.
In contrast, extra nodal cantilevers further increase the amount of scat-
tering. The scattered wave interferes with the propagating wave, and
the destructive interference forms band gaps for a certain frequency.
Due to the hexagonal base geometry, the reciprocal lattice is also the
same as the conventional hexagonal lattice, and the IBZ is formulated
according to the symmetry of the unit cell of the direct lattice. We have
implemented finite element-based modeling considering straight Timo-
shenko beam elements to discretize the unit cell. The effect of different
geometric parameters of the unit cell is explored. We have verified the
occurrence of the band gap by comparing the band gap characteris-
tics and transmissibility considering the commercial software COMSOL
Multiphysics2. Today’s additive manufacturing technologies allow us to

2 Comsol Multiphysics®, https://www.comsol.com

https://www.comsol.com
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Fig. 2. (a) Finite element discretization of a unit cell. The required number of straight Timoshenko beam elements approximates the beams. 𝑞1, 𝑞2, 𝑞3, and 𝑞4 denote the boundary
degrees of freedom and 𝑞𝑖 denotes the internal degrees of freedom, and (b) a generic unit cell for a hybrid curved hexagonal lattice with shared degrees of freedom and with
irect lattice vectors.
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esign lattices with various geometries, making lattices with complex
nd novel geometry to utilize in different engineering applications. The
ew hybrid lattice geometry gives insight into potential applications in
echanical filters, sound isolations, tunable acoustics, energy absorp-

ion, and control and manipulation of waves. The primary advantage
ies in generating new lower and higher frequency band gaps by tuning
he angles of curved beam elements and strategically placing additional
eams while preserving the main topological features of the lattice.

. Wave propagation in two-dimensional hybrid lattice

.1. Geometry of the lattice and the unit cell

We propose a geometry that combines straight and curved beams
nd additional cantilever beams at the joints of the unit cell and call
his lattice a hybrid lattice. The details of the new lattice geometry are
hown in Fig. 1. The auxiliary short beams are inserted at the joints of
he unit cell in a cantilever fashion. Introducing extra beams into the
nit cell introduces two additional parameters capable of influencing
he wave propagation behavior of the lattice: the length of the added
eams and the inclination angle 𝜙. Throughout this current study, the

cell angle 𝜃 is set to 30°. The primary motivation is to investigate the
impact of the extra beam and the combined effects of curved and extra
beams. The lattice points of the conventional hexagonal lattice and the
present lattice coincide, and the direct lattice vectors 𝐞1 and 𝐞2 are
also the same for both cases. In this analysis, we consider 𝜓 , 𝜙, 𝐿𝑠,
and 𝐿𝑣 as the influencing parameters. Wave propagation characteristics
are obtained by applying periodic boundary conditions to the unit cell
through the Bloch theorem. Appendix A provides further details on the
direct and reciprocal lattice vectors, while Appendix B offers a concise
explanation of the Bloch theorem.

2.2. Timoshenko beam equations

We model the constituent beam members as assemblies of straight
Timoshenko beams, incorporating the following material characteris-
tics: 𝜌 for density, 𝑡 for beam thickness, 𝐸 for modulus of elasticity, 𝐺 =
𝐸∕(2(1 + 𝜈)) for shear modulus, and 𝜈 for Poisson’s ratio. Additionally,
we adopt the shear correction factor 𝑘𝑠 = 10(1 + 𝜈)∕(12 + 11𝜈). The
well-known governing equations for Timoshenko beams can be found
3

in the literature [56]. However, we reiterate the derivation procedure
based on Hamilton’s principle for simplicity. Consequently, we define
the variations of kinetic energy 𝛿𝐾 and potential energy 𝛿𝑈 .

𝛿𝐾 = ∫

𝐿

0
[𝜌𝐴�̇�𝛿�̇� + 𝜌𝐼�̇�𝛿�̇� + 𝜌𝐴�̇�𝛿�̇�]d𝑥, (1)

𝑈 = ∫

𝐿

0

[

𝐸𝐴 𝜕𝑢
𝜕𝑥
𝛿 𝜕𝑢
𝜕𝑥

+ 𝐸𝐼
𝜕𝜑
𝜕𝑥
𝛿
𝜕𝜑
𝜕𝑥

+ 𝐺𝐴𝑘𝑠
(

𝜑 − 𝜕𝑤
𝜕𝑥

)

𝛿
(

𝜑 − 𝜕𝑤
𝜕𝑥

)

]

d𝑥,

(2)

here 𝛿 denotes the variation operator and 𝑤(𝑥, 𝑡), 𝑢(𝑥, 𝑡), and 𝜑(𝑥, 𝑡)
epresent the transverse displacement of the centroid, axial displace-
ent of the centroid, and cross-sectional rotation, respectively. We

dopt that ̇(⋅) ≡ 𝜕(⋅)∕𝜕𝑡.
Using Eq. (1) and Eq. (2) and Hamilton’s principle gives

∫

𝑡2

𝑡1
(𝛿𝐾 − 𝛿𝑈 )𝑑𝑡 = 0. (3)

ollowing the standard procedure, one can derive the governing equa-
ions for the longitudinal and transverse vibrations of the Timoshenko
eam as:

𝐴�̈� − 𝐸𝐴 𝜕
2𝑢
𝜕𝑥2

= 𝑝(𝑥, 𝑡), (4)

𝜌𝐴�̈� + 𝐺𝐴𝑘𝑠

(

𝜕𝜑
𝜕𝑥

− 𝜕2𝑤
𝜕𝑥2

)

= 𝑞(𝑥, 𝑡), (5)

𝐸𝐼
𝜕2𝜑
𝜕𝑥2

− 𝐺𝐴𝑘𝑠
(

𝜑 − 𝜕𝑤
𝜕𝑥

)

− 𝜌𝐼�̈� = 0, (6)

where 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) represents the external axial and transverse
loads.

2.3. The finite element formulation of the unit cell

This section discusses implementing finite element analysis for the
unit cell to acquire its dispersion properties. The constituent beams
of the unit cell are discretized with straight Timoshenko beams. Each
element has two nodes and three degrees of freedom (longitudinal
displacement, transverse displacement, and rotation) associated with
each node.

Finite element development is adopted from [57], where displace-
ments 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) and rotation 𝜑(𝑥, 𝑡) are approximated as follows

𝑢(𝑥, 𝑡) =
6
∑

𝑁𝑢
𝑗 (𝑥)𝑞𝑗 (𝑡), 𝑤(𝑥, 𝑡) =

6
∑

𝑁𝑤
𝑗 (𝑥)𝑞𝑗 (𝑡), 𝜑(𝑥, 𝑡) =

6
∑

𝑁𝜑
𝑗 (𝑥)𝑞𝑗 (𝑡), (7)
𝑗=1 𝑗=1 𝑗=1
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Fig. 3. Frequency band structures for lattice with 𝜃 = 30°, 𝜓 = 0.06°, 𝜙 = 30° and length of the additional beam (a) 𝐿𝑟 = 𝐿∕5 (b) 𝐿𝑟 = 𝐿∕10, (c) 𝐿𝑟 = 𝐿∕20, and (d) conventional
hexagonal lattice with 𝜃 = 30° and 𝜓 = 0°. 𝜃, 𝜓 , 𝜙, and 𝐿𝑟 are the cell angle, curvature angle, angle of the additional slant beams, and length of the additional beams, respectively.
The results are obtained using Matlab.
with 𝑁𝑢
𝑗 (𝑥), 𝑁

𝑤
𝑗 (𝑥), and 𝑁𝜑

𝑗 (𝑥), (𝑗 = 1, 2,… , 6) denoting the shape
functions while the components of the nodal vector follow as 𝐪(𝑡)
= [𝑢1, 𝑤1, 𝜑1, 𝑢2, 𝑤2, 𝜑2]𝑇 . The shape functions are mentioned in
Appendix C. Considering the governing equations for a Timoshenko
beam Eq. (4)–Eq. (6), energy variation Eq. (1)–Eq. (3) and approxi-
mation of displacements and rotation, cf. Eq. (7), we get

𝐌𝑒�̈�𝑒 +𝐊𝑒𝐪𝑒 = 𝐟𝑒, (8)

where 𝐌𝑒 and 𝐊𝑒 are the element mass and stiffness matrices, re-
spectively, for the beam element while 𝐪𝑒 represents the element dis-
placement and 𝐟𝑒 denotes force vector components. The local stiffness
and mass matrices are assembled to obtain the global one with proper
coordinate transformation

𝐊 =
𝑛𝑒𝑙𝑒
∑

𝑒=1
𝐊𝑒
𝑔 , 𝐌 =

𝑛𝑒𝑙𝑒
∑

𝑒=1
𝐌𝑒
𝑔 , (9)

where 𝐌 and 𝐊 are the global mass and stiffness matrices of the unit
cell and 𝑛𝑒𝑙𝑒 is a number of finite elements to discretize the unit cell. 𝐊𝑒

𝑔
and 𝐌𝑒

𝑔 are the globally transformed element stiffness and mass matrix,
respectively. The matrix form of the equation of motion for the unit cell
reads as follows

𝐌�̈� +𝐊𝐪 = 𝐟 . (10)

2.4. Dispersion relations for the periodic unit cell

The band gap characteristics are obtained by formulating an eigen-
4

value problem and considering periodic boundary conditions through
the Bloch theorem. The solution of the eigenvalue problem will give us
the dispersion surface, i.e. the relationship between the frequencies and
the wavenumbers. First the harmonic solution 𝐪(𝑥, 𝑡) = 𝐪(𝑥)ei𝜔𝑡 along
with free wave propagation (𝑓 = 0) is considered for the equation of
motion Eq. (10), which yields

(𝐊 − 𝜔2𝐌)𝐪 = 𝟎, (11)

where 𝜔 is the circular frequency of the free wave propagation and the
nodal displacement vector 𝐪 is considered as

𝐪 = {𝐪1 𝐪2 𝐪3 𝐪4 𝐪𝑖}𝑇 , (12)

with 𝐪1,𝐪2, 𝐪3, and 𝐪4 denoting the vectors of nodal displacements
at unit cell nodes while 𝐪𝑖 are degrees of freedom of internal nodes
(see Fig. 2(a)). By employing Bloch’s theorem and periodic boundary
conditions at the nodes of a unit cell (see Fig. 2(b)) we obtain,

𝐪3 = e𝑘1𝐪1, 𝐪4 = e𝑘2𝐪2, (13)

where 𝑘1 and 𝑘2 are the wavenumbers mentioned in Appendix B.
The global nodal displacement vector can then be expressed by the
following equation
𝐪 = 𝐓𝑏𝐪𝑟, (14)
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Fig. 4. Frequency band structures for lattice with 𝜃 = 30°, 𝜓 = 30°, 𝜙 = 45° and length of the additional beam 𝐿𝑠 = 𝐿𝑣 = 𝐿∕2.2 obtained from (a) Matlab one-dimensional simulation
with one-dimensional Matlab model on inset, and (b) COMSOL two-dimensional simulation with two-dimensional COMSOL model on inset. The slenderness ratio 𝛽 = 𝑡∕𝐿 is 1∕300.
Table 1
The boundary points of the irreducible Brillouin zone of hybrid
hexagonal lattice for 𝜃 = 30°.
IBZ boundary points Hexagonal lattice

𝜃 = 30°

O (0, 0)
A (2𝜋∕3,−2𝜋∕3)
B (4𝜋∕3, 2𝜋∕3)
C (𝜋, 𝜋)

yielding the global vector of nodal displacements in the reduced form
𝐪𝑟 = {𝐪0 𝐪𝑖}𝑇 while the linear transformation matrix 𝐓𝑏 is given as

𝐓𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎 𝟎
𝐈e𝑘1 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝐈e𝑘2 𝟎
𝟎 𝟎 𝐈

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

By substituting Eq. (14) into Eq. (11) and pre-multiplying the results
with the Hermitian (complex conjugate) transpose matrix 𝐓𝐻𝑏 results
in

(𝐊𝑟(𝑘1, 𝑘2) − 𝜔2𝐌𝑟(𝑘1, 𝑘2))𝐪𝑟 = 𝟎, (16)

where the reduced mass and stiffness matrices are of the form

𝐌𝑟(𝑘1, 𝑘2) = 𝐓𝐻𝑏 𝐌𝐓𝑏, (17)

𝐊𝑟(𝑘1, 𝑘2) = 𝐓𝐻𝑏 𝐊𝐓𝑏.

Solving the eigenvalue problem, cf. Eq. (16), involves considering a
set of values for 𝑘1 and 𝑘2 within the first Brillouin zone to acquire
dispersion surfaces 𝜔 = 𝜔(𝑘1, 𝑘2). The dimension of the eigenvalue
problem determines the number of dispersion surfaces. The geometry of
the reciprocal lattice depends on the cell angle (𝜃) of the lattice, and the
reciprocal lattice vectors (𝐞∗1 , 𝐞

∗
2) are obtained by following a standard

procedure as explained in [58]. Appendix A mentions the direct and
reciprocal lattice vectors and their schematic diagrams. The IBZ is
derived by considering the symmetry property of the first Brillouin zone
and the unit cell of the direct lattice. Focusing on wavenumber values
that vary along the contours of the IBZ gives the two-dimensional plot
of the dispersion. Table 1 shows the value of the contour points for the
IBZ of the hexagonal lattice. Notably, the Brillouin zone for the regular
5

hexagonal and the hybrid lattice remains the same.
3. Numerical study and discussion

This section conducts numerical investigations on the proposed
hybrid curved hexagonal lattices (Fig. 1). This modification in architec-
ture increases the number of geometric parameters that influence wave
propagation characteristics. Besides the cell angle 𝜃, other parameters
include the curvature angle 𝜓 , individual lengths of the additional
beams 𝐿𝑠 and 𝐿𝑣, and the inclination angle of the auxiliary beam
members 𝜙. We have investigated the impact of the curvature angle 𝜓
in our earlier work [52], revealing the occurrence of both low and high-
frequency stop bands. In this study, the additional parameters from
added beams and the combined influence of the curvature angle are
leveraged, enriching the band gap characteristics. MATLAB is employed
to write finite element codes and apply the Bloch theorem for periodic
analysis to obtain the dispersion diagram. We have used 30 finite ele-
ments for the discretization of the curved beam and the same number of
elements for other constituent beam members. The number of elements
is adopted from our previous work [52]. Where the number was fixed
by performing some convergence analysis. To verify the finite element
results using a finite lattice, we employ COMSOL.

We perform dispersion analysis by adjusting the wave vector (𝐤)
varying along the contour 𝑂−𝐴−𝐵−𝐶−𝑂 (Fig. A.1). The material pa-
rameters considered in this work are adopted from Karlicic et al. [54].
The properties are: elastic modulus 𝐸 = 210GPa, mass density 𝜌 =
25 × 103 kg∕m3, Poisson’s ratio 𝜈 = 0.25. The geometric parameters
include a slenderness ratio 𝛽 = 𝑡∕𝐿 = 1∕15 and a beam length of
𝐿 = 0.125m (Fig. 1(b)). The length of the added vertical and slant
beam members are denoted as 𝐿𝑣 and 𝐿𝑠, respectively. Whereas, if
the length of both beams is the same, then the length of both beams
is termed as 𝐿𝑟 in the manuscript. We normalize the frequencies (𝜔),
obtained by solving the eigenvalue problem, with 𝜔0 = 𝜋2∕𝐿2

√

𝐸𝐼∕𝜌𝐴,
representing the first flexural natural frequency of the simply-supported
beam. The other geometric parameters are the second moment of
inertia 𝐼 = 𝑏𝑡3∕12 and the area 𝐴 = 𝑏𝑡 (𝑏 is the width and 𝑡 is the
thickness of the beam). The following sections discuss the effect of
the added beams’ length, inclination angle, and the curvature angle’s
combined effect on the proposed lattice’s wave propagation behavior.
In this study, we maintain the cell angle 𝜃 value at 30° for all cases.

3.1. Validation of band structures

To validate the numerical code, we obtain the band gap characteris-
tics for a small curvature angle and shorter lengths of additional beam
members, comparing them with the conventional hexagonal lattice. As
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Fig. 5. Schematic diagram of (a) the finite hybrid curved hexagonal lattice with boundary condition; ★ denotes the excitation point and ⊙ denotes the measuring point, and (b)
transmittance and the frequency band structures of the corresponding unit cell with 𝜃 = 30°, and 𝜓 = 30°, 𝜙 = 45°, length of additional beam members: vertical 𝐿𝑣 = 𝐿∕5, and
slant 𝐿𝑠 = 𝐿∕2.5.
Fig. 6. Deformation of a finite lattice subjected to harmonic excitation along 𝑥 direction for normalized frequency (a) 𝛺 = 0.8 (pass band) and (b) 𝛺 = 3.5 (stop band) with the
region of interest shown in a red box. The magnified region of interest corresponds to (c) 𝛺 = 0.8 (pass band) and (d) 𝛺 = 3.5 (stop band). The geometric details of the unit cell
for the lattice are: 𝜃 = 30°, and 𝜓 = 30°, 𝜙 = 45°, length of additional beam members: vertical 𝐿𝑣 = 𝐿∕5, and slant 𝐿𝑠 = 𝐿∕2.5.
we decrease the curvature angle and lengths of the additional beams,
we observe that the band gap diagram converges to the conventional
hexagonal one (𝜃 = 30°). The dispersion plots for the regular hexagonal
lattice are available in previous works [22,52]. The convergence of the
dispersion plots for the hybrid curved hexagonal lattices toward the
conventional one is illustrated in Fig. 3. Furthermore, we compare the
dispersion diagram obtained from MATLAB with that obtained from
COMSOL analysis (Fig. 4). One can observe that the characteristics
match precisely with each other except the location of the stop bands.
This is due to different modeling techniques used for the finite ele-
ment analysis. We use one-dimensional modeling in MATLAB code,
whereas COMSOL uses two-dimensional finite elements for analysis.
The number of elements for each beam is approximately fixed as 1250
6

by following an iterative approach. We fix the number of elements by
varying the number of triangular elements across the width of the beam
from 2 to 5. It showed that the band diagrams are the same for all
the cases for the frequency range of interest. So, we finally used two
elements per width to run the simulation. We have used the triangular
Lagrange element and user-defined meshing option in COMSOL. The
next section consists of COMSOL-based two-dimensional finite element
verification for the band diagram.

3.2. Finite element verification of band-gap characteristics with finite lattice

This section deals with the finite element verification of the band
structure by considering a finite lattice. The unit cell of the lattice
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Fig. 7. Frequency band structures of the (a) conventional hexagonal lattice with 𝜃 = 30°, (b) conventional hexagonal lattice with additional beam members with 𝜙 = 45° and
ength 𝐿𝑟 = 𝐿∕2.2, (c) curved hexagonal lattice with 𝜃 = 30° and 𝜓 = 30°, and (d) hybrid hexagonal lattice with 𝜃 = 30°, 𝜓 = 30°, 𝜙 = 45°, and 𝐿𝑟 = 𝐿∕2.2, and (d) evolution of the
requency band-gaps with reverse curvature angle 𝛹 considering cell angle The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1∕15 for all the cases. 𝐿 is the length of the main constituent beam.
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tructure features the following geometric configurations: 𝜃 = 30°,
= 30°, 𝜙 = 45°, and lengths of additional beam members —

ertical (𝐿𝑣 = 𝐿∕5) and slant (𝐿𝑠 = 𝐿∕2.5). The left boundary of
he lattice is subject to a fixed boundary condition, and excitation is
pplied on the right-hand side, as depicted in Fig. 5(a). The geometry
f the two-dimensional lattice is created in Solidworks and exported as
XF file to create the geometry in COMSOL. Finally, we perform the

requency domain analysis in COMSOL and derive the transmittance
lot (Fig. 5(b)) by examining the frequency responses of both the
xcitation and the measuring point. The excitation is applied in the
-direction, and the transmittance (𝑇𝑅) is calculated as

𝑅 = 20 log10
𝑢𝑚𝑒𝑠
𝑢𝑒𝑥𝑐

, (18)

here 𝑢𝑚𝑒𝑠 and 𝑢𝑒𝑥𝑐 represent the displacements of the measuring and
xcitation points, respectively. We compare the transmittance for the
inite lattice with the band gap characteristics of the same unit cell ob-
ained from the periodic analysis, as shown in Fig. 5(b). It is important
o note that two-dimensional elements are employed for finite element
odeling to obtain the transmittance for the finite lattice. The band

ap characteristics are also obtained in COMSOL, considering two-
imensional elements for finite element-based Bloch analysis. A notable
bservation is that the location of the band gaps in the transmittance
lot and the dispersion diagram align well. The transmittance decreases
s we shift the measuring point further from the excitation point. In the
ollowing sections, we obtain the results for the parametric influences
7

n the dispersion behavior from our developed finite element codes in
ATLAB.

Next, two deformation diagrams (see Fig. 6) are plotted to observe
he finite lattice’s wave attenuation at different excitation frequencies.
ig. 6(a) illustrates the steady-state response of the finite lattice cor-
esponding to the excitation frequency in the pass band (𝛺 = 0.8),
hile Fig. 6(b) shows the same for frequency value from the stop band
𝛺 = 3.5). The unit cell of the lattice has the following geometric details
= 30°, 𝜓 = 30°, 𝜙 = 45°, length of additional beam members: vertical
𝑣 = 𝐿∕5, and slant 𝐿𝑠 = 𝐿∕2.5. The analysis is conducted in COMSOL,

and the deformation values are scaled with the same factor for both
cases. Observations from the plots reveal that the lattice experiences
relatively more deformation for excitation in the pass band than in the
stop band, where no deformation occurs far from the excitation point.

3.3. Effect of different geometric parameters on the band gap characteristics

This section deals with the effect of different geometric param-
eters of the unit cell on the band gap characteristics of the hybrid
lattice. Mainly, the impact of the additional beam members’ length
and inclination angle is investigated along with the combined effect of
the curvature angle. The combined effect of the curvature angle and
the geometric parameters of the additional beam plays a significant
role in influencing the band gap characteristics. An investigation is
performed considering the effect of only the additional beam on the
conventional lattice and on the curved lattice with curvature angle
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Fig. 8. Frequency band structures of the hybrid lattice with 𝜃 = 30°, 𝜓 = 30° 𝐿𝑟 = 𝐿∕2.2 and (a) 𝜙 = 30°, (b) 𝜙 = 45°, (c) 𝜙 = 60°, and (d) evolution of the frequency band-gaps
ith inclination angle of the nodal cantilever beam 𝜙 considering cell angle 𝜃 = 30°. The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1∕15 for all the cases. 𝐿 is the length of the main constituent
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= 30° (Fig. 7). We can observe that the band gap characteristics for
he conventional lattice (Fig. 7(a)) are changing due to the inclusion of
dditional beams at the joints (Fig. 7(b)). Modes are compressed in the
ower frequency zone near 𝛺 = 2, and new band gaps are forming in the
igher frequency region. However, the characteristic is not promising
n forming new stop bands, especially at the lower frequency region.
t is evident from Fig. 7 that new band gaps can be formed both in
he lower and high-frequency region by changing the architecture of
he unit cell from the assembly of the straight beam to a combination
f both straight and curved beam. However, the combined effect of
oth curvature angles and the inclusion of extra beam members at
he joints influence the dispersion behavior and generate wider band
aps in both low and high-frequency regions. We observe increased
and gaps between 𝛺 = 2 and 4 (Fig. 7(c) and Fig. 7(d)), and there
re several small band gaps occurred below 𝛺 = 2. Also, We observe
ncreased band gaps around 𝛺 = 6 (Fig. 7(b) and Fig. 7(d)), and two
ore stop bands appeared near 𝛺 = 8. So, the combined effect of

he curvature angle 𝜓 and the extra beam members could be utilized
or wave attenuation problems. The next sections explore the hybrid
attice’s capability in the vibration reduction domain.

.3.1. Effect of inclination angle of the additional beams on the band-gaps
The effect of the inclination angle 𝜙 of the additional beam member

s explored by increasing the 𝜙 value for the hybrid lattice through, and
ig. 8 shows it. The values of the cell angle 𝜃, curvature angle 𝜓 , and
he length of the additional beam 𝐿 are 30◦, 30◦, and 𝐿 = 𝐿∕2.2,
8

𝑟 𝑟
espectively. The effect of the inclination angle 𝜙 is not that significant
n the dispersion characteristics. However, for a higher value of 𝜙,
he band gaps between 𝛺 = 4 to 8 are changing. The width of the
top band near 𝛺 = 8 is increasing a little with 𝜙 if we observe the
lots. In comparison, the low-frequency characteristics remain almost
nchanged. The influence of the inclination angle is clear from the
volution plot Fig. 8(d). Though the impact is not much, there is still
ormation of new band gaps near the normalized frequency value of 2
nd 7.5 for higher values of inclination angle.

.3.2. Effect of length of the additional beams
This section deals with the effect of the additional beam members’

ength on the hybrid lattice’s dispersion characteristics. Fig. 9 shows
ow the length of the additional beam members (𝐿𝑟) influence the
haracteristics. The 𝐿𝑟 value is kept the same for vertical and slant
eam members. It can be observed that for a beam with a smaller
ength, the dispersion diagram (see Fig. 9(a)) is close to the dispersion
iagram of the curved lattice without the extra beams (curved lattice
ith 𝜃 = 30°, 𝜓 = 30° [52]). A new stop band is opening near 𝛺 = 4.
or the next case with 𝐿𝑟 = 𝐿∕7, the stop bands have shifted towards
he lower frequency regions, and high-frequency stop bands appear
ear 𝛺 = 10. The band gap characteristics change drastically as we
ncrease the 𝐿𝑟 value. For 𝐿𝑟 = 𝐿∕3, several low-frequency stop bands
re formed, and modes are pushed toward the low-frequency region.

The evolution plot Fig. 9(d) shows the impact of the length of the
dditional beam members on the dispersion behavior. The plot depicts
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Fig. 9. Frequency band structures of the hybrid lattice with 𝜃 = 30°, 𝜓 = 30° 𝜙 = 30° for (a) 𝐿𝑟 = 𝐿∕9 ≈ 0.014m, (b) 𝐿𝑟 = 𝐿∕7 ≈ 0.018m, (c) 𝐿𝑟 = 𝐿∕3 ≈ 0.042m, and (d) evolution
of the frequency band-gaps with the length of the nodal cantilevers (𝐿𝑟). Plot (a)–(c) corresponds to a specific value of 𝐿𝑟 = 𝐿∕9, 𝐿∕7, and 𝐿∕3 in the evolution plot, respectively.
The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1∕15 for all the cases. 𝐿 is the length of the main constituent beam.
the nature of the lattice without the nodal cantilevers when the 𝐿𝑟 value
is less. The band gaps are Bragg type when the 𝐿𝑟 value is less. As
the 𝐿𝑟 takes higher values, the Bragg band gaps disappear completely,
and new band gaps form after that. The disappearance of existing band
gaps and the formation of new ones at the first stage might be due to
the effect of the vibration of the nodal cantilevers with the increasing
𝐿𝑟 value. The combined nature of the disappearance of band gaps
and the occurrence of new band gaps and their shifting towards the
lower frequency region supports the phenomenon of compression of
the frequency band curves. This trend is evident from the individual
plots of the dispersion diagram considering different 𝐿𝑟 values. The
band gaps originating between 𝐿𝑟 = 0.02−0.04 shift faster to the lower
frequency region. One can notice the shifting of band gaps towards the
lower frequency region for higher values of 𝐿𝑟 (e.g., 𝐿𝑟 value 0.04–
0.058) as well, and the width of the band gaps also increases for almost
all the band gaps in that zone. The interaction of the curved beam and
nodal cantilevers is prominent in the large values of 𝐿𝑟. The band gap
characteristics are complex in this case. Next, the effect of the different
lengths for the vertical and slant additional beams is investigated. For
that, the length of the vertical added beams is fixed to 𝐿𝑣 = 𝐿∕5, and
the length slant of extra beams (𝐿𝑠) is varied and vice versa. The effect
of 𝐿𝑠 is shown in Fig. 10. When the 𝐿𝑠 value gets higher than the 𝐿𝑣
number of stop bands, their width gets bigger for the major stop bands,
and they also shift to the lower frequency region (see Fig. 10(c) and
Fig. 10(d)). We can also observe that near 𝛺 = 2.5, the modes get
9

compressed, and there are a few flat bands in this region. It is also
clear from Fig. 10(d) that the nature of the plot is similar to Fig. 9(d).
The nodal cantilevers have some influence in creating the new band
gaps in the mid-region (𝐿𝑠 value 0.02–0.04), and the interaction of
the curved beam and nodal cantilevers also creates new band gaps for
higher values of 𝐿𝑠 followed by increasing of their width.

The band gaps follow a different trend, unlike the previous cases
where 𝐿𝑣 is changed, keeping 𝐿𝑠 to a fixed value (Fig. 11). Two lower
frequency band gaps do not disappear. Instead, it continues. Like in
earlier cases, a few new band gaps are formed for the 𝐿𝑠 value, around
0.02-0.04. Most of the dispersion curves can be separated visually. The
stop bands shift towards the lower frequencies and widen (Fig. 11(d)).
One can notice from the plots (Figs. 9–11) that an almost perfect flat
band is occurring for a more significant length of the auxiliary beam
members (𝐿𝑟 ≥ 𝐿∕3) at that frequency range of interest. The 6th mode
in the dispersion plot corresponds to a flat band for the lattice with
𝐿𝑟 = 𝐿∕2.2 (Fig. 8). That means there is no energy transfer due to
a zero group velocity, and the vibration is confined to the auxiliary
beams. Majorly, the auxiliary slant beams vibrate in their first mode at
the frequency value corresponding to the observed flat band. Further,
Fig. 8 has a few nearly flat bands and a couple of stop bands up and
down to them. The stop bands adjacent to the almost perfect flat band
might emerge due to the local resonance itself or the combined effect
of local resonance and Bragg scattering. The almost flat conducting
bands corresponds to the vibration confined to the nodal cantilevers
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Fig. 10. Frequency band structures of the hybrid lattice with 𝜃 = 30°, 𝜓 = 30° 𝜙 = 45°, 𝐿𝑣 = 𝐿∕5 for (a) 𝐿𝑠 = 𝐿∕9 ≈ 0.014m, (b) 𝐿𝑠 = 𝐿∕7 ≈ 0.018m, (c) 𝐿𝑠 = 𝐿∕3 ≈ 0.042m, and (d)
evolution of the frequency band-gaps with varied length of slant beam. Plot (a)–(c) corresponds to a specific value of 𝐿𝑠 = 𝐿∕9, 𝐿∕7, and 𝐿∕3 in the evolution plot, respectively.
The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1∕15 for all the cases. 𝐿 is the length of the main constituent beam.
mostly. It is worth mentioning that these narrow conducting bands do
not significantly affect the attenuation capabilities of nearby band gaps
occurring at the corresponding frequency ranges, thus showing their
potential for wave energy absorption.

We can observe the individual effect of the vertical and slant beam
members on the dispersion behavior from Fig. 12. The dispersion
characteristics for lattice with only slant beams with 𝜙 = 45° and 𝐿𝑠 =
𝐿∕2.2 are shown in Figs. 12(a) and 12(b) shows the same considering
only the vertical beam with 𝐿𝑣 = 𝐿∕2.2. From the plots, it is evident
that both additional beams influence the same band gaps. The width
of the stop band occurring near 𝛺 = 3 is higher for the case with slant
members. The higher frequency band near 𝛺 = 7 is wider for the case
with the vertical beam. Considering both vertical and slant extra beams
allows appropriately tuning the band gap characteristics to meet the
design purpose.

Another case has been studied varying the curvature angle and
keeping 𝐿𝑣 = 𝐿∕5, 𝐿𝑠 = 𝐿∕2.5, and 𝜙 = 60°. The plots in Fig. 13
show the effect of the curvature angle on the dispersion behavior in
the presence of additional beam members. It is clear from the plot
that due to the increase in the curvature angle 𝜓 , the width of the
band gaps is increasing for most of them, and their numbers are
also increasing while shifting towards the lower frequency region. To
obtain the detailed picture, we potted the evolution of the band gap
(Fig. 13(d)) by continuously varying the curvature angle 𝜓 . It shows
that the increase in the width of the band gaps is not monotonic for
10
all the gaps. The change varies for specific gaps, but all the gaps shift
towards the lower frequency region with increasing 𝜓 value. We can
also observe from the results that the band gap characteristics are more
diverse if the length of the slant beam (𝐿𝑠) is more than the length
of the vertical nodal cantilever (𝐿𝑣). We have omitted the smaller
band gaps in the evolution plots. This observation can be utilized in
the future for inverse design problems. If we notice the dispersion
behavior, one can find that the slope of the dispersion curves for the
long wavelength case is decreasing. That is, the group velocity for both
longitudinal and shear waves is getting reduced. This phenomenon will
be observed in the next section, where the iso-frequency contours are
discussed.

3.4. The iso-frequency contours

This section discusses the iso-frequency contours of the hybrid
lattice. These contours are obtained from dispersion surfaces (e.g. see
Alomar and Concli [12]), where the group velocity direction is perpen-
dicular to it. At the same time, its magnitude is related to the closeness
of two successive lines. Though group velocity and its direction can be
easily and explicitly calculated from the iso-frequency contour analysis,
the discrete nature of these contours results in frequency overlapping
between different modes, which requires consideration of all disper-
sion surfaces in the frequency band of interest. Therefore, in [59],
Zelhofer and Kochmann have suggested another approach based on
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(

Fig. 11. Frequency band structures of the hybrid lattice with 𝜃 = 30°, 𝜓 = 30°, 𝜙 = 45°, 𝐿𝑠 = 𝐿∕5 for (a) 𝐿𝑣 = 𝐿∕9 ≈ 0.014m, (b) 𝐿𝑣 = 𝐿∕7 ≈ 0.018m, (c) 𝐿𝑣 = 𝐿∕3 ≈ 0.042m, and
d) evolution of the frequency band-gaps with varied length of vertical nodal cantilever. Plot (a)–(c) corresponds to a specific value of 𝐿𝑣 = 𝐿∕9, 𝐿∕7, and 𝐿∕3 in the evolution

plot, respectively. The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1∕15 for all the cases. 𝐿 is the length of the main constituent beam.
Fig. 12. Frequency band structures of the hybrid lattice with 𝜃 = 30°, 𝜓 = 30° and considering only (a) additional slant beams with 𝐿𝑠 = 𝐿∕2.2 and 𝜙 = 45° and (b) vertical
additional beam with 𝐿𝑣 = 𝐿∕2.2. The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1∕15 for all the cases. 𝐿 is the length of the main constituent beam.
direct interpolating dispersion surfaces whose differentiation results in
continuous group velocity in the momentum space. Here, the analysis
is limited to the observation of iso-frequency contours of the first four
modes, giving enough information about the directionality of wave
propagation in the frequency range of interest, while a more detailed
11
analysis is out of the scope of this study. In the case of observed lattice
structures, the iso-frequency contours can obtain complex shapes. We
can observe the comparison of the iso-frequency contours among the
regular hexagonal, curved hexagonal, and hybrid lattice in Fig. 14
considering the first four modes. The plots for mode I reveal that
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Fig. 13. Frequency band structures of the hybrid lattice with 𝜃 = 30°, 𝜙 = 45°, 𝐿𝑠 = 𝐿∕2.5, 𝐿𝑣 = 𝐿∕5 for (a) 𝜓 = 20°, (b) 𝜓 = 30°, (c) 𝜓 = 40°, and (d) evolution of the frequency
and-gaps with curvature angle 𝜓 . Plot (a)–(c) corresponds to a specific value of 𝜓 = 20°, 𝜓 = 30°, and 𝜓 = 40° in the evolution plot, respectively. The slenderness ratio (𝛽 = 𝑡∕𝐿)
s 1∕15 for all the cases. 𝐿 is the length of the main constituent beam.
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he contours are almost circular for long wavelength limits (low fre-
uencies) for all considered lattice types. Moreover, the low-frequency
so-frequency contours are spaced in nearly concentric circles, revealing
he uniform propagating wavefront in all directions, similar to those in
he isotropic homogeneous body. One can observe that the contours
re closely spaced for conventional hexagonal lattices, thus having a
igher wave speed than the other lattices. It is the hybrid lattice whose
ave speed is the lowest as there are fewer numbers of contours and

hey are widely spaced. For even higher frequencies, the iso-frequency
ontours undergo topological disconnection, indicating the existence
f directional band gaps. Moreover, the length of contours decreases
owards the higher frequencies until they disappear at the edges of the
BZ. If we consider higher modes, the nature of the contours becomes
ore complex. The lobed nature of the contours shows the anisotropic

ehavior of the lattices at those frequency values, which means that the
ave beaming response will occur in the lattice for the corresponding
armonic force point excitation, as reported in the literature for sim-
lar lattice types [59]. The contours are closely packed in the lower
requency region for mode II and low in density towards the edge
f the Brillouin zone, corresponding to a flat dispersion surface. The
ispersion behavior of the hybrid lattice for modes II and III is more
omplex than the other two cases.

. Summary and conclusions

This work presents the wave propagation characteristics of a hybrid
urved hexagonal lattice. Incorporating the curved and additional beam
12
lements results in diverse band gap characteristics while keeping
he total area for the lattice constant. The effect of the geometric
arameters of the additional beam members and the combined effect of
he curvature angle of the curved constituent beams are investigated.
he key findings are as follows:

• The length of the additional beams plays an important role in
creating new band gaps. For longer lengths of the additional
beams, the number of gaps increases. But it is not monotonic.
The evolution plots depicts the clear picture of the band gap
characteristics. The effect of length of the nodal cantilevers and
different lengths of the vertical and slant nodal beams has com-
plex behavior. The diverse band characteristics can be utilized
further for design purposes. The emergence of multiple flat bands
within the low and high-frequency ranges also occurs, indicating
their nearly zero group velocity and confinement of wave modes
solely to the attached auxiliary slant beams.

• The orientation angle of the additional slant beams does not sig-
nificantly affect the dispersion behavior compared to the length
variation of the additional beams.

• The combined effect of the curvature angle and the length of the
additional slant beams have a significant influence in generating
new stop bands and increasing and decreasing the width of the
stop bands in all frequency ranges.

• Including additional beams decreases the wave speed for the lon-
gitudinal wave and delivers diverse directional behavior for high-
frequency modes. The findings from the present investigations
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Fig. 14. Iso-frequency contour plots for the first four modes of the conventional, curved hexagonal lattice and hybrid curved hexagonal lattice. The first row shows the contours
for hexagonal lattice with straight constituent beams with 𝜃 = 30°. The second row shows the contour for the curved hexagonal lattice with 𝜃 = 30° and 𝜓 = 30°. The third row
shows the contour for the hybrid curved hexagonal lattice with 𝜃 = 30° and 𝜓 = 30°, 𝜙 = 45°, and 𝐿𝑟 = 𝐿∕2.2. The slenderness ratio (𝛽 = 𝑡∕𝐿) is 1/15 for all the cases. L is the
length of the corresponding straight constituent beams.
show that this class of lattice can be utilized for low-frequency
vibration suppression depending on the design requirements.

Introducing curved and additional elements together drastically
influences the wave propagation characteristics of two-dimensional
lattices. Following the successful demonstration of this work, future
research can exploit various types of additional beams, for example,
beams with tip mass, prestressed beams, and functionally graded beams
along with curved geometry, for controlling the stop bands in future in-
vestigations. Experimental investigations on these lattice metamaterials
will be of interest.
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Appendix A. Direct and reciprocal lattice vectors

See Table A.2.
See Fig. A.1.

Appendix B. Bloch’s theorem

Let 𝐫𝑝 is a lattice point in the reference unit cell and 𝐰(𝐫𝑝) be the
displacement of that point corresponding to a plane wave propagating
at frequency 𝜔. Then the expression for 𝐰(𝐫𝑝) is as follows:

𝐰(𝐫𝑝) = 𝐰𝑝0e
i𝜔𝑡−𝐤⋅𝐫𝑝 , (B.1)

where 𝐰𝑝0 and 𝐤 denote the wave amplitude and wave vector, respec-
tively. Any other cell can be obtained with respect to the reference unit
cell by performing integer translation along the direct lattice vector.
For example, the integer pair (𝑛, 𝑚) denotes a cell that can be found by
translating the 𝑛 number in the 𝑒1 direction and 𝑚 in the 𝑒2 direction.
The same point 𝑝 in the (𝑛, 𝑚)th cell can be represented as 𝝆𝑝 = 𝐫𝑝 +
𝑛𝐞1 + 𝑚𝐞2 𝜌. Now, considering Bloch Theorem the displacement of the
𝑝 th point at (𝑛, 𝑚) cell can be written as

𝐰(𝝆𝑝) = 𝐰(𝐫𝑝)e𝐤⋅(𝝆𝑝−𝐫𝑝) = 𝐰(𝐫𝑝)e𝐤⋅(𝑛𝐞1+𝑚𝐞2) = 𝐰(𝐫𝑝)e𝑛𝑘1+𝑚𝑘2 , (B.2)

where 𝑘𝑖 = 𝐤 ⋅ 𝐞𝑖 are the components of the wave vector along the
direction of the direct lattice vectors 𝐞𝑖 (𝑖 = 1, 2).

Appendix C. The shape function and matrix coefficients

The shape functions for the Timoshenko beam element are adopted
from [57]:

𝑁𝑢
1 (𝑥) = 1 − 𝜉, 𝑁𝑢

2 (𝑥) = 0, 𝑁𝑢
3 (𝑥) = 0, (C.1)

𝑁𝑢(𝑥) = 𝜉, 𝑁𝑢(𝑥) = 0, 𝑁𝑢(𝑥) = 0,
4 5 6
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𝑁

𝑁

w

m

𝐾

𝑀

Table A.2
Direct (𝐞𝑖) and reciprocal lattice vectors (𝐞∗𝑗 ) of a hexagonal lattice with cell angle 𝜃 and the present case
with 𝜃 = 30°, 𝑖, and 𝑗 are the Cartesian basis for x–y plane. L denotes the length of the straight constituent
beam. The direct and reciprocal lattice vectors follow 𝐞𝑖 ⋅ 𝐞∗𝑗 = 2𝜋𝛿𝑖𝑗 .

Topology Direct lattice vectors Reciprocal lattice vectors

Hexagonal lattice 𝐞1 = (𝐿 cos 𝜃)𝑖 + 𝐿(1 + sin 𝜃)𝑗 𝐞∗1 = 2𝜋
2𝐿 cos 𝜃

𝑖 + 2𝜋
2𝐿(1+sin 𝜃)

𝑗

general 𝐞2 = (−𝐿 cos 𝜃)𝑖 + 𝐿(1 + sin 𝜃)𝑗 𝐞∗2 = − 2𝜋
2𝐿 cos 𝜃

𝑖 + 2𝜋
2𝐿(1+sin 𝜃)

𝑗

Hexagonal lattice 𝐞1 =
√

3𝐿( 1
2
𝑖 +

√

3
2
𝑗) 𝐞∗1 = 2𝜋

√

3𝐿
(𝑖 + 1

√

3
𝑗)

𝜃 = 30° 𝐞2 =
√

3𝐿(− 1
2
𝑖 +

√

3
2
𝑗) 𝐞∗2 = 2𝜋

√

3𝐿
(−𝑖 + 1

√

3
𝑗)
Fig. A.1. Figure showing the (a) unit cell with direct lattice vectors (𝐞1 and 𝐞2) and (b) Brillouin zone, reciprocal lattice vectors (𝐞∗1 and 𝐞∗2), irreducible Brillouin zone: IBZ (gray
part), and its boundary (OABCO).
𝑁𝑤
1 (𝑥) = 0, 𝑁𝑤

2 (𝑥) =
1 − 3𝜉2 + 2𝜉3 + (1 − 𝜉)𝛷

1 +𝛷
,

𝑁𝑤
3 (𝑥) =

ℎ𝑒(𝜉 − 2𝜉2 + 𝜉3 + 1
2 (𝜉 − 𝜉

2)𝛷)

1 +𝛷
, (C.2)

𝑤
4 (𝑥) = 0, 𝑁𝑤

5 (𝑥) =
3𝜉2 − 2𝜉3 + 𝜉𝛷

1 +𝛷
, 𝑁𝑤

6 (𝑥) =
ℎ𝑒(−𝜉2 + 𝜉3 −

1
2
(𝜉 − 𝜉2)𝛷)

1 +𝛷
,

𝑁𝜑
1 (𝑥) = 0, 𝑁𝜑

2 (𝑥) =
6(−𝜉 + 𝜉2)
ℎ𝑒(1 +𝛷)

, 𝑁𝜑
3 (𝑥) =

1 − 4𝜉 + 3𝜉2 + (1 − 𝜉)𝛷
1 +𝛷

,

(C.3)

𝜑
4 (𝑥) = 0, 𝑁𝜑

5 (𝑥) =
6(𝜉 − 𝜉2)
ℎ𝑒(1 +𝛷)

, 𝑁𝜑
6 (𝑥) =

−2𝜉 + 3𝜉2 + 𝜉𝛷
1 +𝛷

,

here 𝜉 = 𝑥∕ℎ𝑒 denotes the dimensionless axial coordinate and 𝛷 =
12𝐸𝐼
𝐺𝐴𝑘𝑠ℎ2e

is the shear deformation parameter.
After adopting these functions, the elements of the stiffness and

ass matrix of FE beam model can be written as:

𝑒
𝑖𝑗 = ∫

ℎ𝑒

0

[

𝐸𝐴
𝜕𝑁𝑢

𝑖
𝜕𝑥

𝜕𝑁𝑢
𝑗

𝜕𝑥
+ 𝐸𝐼

𝜕𝑁𝜑
𝑖

𝜕𝑥

𝜕𝑁𝜑
𝑗

𝜕𝑥

+ 𝐺𝐴𝑘𝑠

(

𝑁𝜑
𝑖 −

𝜕𝑁𝑤
𝑖

𝜕𝑥

)

(

𝑁𝜑
𝑗 −

𝜕𝑁𝑤
𝑗

𝜕𝑥

)]

d𝑥, (C.4)

𝑒
𝑖𝑗 = ∫

ℎ𝑒

0

(

𝜌𝐴𝑁𝑢
𝑖 𝑁

𝑢
𝑗 + 𝜌𝐼𝑁

𝜑
𝑖 𝑁

𝜑
𝑗 + 𝜌𝐴𝑁𝑤

𝑖 𝑁
𝑤
𝑗

)

d𝑥. (C.5)

References

[1] Lee J-H, Singer JP, Thomas EL. Micro-/nanostructured mechanical metamaterials.
Adv Mater 2012;24(36):4782–810.
14
[2] Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, et al. Ultralight,
ultrastiff mechanical metamaterials. Science 2014;344(6190):1373–7.

[3] Helou M, Kara S. Design, analysis and manufacturing of lattice structures: an
overview. Int J Comput Integr Manuf 2018;31(3):243–61.

[4] Jiang W, Yin G, Xie L, Yin M. Multifunctional 3D lattice metamaterials for
vibration mitigation and energy absorption. Int J Mech Sci 2022;233:107678.

[5] Kronowetter F, Wagner P, Kolodi J, Brabandt I, Neumeyer T, Rümmler N, et
al. Novel compound material and metamaterial wheelhouse liners for tire noise
reduction. Mech Syst Signal Process 2023;200:110548.

[6] Gibson LJ. Cellular solids. Bulletin 2003;28(4):270–4.
[7] Ai L, Gao X-L. Metamaterials with negative Poisson’s ratio and non-positive

thermal expansion. Compos Struct 2017;162:70–84.
[8] An X, Lai C, Fan H, Zhang C. 3D acoustic metamaterial-based mechanical

metalattice structures for low-frequency and broadband vibration attenuation.
Int J Solids Struct 2020;191:293–306.

[9] Chen X, Ji Q, Wei J, Tan H, Yu J, Zhang P, et al. Light-weight shell-lattice
metamaterials for mechanical shock absorption. Int J Mech Sci 2020;169:105288.

[10] Kronowetter F, Maeder M, Chiang YK, Huang L, Schmid JD, Oberst S, et al.
Realistic prediction and engineering of high-Q modes to implement stable Fano
resonances in acoustic devices. Nature Commun 2023;14(1):6847.

[11] Teng XC, Ren X, Zhang Y, Jiang W, Pan Y, Zhang XG, et al. A simple 3D re-
entrant auxetic metamaterial with enhanced energy absorption. Int J Mech Sci
2022;229:107524.

[12] Alomar Z, Concli F. A review of the selective laser melting lattice structures and
their numerical models. Adv Energy Mater 2020;22(12):2000611.

[13] Sigalas MM. Elastic and acoustic wave band structure. J Sound Vib
1992;158(2):377–82.

[14] Phani AS, Woodhouse J, Fleck N. Wave propagation in two-dimensional periodic
lattices. J Acoust Soc Am 2006;119(4):1995–2005.

[15] Zhang K, Zhao P, Zhao C, Hong F, Deng Z. Study on the mechanism of band gap
and directional wave propagation of the auxetic chiral lattices. Compos Struct
2020;238:111952.

[16] Iwata Y, Yokozeki T. Wave propagation analysis of one-dimensional CFRP lattice
structure. Compos Struct 2021;261:113306.

[17] An X, Fan H, Zhang C. Elastic wave and vibration bandgaps in planar square
metamaterial-based lattice structures. J Sound Vib 2020;475:115292.

[18] Ruzzene M, Scarpa F, Soranna F. Wave beaming effects in two-dimensional
cellular structures. Smart Mater Struct 2003;12(3):363.

http://refhub.elsevier.com/S0263-8223(24)00470-7/sb1
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb1
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb1
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb2
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb2
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb2
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb3
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb3
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb3
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb4
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb4
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb4
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb5
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb5
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb5
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb5
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb5
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb6
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb7
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb7
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb7
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb8
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb8
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb8
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb8
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb8
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb9
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb9
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb9
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb10
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb10
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb10
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb10
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb10
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb11
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb11
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb11
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb11
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb11
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb12
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb12
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb12
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb13
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb13
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb13
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb14
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb14
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb14
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb15
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb15
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb15
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb15
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb15
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb16
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb16
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb16
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb17
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb17
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb17
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb18
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb18
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb18


Composite Structures 345 (2024) 118342S. Mukherjee et al.
[19] Spadoni A, Ruzzene M, Gonella S, Scarpa F. Phononic properties of hexagonal
chiral lattices. Wave Motion 2009;46(7):435–50.

[20] Shim J, Wang P, Bertoldi K. Harnessing instability-induced pattern transforma-
tion to design tunable phononic crystals. Int J Solids Struct 2015;58:52–61.

[21] Gao C, Slesarenko V, Boyce MC, Rudykh S, Li Y. Instability-induced pattern
transformation in soft metamaterial with hexagonal networks for tunable wave
propagation. Sci Rep 2018;8(1):11834.

[22] Gonella S, Ruzzene M. Analysis of in-plane wave propagation in hexagonal and
re-entrant lattices. J Sound Vib 2008;312(1–2):125–39.

[23] Sigmund O, Søndergaard Jensen J. Systematic design of phononic band–gap
materials and structures by topology optimization. Philos Trans R Soc Lond Ser
A Math Phys Eng Sci 2003;361(1806):1001–19.

[24] Swartz KE, White DA, Tortorelli DA, James KA. Topology optimization of 3D
photonic crystals with complete bandgaps. Opt Express 2021;29(14):22170–91.

[25] Gao H, Qu Y, Meng G. Topology optimization and wave propagation of
three-dimensional phononic crystals. J Vib Acoust 2022;1–31.

[26] Mukherjee S, Scarpa F, Gopalakrishnan S. Phononic band gap design in honey-
comb lattice with combinations of auxetic and conventional core. Smart Mater
Struct 2016;25(5):054011.

[27] Yan G, Yao S, Li Y. Propagation of elastic waves in metamaterial plates
with various lattices for low-frequency vibration attenuation. J Sound Vib
2022;536:117140.

[28] Baravelli E, Ruzzene M. Internally resonating lattices for bandgap generation and
low-frequency vibration control. J Sound Vib 2013;332(25):6562–79.

[29] Li Y, Zhao N, Yao S. Theoretical analysis of 2D meta-structure with inertia
amplification. Int J Mech Sci 2022;235:107717.

[30] Zhang K, Zhao P, Hong F, Yu Y, Deng Z. On the directional wave propagation in
the tetrachiral and hexachiral lattices with local resonators. Smart Mater Struct
2019;29(1):015017.

[31] Meng J, Deng Z, Zhang K, Xu X. Wave propagation in hexagonal and re-
entrant lattice structures with cell walls of non-uniform thickness. Waves Random
Complex Media 2015;25(2):223–42.

[32] Bortot E, Amir O, Shmuel G. Topology optimization of dielectric elastomers for
wide tunable band gaps. Int J Solids Struct 2018;143:262–73.

[33] Bacigalupo A, Lepidi M, Gnecco G, Vadalà F, Gambarotta L. Optimal design of
the band structure for beam lattice metamaterials. Front Mater 2019;6:2.

[34] Dalklint A, Wallin M, Bertoldi K, Tortorelli D. Tunable phononic bandgap mate-
rials designed via topology optimization. J Mech Phys Solids 2022;163:104849.

[35] Cheng Q, Guo H, Yuan T, Sun P, Guo F, Wang Y. Topological design of square
lattice structure for broad and multiple band gaps in low-frequency range.
Extreme Mech Lett 2020;35:100632.

[36] Yan G, Yao S, Li Y, Zhou W. Topological optimization of thin elastic meta-
material plates for ultrawide flexural vibration bandgaps. Int J Mech Sci
2023;242:108014.

[37] Lim QJ, Wang P, Koh SJA, Khoo EH, Bertoldi K. Wave propagation in
fractal-inspired self-similar beam lattices. Appl Phys Lett 2015;107(22):221911.

[38] Zhao P, Zhang K, Zhao C, Deng Z. Mechanism of band gaps in self-similar
triangular lattice with koch fractal. J Vib Acoust 2022;144(3).
15
[39] Miniaci M, Krushynska A, Movchan AB, Bosia F, Pugno NM. Spider web-inspired
acoustic metamaterials. Appl Phys Lett 2016;109(7):071905.

[40] Trainiti G, Rimoli JJ, Ruzzene M. Wave propagation in undulated structural
lattices. Int J Solids Struct 2016;97:431–44.

[41] Wang Y-F, Wang Y-S, Zhang C. Bandgaps and directional properties of
two-dimensional square beam-like zigzag lattices. AIP Adv 2014;4(12):124403.

[42] Wang Y-F, Wang Y-S, Zhang C. Bandgaps and directional propagation of
elastic waves in 2D square zigzag lattice structures. J Phys D: Appl Phys
2014;47(48):485102.

[43] Mukherjee S, Adhikari S. The in-plane mechanics of a family of curved 2D
lattices. Compos Struct 2022;280:114859.

[44] Zhang K, Zhao C, Zhao P, Luo J, Deng Z. Wave propagation properties
of rotationally symmetric lattices with curved beams. J Acoust Soc Am
2020;148(3):1567–84.

[45] Fu Y, Liu W. Design of mechanical metamaterial with controllable stiffness using
curved beam unit cells. Compos Struct 2021;258:113195.

[46] Zhu Z, Deng Z, Huang B, Du J. Elastic wave propagation in triangular chiral
lattices: Geometric frustration behavior of standing wave modes. Int J Solids
Struct 2019;158:40–51.

[47] Qi D, Yu H, Hu W, He C, Wu W, Ma Y. Bandgap and wave attenuation
mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure.
Extreme Mech Lett 2019;28:58–68.

[48] Prasad R, Baxy A, Banerjee A. Two-dimensional in-plane elastic waves in
curved-tapered square lattice frame structure. J Appl Mech 2022;89(3).

[49] Li Y, Yan G. Vibration characteristics of innovative reentrant-chiral elastic
metamaterials. Eur J Mech A Solids 2021;90:104350.

[50] Ruan H, Hou J, Li D. Wave propagation characterization of 2D composite chiral
lattice structures with circular plate inclusions. Eng Struct 2022;264:114466.

[51] Guo L, Liu J, Gao N, Huang Q, Pan G, Song B. Wave propagation behaviors of a
low-symmetry reentrant chiral structure with mass inclusion in a single material.
Eur J Mech A Solids 2023;99:104951.

[52] Mukherjee S, Cajić M, Karličić D, Adhikari S. Enhancement of band-gap charac-
teristics in hexagonal and re-entrant lattices via curved beams. Compos Struct
2023;306:116591.

[53] Slesarenko V. Bandgap structure in elastic metamaterials with curvy Bezier
beams. Appl Phys Lett 2023;123(8).

[54] Karličić D, Cajić M, Chatterjee T, Adhikari S. Wave propagation in mass
embedded and pre-stressed hexagonal lattices. Compos Struct 2021;256:113087.

[55] Liu W, Chen J-W, Su X-Y. Local resonance phononic band gaps in modified
two-dimensional lattice materials. Acta Mech Sin 2012;28(3):659–69.

[56] Cazzani A, Stochino F, Turco E. On the whole spectrum of timoshenko beams.
Part I: a theoretical revisitation. Z Angew Math Phys 2016;67:1–30.

[57] Yokoyama T. Vibration analysis of timoshenko beam-columns on two-parameter
elastic foundations. Comput Struct 1996;61(6):995–1007.

[58] Kittel C, McEuen P. Kittel’s Introduction to Solid State Physics. John Wiley &
Sons; 2018.

[59] Zelhofer AJ, Kochmann DM. On acoustic wave beaming in two-dimensional
structural lattices. Int J Solids Struct 2017;115:248–69.

http://refhub.elsevier.com/S0263-8223(24)00470-7/sb19
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb19
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb19
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb20
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb20
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb20
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb21
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb21
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb21
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb21
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb21
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb22
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb22
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb22
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb23
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb23
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb23
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb23
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb23
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb24
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb24
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb24
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb25
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb25
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb25
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb26
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb26
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb26
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb26
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb26
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb27
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb27
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb27
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb27
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb27
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb28
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb28
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb28
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb29
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb29
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb29
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb30
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb30
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb30
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb30
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb30
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb31
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb31
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb31
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb31
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb31
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb32
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb32
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb32
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb33
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb33
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb33
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb34
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb34
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb34
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb35
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb35
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb35
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb35
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb35
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb36
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb36
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb36
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb36
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb36
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb37
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb37
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb37
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb38
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb38
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb38
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb39
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb39
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb39
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb40
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb40
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb40
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb41
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb41
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb41
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb42
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb42
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb42
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb42
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb42
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb43
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb43
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb43
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb44
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb44
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb44
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb44
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb44
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb45
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb45
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb45
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb46
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb46
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb46
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb46
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb46
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb47
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb47
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb47
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb47
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb47
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb48
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb48
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb48
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb49
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb49
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb49
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb50
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb50
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb50
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb51
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb51
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb51
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb51
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb51
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb52
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb52
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb52
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb52
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb52
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb53
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb53
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb53
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb54
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb54
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb54
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb55
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb55
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb55
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb56
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb56
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb56
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb57
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb57
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb57
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb58
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb58
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb58
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb59
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb59
http://refhub.elsevier.com/S0263-8223(24)00470-7/sb59

	Tailoring band gap properties of curved hexagonal lattices with nodal cantilevers
	Introduction
	Wave propagation in two-dimensional hybrid lattice
	Geometry of the lattice and the unit cell 
	Timoshenko beam equations
	The finite element formulation of the unit cell
	Dispersion relations for the periodic unit cell

	Numerical study and discussion
	Validation of band structures
	Finite element verification of band-gap characteristics with finite lattice
	Effect of different geometric parameters on the band gap characteristics
	Effect of inclination angle of the additional beams on the band-gaps
	Effect of length of the additional beams

	The iso-frequency contours

	Summary and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Direct and reciprocal lattice vectors
	Appendix B. Bloch's theorem
	Appendix C. The shape function and matrix coefficients
	References


