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1. Introduction

The advancement of fixed point theory in the last few decades has mainly been re-
lated to introducing a new kind of generalized metric space and extensions of the Banach
Contraction Principle. This principle has become known as a useful tool for establishing
the existence and uniqueness of a fixed point for contractive mappings. In this direc-
tion, in 2012, Wardowski [1,2] introduced a new type of contraction named F-contraction
as a generalization of this important principle in metric spaces. Subsequently, many re-
searchers [3–10] further developed this new category by improving its properties and
extending it in a more generalized setting. In the meantime, other recently defined concepts
such as α-admissible mapping in [11] promoted in [12–16], Suzuki contraction widely used
in [17–21], and formulations in partial metric spaces, metric-like spaces, b-metric spaces,
and b-metric -like spaces underline their significance and offer a broader understanding in
various contexts of the fixed point theory. For an extended introduction, we could mention
many new theorems and corresponding classical results with applications in the above
spaces, resulting in notions of interpolative and hybrid contractions; see [22–24].

In this paper, we introduce the notion of generalized Suzuki-type (α, F)-contraction via
a set of implicit relations in the setting of b-metric-like spaces. It strictly extends the known
generalizations of metric and b-metric spaces. Moreover, it presents a new approach and
includes many types of contractions such as Suzuki F-contraction, interpolative, hybrid,
and r-order hybrid contractions, exploring diverse fixed point theorems, implementations,
and deduction for earlier and recent results.
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2. Preliminaries

Definition 1. Ref. [16]. Let S be a nonempty set and v ≥ 1 be a given real number. A mapping
b : S × S → [0,+∞) is called a b-metric-like if for all s, ∂, ζ ∈ S, the following conditions
are satisfied:

b(s, ∂) = 0 implies s = ∂;
b(s, ∂) = b(∂, s);
b(s, ∂) ≤ v[b(s, ζ) + b(ζ, ∂)].
The pair (S, b) is called a b-metric-like space (for short b-m.l.s).

Note that by the first axiom of a definition, the self-distance of an arbitrary point
s ∈ S may be positive.

There are various examples of b-metric-like space in the reference literature. To
illustrate them, we selected some from [16].

Example 1. Let S = [0,+∞) and b : S × S = [0,+∞) defined by b(∂, ζ) = (∂ + ζ)2 for all
∂, ζ ∈ S. Then, (S, b) is a b-m.l.s with parameter v = 2 and b is not a b-metric on S.

Example 2. Let S = [0,+∞) and b : S × S = [0,+∞) defined by b(∂, ζ) = (max{∂, ζ})2 for
all ∂, ζ ∈ S. Then, b is a b-metric-like on S with parameter v = 2 and it is not a b-metric or a
metric-like on S.

Definition 2. Ref. [16]. Let (S, b) be a b-m.l.s with parameter v. Then, for any sequence {sn} in
S the following applies:

(a) {sn} is said to be convergent to s ∈ S if lim
n→+∞

b(sn, s) = b(s, s);

(b) {sn} is said to be a Cauchy sequence in (S, b) if lim
n,m→+∞

b(sn, sm) exists and is finite;

(c) (S, b) is called a complete b-m.l.s if, for every Cauchy sequence {sn} in S, there exists
s ∈ S such that lim

n,m→+∞
b(sn, sm) = lim

n→+∞
b(sn, s) = b(s, s).

Remark 1. In a b-metric-like-space:

- The limit of a convergent sequence is not necessarily unique.
- A convergent sequence need not be a Cauchy sequence.

The following example characterizes and supports Definition 2.

Example 3. Let S = [0,+∞) and b : S × S = [0,+∞) defined by b(s, ζ) =
(
max

{
s2, ζ2})2 for

all s, ζ ∈ S. Also let be the sequence {sn} as

sn =

{
1 i f n is even
0 i f n is odd.

For any s ≥ 1 we have lim
n→+∞

b(sn, s) = lim
n→+∞

(
max

{
(sn)

2, s2
})2

= s4 = b(s, s).

Therefore, the sequence {sn} is convergent where sn → s for each s ≥ 1, that is the limit
of sequence, is not unique. Also, it is noted that lim

n,m→+∞
b(sn, sm) does not exist, so it is

not Cauchy.

Definition 3. Ref. [16]. Let (S, b) be a b-m.l.s with parameter v, and a function P : S → S . We
say that the function P is continuous if for each sequence {sn} ⊂ S the sequence Psn → Ps when-
ever sn → s as n → +∞, that is if lim

n→+∞
b(sn, s) = b(s, s) yields lim

n→+∞
b(Psn, Ps) = b(Ps, Ps).

Remark 2. In a b-m.l.s with parameter v ≥ 1, if lim
n,m→+∞

b(sn, sm) = 0 then the limit of the

sequence {sn} is unique if it exists.

Lemma 1. Ref. [14]. Let (S, b) be a b-m.l.s with parameter v ≥ 1. Then, the following applies:
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(a) If b(s, ∂) = 0, then b(s, s) = b(∂, ∂) = 0;
(b) If {sn} is a sequence such that lim

n→+∞
b(sn, sn+1) = 0, then we have lim

n→+∞
b(sn, sn) =

lim
n→+∞

b(sn+1, sn+1) = 0;

(c) If s ̸= ∂, then b(s, ∂) > 0.

Lemma 2. Ref. [16]. Let (S, b) be a b-metric-like space with parameter v ≥ 1, and suppose that
{sn} is b-convergent to s with b(s, s) = 0. Then, for each ∂ ∈ S, we have

v−1b(s, ∂) ≤ liminf
n→+∞

b(sn, ∂) ≤ limsup
n→+∞

b(sn, ∂) ≤ vb(s, ∂).

Definition 4. Ref. [1]. Let (S, b) be a metric space and P : S → S be a mapping. Then, P is
called an

F-contraction if there exists a function F : (0,+∞) → R such that
(F1). F is strictly increasing on (0,+∞);
(F2) For each sequence {αn} of positive numbers,

lim
n→+∞

αn = 0 ifandonlyif lim
n→+∞

F(αn) = −∞

(F3) There exists c ∈ (0, 1) such that lim
α→0+

αcF(α) = 0;

(F4) There exists τ > 0 such that

τ + F(b(Ps, P∂)) ≤ F(b(s, ∂))

for all s, ∂ ∈ S with b(Ps, P∂) > 0.

For examples that show the class of F-contraction, the reader can confront the extended
literature in [1–3,6,7,9,12].

Definition 5. Ref. [11]. Let S be a non-empty set. Let P : S → S and α : S × S → R+ be given
functions. We say that P is an α-admissible mapping if α(s, ∂) ≥ 1 implies that α(Ps, P∂) ≥ 1 for
all s, ∂ ∈ S.

Definition 6. Ref. [18]. Let S ̸= ϕ and α : S × S → [0,+∞) be a function, {sn} be a sequence
in S and s ∈ S. Then, S is called α-regular if for any n ∈ N: α(sn, sn+1) ≥ 1 and {sn} converges
to s, then α(sn, s) ≥ 1.

Lemma 3. Ref. [14]. Let (S, b) be complete b-m.l.s with parameter v ≥ 1, let {sn} be a sequence
such that lim

n→+∞
b(sn, sn+1) = 0. If for the sequence {sn}, lim

n,m→+∞
b(sn, sm) ̸= 0, then there

exists ε > 0 and sequences {mk}+∞
k=1 and {nk}+∞

k=1 of natural numbers with nk > mk > k, (positive
integers) such that b(smk , snk ) ≥ ε,b(smk , snk−1) < ε, ε/v2 ≤ limsup

k→+∞
b(smk−1, snk−1) ≤ εv,

ε/v ≤ limsup
k→+∞

b(snk−1, smk ) ≤ εv2 and ε/v ≤ limsup
k→+∞

b(smk−1, snk ) ≤ εv2.

In the sequel, let we represent some notations and properties.
Suppose that F : R+ → R satisfied the conditions:

(a) F is continuous and non-decreasing;
(b) For any sequence of positive real numbers, {αn} if lim

n→+∞
F(αn) = −∞ then lim

n→+∞
αn = 0.

This family of all functions F : R+ → R will be denoted by F .
And W4 is the set of all continuous functions κ : [0,+∞)4 → [0,+∞) , satisfying

the conditions:
κ is non-decreasing in respect to each variable;

κ(u, u, u, u) ≤ u for u ∈ [0,+∞).
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Let be the mappings P : S → S and α : S × S → [0,+∞) . We say that P satisfies
admissible convergence property (for short AC-property), if for every sequence {sn} in S
such that α(sn, sn+1) ≥ 1 for all n ∈ N and {sn} converges to s, then α(s, Ps) ≥ 1.

3. Results

In this main section, among an enormous work presented for types of Suzuki contrac-
tions and interesting generalizations established in various spaces, we propose our new
general definitions and related theorems concerning such contractive mappings.

Definition 7. Let (S, b) be a complete b-m.l.s with parameter v ≥ 1, P : S → S be a self-mapping,
and there exist F ∈ F , τ > 0 and α : S × S → [0,+∞) . Then, P is called a generalized α-
admissible Suzuki-type (α, F)-contraction if the following condition is satisfied:

1
2v

b(s, Ps) < b(s, u)

implies
α(s, Ps)α(u, Pu)F

(
v3b(Ps, Pu)

)
+ τ ≤ F(Ω(s, u)), (1)

for all s, u ∈ S, α(s, u) ≥ 1 and b(Ps, Pu) > 0, where

Ω(s, u) = κ
[
b(s, u), b(s, Ps), b(u, Pu), b(s,Pu)+b(u,Ps)

4v

]
for some κ ∈ W4.

Definition 8. Let (S, b) be a b-m.l.s with parameter v ≥ 1, P : S → S be a self-mapping
and α : S × S → [0, +∞) . Then, P is an α-admissible Hardy–Rogers Suzuki-type interpola-
tive (α, F)-contraction, if there exist F ∈ F , τ > 0 and a1, a2, a3, a4 ∈ (0, 1) with
0 < a1 + a2 + a3 + a4 < 1, such that

1
2v

b(s, Ps) < b(s, u)

implies
α(s, Ps)α(u, Pu)F

(
v3b(Ps, Pu)

)
+ τ ≤ F(Ωa(s, u)) (2)

for all s, u ∈ S\Fix(P), α(s, u) ≥ 1 and b(Ps, Pu) > 0, where

Ωa(s, u) = (b(s, u))a1 · (b(s, Ps))a2 · (b(u, Pu))a3 ·
(

b(s, Pu) + b(u, Ps)
4v

)a4

.

Definition 9. Let (S, b) be a b-m.l.s with parameter v ≥ 1, P : S → S be a self-mapping
and α : S × S → [0,+∞) . Then, P is an α-admissible Hardy–Rogers Suzuki-type r-order hy-
brid (α, F)-contraction, if there exist F ∈ F , τ > 0 such that:

1
2v

b(s, Ps) < b(s, u)

implies
α(s, Ps)α(u, Pu)F

(
v3b(Ps, Pu)

)
+ τ ≤ F(Ωr

a(s, u)) (3)

for all s, u ∈ S\Fix(P), α(s, u) ≥ 1, r ≥ 0, ai ≥ 0, i = 1, 2, 3, 4 such that 0 < a1 + a2 + a3 +
a4 = 1 and b(Ps, Pu) > 0, where

Ωr
a(s, u) =


[

a1(b(s, u))r + a2(b(s, Ps))r + a3(b(u, Pu))r + a4

(
b(s,Pu)+b(u,Ps)

4v

)r] 1
r

f or r > 0, s ̸= u

(b(s, u))a1(b(s, Ps))a2(b(u, Pu))a3
(

b(s,Pu)+b(u,Ps)
4v

)a4
f or r = 0 ; s, u ∈ S\Fix(P).
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Remark 3. Some notable cases of introduced definitions include the following:

• v = 1 corresponds to all in metric setting.
• F : (0,+∞) → R can be fixed regarding its condition, and it turns to a generalized Suzuki-

type α-contractions.
• α(s, u) = 1, leads to types of Suzuki (v, F)-contraction defined in a b-m.l.s.
• All cases above taken simultaneously.

Theorem 1. Let (S, b) be a complete b-m.l.s with parameter v ≥ 1 and P a generalized α-admissible
Suzuki-type F-contraction. Assume that

J1. there exists s0 ∈ S with α(s0, Ps0) ≥ 1;
J2. P is α-admissible and satisfies AC-property.

Then, P has a fixed point in S, and it is unique if α(s, Ps) ≥ 1, for all s ∈ Fix(P).

Proof. Let be sn+1 = Psn for n ∈ N ∪ {0}, the Picard sequence induced by func-
tion P with initial point s0 ∈ S with α(s0, Ps0) ≥ 1. Let we perform the general case
where sn ̸= sn+1 for each n ∈ N ∪ {0}, (that is the same with 0 < b(sn, Psn)). Since P is α-
admissible, then α(s0, Ps0) = α(s0, s1) ≥ 1 implies α(Ps0, Ps1) = α(s1, s2) ≥ 1. Repeating
this process we obtain α(sn, sn+1) ≥ 1. Hence, we have α(sn, sn+1) ≥ 1, and sn ̸= sn+1
implies 1

2v b(sn, Psn) < b(sn, Psn) = b(sn, sn+1) .□

Therefore, we apply Condition (1) of theorem

F(b(sn+1, sn+2)) + τ ≤
≤ α(sn, Psn)α(sn+1, Psn+1)F

(
v3b(Psn, Psn+1)

)
+ τ

≤ F
(

κ
(

b(sn, sn+1), b(sn, Psn), b(sn+1, Psn+1),
b(sn ,Psn+1)+b(sn+1,Psn)

4v

))
= F

(
κ
(

b(sn, sn+1), b(sn, sn+1), b(sn+1, sn+2),
b(sn ,sn+2)+b(sn+1,sn+1)

4v

))
≤ F

(
κ
(

b(sn, sn+1), b(sn, sn+1), b(sn+1, sn+2),
v(b(sn ,sn+1)+b(sn+1,sn+2))+2vb(sn+1,sn)

4v

))
≤ F

(
κ
(

b(sn, sn+1), b(sn, sn+1), b(sn+1, sn+2),
b(sn+1,sn+2)+3b(sn+1,sn)

4

))
(4)

If suppose that
b(sn, sn+1) < b(sn+1, sn+2),

then from Inequality (4), we obtain

F(b(sn+1, sn+2)) + τ < F(κ(b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2))),

that implies

F(b(sn+1, sn+2)) ≤ F(κ(b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2)))− τ
< F(κ(b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2))).

And from property of F have

b(sn+1, sn+2) < κ(b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2), b(sn+1, sn+2)).

That is a contradiction based with property of κ. So we have that

b(sn+1, sn+2) ≤ b(sn, sn+1) for all n ∈ N. (5)

Then, using the result (5), Inequality (4) yields

F(b(sn+1, sn+2)) ≤ F(b(sn, sn+1))− τ (6)
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Repeating this in general we obtain

F(b(sn+1, sn+2)) ≤ F(b(sn, sn+1))− τ
≤ F(b(sn−1, sn))− 2τ
≤ F(b(sn−2, sn−1))− 3τ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
≤ F(b(s0, s1))− nτ.

As per above we have lim
n→+∞

F(b(sn, sn+1)) = −∞ since τ > 0. Hence, in view of property

of F we obtain
lim

n→+∞
b(sn, sn+1) = 0 (7)

Next, we show that lim
n,m→+∞

b(sn, sm) = 0. Let we suppose that lim
n,m→+∞

b(sn, sm) > 0.

Then, by Lemma 3, there exist ε > 0 and sequences {mk} and {nk} of positive integers
with nk > mk > k, such that b(smk , snk ) ≥ ε,b(smk , snk−1) < ε and

ε
v2 ≤ limsup

k→+∞
b(smk−1, snk−1) ≤ ε v, ε

v ≤ limsup
k→+∞

b(snk−1, smk ) ≤ ε,

ε

v
≤ limsup

k→+∞
b(smk−1, snk ) ≤ εv2 (8)

From (7) and (8) we observe 1
2v b
(
snk , Psnk

)
< ε

2v < b(smk , snk) and 0 < ε ≤ b(smk , snk) =
b
(
Psmk−1, Psnk−1

)
Hence, applying Condition (1), we obtain

F
(
v3b(Psmk , Psnk )

)
+ τ ≤ α(smk , Psmk )α(snk , Psnk )F

(
b(Psmk , Psnk )

)
+ τ

≤ F
(

κ(b(smk , snk ), b(smk , Psmk ), b(snk , Psnk ),
b(smk ,Psnk )+b(snk ,Psmk )

4v )

)
= F

(
κ

[
b(smk , snk ), b(smk , smk+1), b(snk , snk+1),

b(smk ,snk+1)+b(snk ,smk+1)

4v

])
,

(9)

that implies

F
(
v3b(Psmk , Psnk )

)
+ τ ≤

≤ F
(

κ

[
b(smk , snk ), b(smk , smk+1), b(snk , snk+1),

b(smk ,snk+1)+b(snk ,smk+1)

4v

])
.

(10)

By taking the limit superior as k → +∞ along (10), we write

limsup
k→+∞

F
(
v3b(Psmk , Psnk )

)
+ τ ≤

≤ limsup
k→+∞

F
(

κ

[
b(smk , snk ), b(smk , smk+1), b(snk , snk+1),

b(smk ,snk+1)+b(snk ,smk+1)

4v

])
≤ F

(
κ

[
limsup

k→∞
b(smk , snk ), limsup

k→∞
b(smk , smk+1), limsup

k→∞
b(snk , snk+1),

limsup
x→∞

b(smk ,snk+1)+limsup
x→∞

b(snk ,smk+1)

4v

])
.

(11)

From (11), by using Lemmas 3 and result (7), we conclude

F
(

v3 ε
v2

)
≤ F

(
limsup
n→+∞

v3b(smk+1, snk+1)

)
+ τ

≤ F
(

κ
[
εv, 0, 0, ε+εv2

4v

])
≤ F

(
κ
[
εv, 0, 0, εv

2
])

≤ F(εv).
(12)

Hence, the acquired inequality

F(εv) + τ < F(εv)

is a contradiction since ε > 0 and τ > 0.
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Hence,
lim

n,m→+∞
b(sn, sm) = 0. (13)

The sequence {sn} is a b-Cauchy sequence such that lim
n,m→∞

b(sn, sm) = 0. Since (S, b) is

a b-complete b-m.l.s, there is s∗ ∈ S, such that

b(s∗, s∗) = lim
n→∞

b(sn, s∗) = lim
n,m→∞

b(sn, sm) = 0. (14)

Further let we show that

1
2v

b(sn, Psn) < b(sn, s∗) or
1

2v
b
(

Psn, P2sn

)
< b(Psn, s∗) (15)

On the contrary, there exists m ∈ N with

1
2v

b(sm, Psm) ≥ b(sm, s∗) and
1

2v
b
(

Psm, P2sm

)
≥ b(Psm, s∗). (16)

Therefore,

2vb(sm, s∗) ≤ b(sm, Psm) ≤ vb(sm, s∗) + vb(s∗, Psm),

and it gives
b(sm, s∗) ≤ b(s∗, Psm). (17)

Using (14) and (17), we conclude

b
(

Psm, P2sm
)

= b(sm+1, sm+2)
< b(sm, sm+1)
= b(sm, Psm)
≤ vb(sm, s∗) + vb(s∗, Psm)
≤ 2vb(s∗, Psm).

and inequality above implies that

1
2v

b
(

Psm, P2sm

)
< b(s∗, Psm),

that is a contradiction due to (16). Hence, Inequality (15) is true.
Therefore,

1
2v

b(sn, Psn) < b(sn, s∗) ,b(Psn, Ps∗) > 0 and α(s∗, Ps∗) ≥ 1.

So, we are in conditions to apply (1), and we have

F
(
v3b(sn+1, Ps∗)

)
+ τ < α(sn, Psn)α(s∗, Ps∗)F

(
v3b(Psn, Ps∗)

)
+ τ

≤ F
(

κ
(

b(sn, s∗), b(sn, Psn), b(s∗, Ps∗), b(sn ,Ps∗)+b(s∗ ,Psn)
4v

))
= F

(
κ
(

b(sn, s∗), b(sn, sn+1), b(s∗, Ps∗), b(sn ,Ps∗)+b(s∗ ,sn+1)
4v

)) (18)

Taking limit superior as n → +∞ in Inequality (18) and keeping in mind (7), (14), and
Lemma 3, we obtain

F
(
v2b(s∗, Ps∗)

)
+ τ ≤ F

(
κ
(

0, 0, b(s∗, Ps∗), vb(s∗ ,Ps∗)+0
4v

))
≤ F(κ(b(s∗, Ps∗), b(s∗, Ps∗), b(s∗, Ps∗), b(s∗, Ps∗)))
≤ F(b(s∗, Ps∗)),
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that implies
F
(

v2b(s∗, Ps∗)
)
+ τ ≤ F(b(s∗, Ps∗)). (19)

Inequality (19) leads to a contradiction, so b(s∗, Ps∗) = 0, and s∗ ∈ S is a fixed point of
function P. Also, the uniqueness of the fixed point can be proved easily from Condition (1)
of the theorem.

Let there be two different fixed points named u, s with α(s, Ps) ≥ 1, α(u, Pu) ≥ 1.
Then

u ̸= s implies 0 < b(u, s) = b(Pu, Ps),

and
u ̸= s implies 0 =

1
2v

b(u, Pu) < b(u, s).

Hence, being in the conditions of theorem and in view of (14), Inequality (1) implies

F
(
v3b(u, s)

)
+ τ < α(u, Pu)α(s, Ps)F

(
v3b(Pu, Ps)

)
+ τ

≤ F
(

κ
(

b(u, s), b(u, Pu), b(s, Ps), b(u,Ps)+b(s,Pu)
4v

))
= F

(
κ
(

b(u, s), b(u, u), b(s, s), b(u,s)+b(s,u)
4v

))
= F

(
κ
(

b(u, s), 0, 0, b(u,s)
2v

))
≤ F(κ(b(u, s), b(u, s), b(u, s), b(u, s))).

(20)

From (20), we obtain

F
(

v3b(u, s)
)
+ τ ≤ F(κ(b(u, s), b(u, s), b(u, s), b(u, s))),

which implies

F
(
v3b(u, s)

)
≤ F(κ(b(u, s), b(u, s), b(u, s), b(u, s)))− τ
< F(κ(b(u, s), b(u, s), b(u, s), b(u, s))).

(21)

The above inequality implies b(u, s) < κ(b(u, s), b(u, s), b(u, s), b(u, s)) that is a contra-
diction due to property of κ. Therefore, the fixed point is unique.

Example 4. Let (S, b) be a complete b-m.l.s with parameter v = 2 > 1, where the b-m.l. distance is
given as b(s, u) = (s + u)2. Define the mappings P and α by

P(s) =
{

s/8 f or s ∈ [0, 1]
3s f or s > 1

, α(s, u) =
{

1 f or s, u ∈ [0, 1]
0 otherwise

.

Clearly, the mapping P is α-admissible. And for s, u ∈ [0, 1], we have

1
2v

b(s, Ps) =
1
4

b
(

s,
s
8

)
=

1
4

(
s +

s
8

)2
≤ s2 ≤ (s + u)2 = b(s, u).

Take F ∈ F , such as F(t) = ln t, κ(u1, u2, u3, u4) = max{u1, u2, u3, u4} and τ = ln 8.
We see that for s, u ∈ S that α(s, u) = 1, we have s, u ∈ [0, 1] and one can compute:

α(s, Ps)α(u, Pu)v3F(b(Ps, Pu)) + τ = ln
(
v3b(Ps, Pu)

)
+ ln 8 = ln

(
8
( s

8 + u
8
)2
)
+ ln 8

= ln
(

8
64 (s + u)2

)
+ ln 8 ≤ ln

(
1
8 b(s, u)

)
+ ln 8

= ln(b(s, u))− ln 8 + ln 8

≤ ln
(

max
{

b(s, u), b(s, Ps), b(u, Pu), b(s,Pu)+b(u,Ps)
4v

})
= ln

(
κ
[
b(s, u), b(s, Ps), b(u, Pu), b(s,Pu)+b(u,Ps)

4v

])
= ln(Ω(s, u))
= F(Ω(s, u)).
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Then, P is a generalized Suzuki-type (α, F)-contraction, and assumptions of theorem 1
are satisfied. Hence, s = 0 is the unique fixed point for P.

Theorem 2. Let (S, b) be a complete b-m.l.s with parameter v ≥ 1 and P a generalized α-admissible
Suzuki-type F-contraction. Assume that

J1. P is α-admissible and there exists s0 ∈ S with α(s0, Ps0) ≥ 1;
J1. S is α regular and for every sequence {sn} in S such that α(sn, sn+1) ≥ 1 for all n ∈ N ∪ {0},

we have α(sm, sn) ≥ 1 for all m, n ∈ N with m < n.

Then, P has a fixed point, and it is unique if α(s, u) ≥ 1, for all s, u ∈ Fix(P).

Proof. Using J1, we define the Picard sequence sn+1 = Psn for n ∈ N ∪ {0}, induced
by function P with initial point s0 ∈ S with α(s0, Ps0) ≥ 1. From the theorem above, it is
concluded that the sequence {sn} is a b-Cauchy sequence such that lim

n,m→∞
b(sn, sm) = 0.

And there is s∗ ∈ S, such that

b(s∗, s∗) = lim
n→∞

b(sn, s∗) = lim
n,m→∞

b(sn, sm) = 0.

In the same, we can show that

1
2v

b(sn, Psn) < b(sn, s∗) or
1

2v
b
(

Psn, P2sn

)
< b(Psn, s∗)

Since S is regular, there exists a subsequence
{

snk

}
of {sn} such that α

(
snk , s

)
≥ 1 for

all k ∈ N. Similarly holds

1
2v

b
(
snk , Psnk

)
< b

(
snk , s∗

)
or

1
2v

b
(

Psnk , P2snk

)
< b

(
Psnk , s∗

)
.

Therefore, applying (1), we have

F
(
v3b
(
snk+1, Ps∗

))
+ τ < α

(
snk , Psnk

)
α(s∗, Ps∗)F

(
v3b
(

Psnk , Ps∗
))

+ τ

≤ F
(

κ

(
b
(
snk , s∗

)
, b
(
snk , Psnk

)
, b(s∗, Ps∗),

b(snk ,Ps∗)+b(s∗ ,Psnk )
4s

))
= F

(
κ

(
b
(
snk , s∗

)
, b
(
snk , snk+1

)
, b(s∗, Ps∗),

b(snk ,Ps∗)+b
(

s∗ ,snk+1

)
4v

))
.

(22)

Taking limit superior in Inequality (22) and keeping in mind lemma 3, we obtain

F
(
v2b(s∗, Ps∗)

)
+ τ ≤ F

(
κ
(

0, 0, b(s∗, Ps∗), vb(s∗ ,Ps∗)+0
4v

))
≤ F(κ(b(s∗, Ps∗), b(s∗, Ps∗), b(s∗, Ps∗), b(s∗, Ps∗)))
≤ F(b(s∗, Ps∗)),

which implies
F
(

v2b(s∗, Ps∗)
)
+ τ ≤ F(b(s∗, Ps∗)). (23)

Inequality (23) leads to a contradiction, so b(s∗, Ps∗) = 0, and s∗ ∈ S is a fixed point of
function P. □

Let be two different fixed points named u, s with α(u, s) ≥ 1.
and

u ̸= s implies 0 < b(u, s) = b(Pu, Ps),

also
u ̸= s implies 0 =

1
2v

b(u, Pu) < b(u, s)
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Hence, Inequality (1) can be written as

F
(
v3b(u, s)

)
+ τ < α(u, Pu)α(s, Ps)F

(
v3b(Pu, Ps)

)
+ τ

≤ F
(

κ
(

b(u, s), b(u, Pu), b(s, Ps), b(u,Ps)+b(s,Pu)
4v

))
= F

(
κ
(

b(u, s), b(u, u), b(s, s), b(u,s)+b(s,u)
4v

))
= F

(
κ
(

b(u, s), 0, 0, b(u,s)
2v

))
≤ F(κ(b(u, s), b(u, s), b(u, s), b(u, s))).

(24)

From (24), we obtain

F
(

v3b(u, s)
)
+ τ ≤ F(κ(b(u, s), b(u, s), b(u, s), b(u, s))),

that is
F
(
v3b(u, s)

)
≤ F(κ(b(u, s), b(u, s), b(u, s), b(u, s)))− τ
< F(κ(b(u, s), b(u, s), b(u, s), b(u, s))),

(25)

which implies b(u, s) < κ(b(u, s), b(u, s), b(u, s), b(u, s)) that is a contradiction due to prop-
erty of κ. Therefore, the fixed point is unique.

Corollary 1. Let (S, b) be a complete b-m.l.s with parameter v ≥ 1 and P : S → S. If there
exist F ∈ F , τ > 0 such that

1
2v

b(s, Ps) < b(s, u)

implies
F
(

v3b(Ps, Pu)
)
+ τ ≤ F(Ω(s, u)),

for all s, u ∈ S, b(Ps, Pu) > 0 where

Ω(s, u) = κ
[
b(s, u), b(s, Ps), b(u, Pu), b(s,Pu)+b(u,Ps)

4v

]
for some κ ∈ W4,

then P has a unique fixed point in S.

Proof. Corollary can be obtained from Theorem 1 by taking α(s, u) = 1.□

Now we will propose some new results belonging to the class of Suzuki (α, F)-
contractions.

Theorem 3. Let we have (S, b) a b-m.l.s with parameter v ≥ 1, P : S → S, and
α : S × S → [0,+∞). If P is an Hardy–Rogers Suzuki- type interpolative (α, F)-contraction,

satisfying conditions J1, J2, then P has a fixed point in S. And it is unique if α(s, Ps) ≥ 1, for
all s ∈ Fix(P).

Proof. It is a consequence of Theorem 1 by taking κ ∈ W4 as κ(γ1, γ2, γ3, γ4) = γ1
a1 · γ2

a2 ·
γ3

a3 · γ4
1−a1−a2−a3 ; where a1, a2, a3 ∈ (0, 1) and a1 + a2 + a3 < 1. □

Theorem 4. Let we have (S, b) a b-m.l.s with parameter v ≥ 1, P : S → S, and
α : S × S → [0,+∞). If there exist F ∈ F , τ > 0 such that hold condition J1, J2 and:

1
2v

b(s, Ps) < b(s, u)

implies

α(s, Ps)α(u, Pu)F
(
v3b(Ps, Pu)

)
+ τ ≤

F

([
a1(b(s, u))r + a2(b(s, Ps))r + a3(b(u, Pu))r + a4

(
b(s,Pu)+b(u,Ps)

4v

)r] 1
r

)
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for all s, u ∈ S, α(s, u) ≥ 1, b(Ps, Pu) > 0 and r > 0.

Then, P has a fixed point in S. And it is unique if α(s, Ps) ≥ 1, for all s ∈ Fix(P).

Proof. It comes from Theorem 1 by taking κ ∈ W4 as κ(γ1, γ2, γ3, γ4) =

[a1γ1
r + a2γ2

r + a3γ3
r + a4γ4

r]
1
r , r > 0; where 0 < a1 + a2 + a3 + a4 < 1. □

Theorem 5. Let (S, b) be a b-m.l.s with parameter v ≥ 1, and mappings
P : S → S, α : S × S → [0,+∞) . If the following conditions are satisfied

- There exists s0 ∈ S with α(s0, Ps0) ≥ 1;
- P is α-admissible mapping and satisfies AC-property;
- Pis a Hardy–Rogers Suzuki –type r-order hybrid (α, F)-contraction.

Then, P has a fixed point in S. And it is unique if α(s, Ps) ≥ 1, for all s ∈ Fix(P).

Proof. The Lr
a(s, u) can be represented as

Ωr
a(s, u) =

{
κ1(γ1, γ2, γ3, γ4) = (a1γ1

r + a2γ2
r + a3γ3

r + a4γ4
r)

1
r f or r > 0,

κ2(γ1, γ2, γ3, γ4) = γ1
a1 · γ2

a2 · γ3
a3 · γ4

a4 f or r = 0 .

where κ1, κ2 ∈ W4, a1, a2, a3, a4 ≥ 0 with 0 < a1 + a2 + a3 + a4 = 1, r ≥ 0. Hence, the proof
can be classified in Theorem 1. □

Corollary 2. Let (S, b) be a b-m.l.s with parameter v ≥ 1, and P : S → S . If there exist F ∈
F , τ > 0 such that

1
2v

b(s, Ps) < b(s, u)

implies
F
(

v3b(Ps, Pu)
)
+ τ ≤ F(Ωa

r(s, u))

for all s, u ∈ S\Fix(P), r ≥ 0, b(Ps, Pu) > 0 and ai ≥ 0, i = 1, 2, 3, 4 such that
0 < a1 + a2 + a3 + a4 = 1,where

Ωr
a(s, u) =


[

a1(b(s, u))r + a2(b(s, Ps))r + a3(b(u, Pu))r + a4

(
b(s,Pu)+b(u,Ps)

4v

)r] 1
r

f or r > 0, s ̸= u

(b(s, u))a1(b(s, Ps))a2(b(u, Pu))a3
(

b(s,Pu)+b(u,Ps)
4v

)a4
f or r = 0 ; s, u ∈ S\Fix(P).

Then, P has a fixed point in S.

Proof. It can be derived from Theorem 5 by taking α(s, u) = 1. □

Corollary 3. Let (S, b) be a b-m.l.s with parameter v ≥ 1, and P : S → S , α : S × S → [0,+∞) .
If there exist F ∈ F , τ > 0 such that hold condition J1, J2 and

1
2v

b(s, Ps) < b(s, u)

implies

τ + α(s, Ps)α(u, Pu)v3b(Ps, Pu) ≤ (b(s, u))a1 · (b(s, Ps))a2 · (b(u, Pu))a3 ·
(

b(s, Pu) + b(u, Ps)
4v

)a4

for all s, u ∈ S\Fix(P), b(Ps, Pu) > 0 and ai ≥ 0, i = 1, 2, 3, 4 such that 0 < a1 + a2 + a3 + a4 = 1,

Then, P has a fixed point in S. And it is unique if α(s, Ps) ≥ 1, for all s ∈ Fix(P).
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Proof. The proof is called done by Theorem 1, if we take F ∈ F , as F(x) = x and

κ(u1, u2, u3, u4) = (u1)
a1 · (u2)

a2 · (u3)
a3 · (u4)

1−(a1+a2+a3).□

Corollary 4. Let (S, b) be a b-m.l.s with parameter v ≥ 1, and P : S → S . If there exist F ∈ F ,
τ > 0 such that:

1
2v

b(s, Ps) < b(s, u)

implies

τ + v3b(Ps, Pu) ≤ (b(s, u))a1 · (b(s, Ps))a2 · (b(u, Pu))a3 ·
(

b(s, Pu) + b(u, Ps)
4v

)a4

for all s, u ∈ S\Fix(P), b(Ps, Pu) > 0 and ai ≥ 0, i = 1, 2, 3, 4 such that 0 < a1 + a2 + a3 + a4 = 1,

Then, P has a fixed point in S.

Proof. It is generated by corollary 3 by taking α(s, u) = 1.□

4. Application

The study of the existence and finding of the solution of differential and integral
equations is a longstanding problem, so one of the main tools of the solution is developed
and consists of the application of the fixed point method. Many researchers have employed
various contractions in different metric spaces to define the necessary conditions for a
variety of types of linear and nonlinear integral equations

In this supported section, by employing b-m.l.s, the purpose is to prove the existence
and uniqueness of the solution for the following integral equation of the form:

x(t) = h(t, x(t)) + λ
∫ t

0
G(t, ρ)h(ρ, x(ρ))dρ; t ∈ [0, 1] , (26)

where 0 ≤ t ≤ 1 and given continuous functions G : [0.1]× R → [0,+∞) , h : [0.1]× R → R .
Consider Y = C([0, 1], R) the set of real continuous functions defined on [0, 1] with

the b-metric-like b(s, u) = sup
t∈[0,1]

|s(t) + u(t)|m for all s, u ∈ Y. The pair (Y, b) is a complete b-

m.l.s with parameter v = 2m−1.
Define the mapping P : Y → Y for all x ∈ C[0, 1], by

Px(t) = h(t, x(t)) + λ
∫ t

0
G(t, ρ)h(ρ, x(ρ))dρ .

Associated with the following hypotheses:

(i) The mapping P : Y → Y is continuous;

There exists constant A > 0 such that h : [0, 1]× R → R satisfies h(ρ, v(ρ))+ h(ρ, u(ρ)) ≤
A|v(ρ) + u(ρ)| for t, ρ ∈ [0, 1] ;

(ii) The constants λ, A and function G satisfy condition λsup
∫ t

0 G(t, ρ)dρ <
1

A m√v4
− 1

for t, ρ ∈ (0, 1).

Theorem 6. If for the integral Equation (26) assume the assertions: (i), (ii), (iii) then, the integral
Equation (26) has a unique solution x(t) in Y.

Proof. Solving Equation (26) is equivalent to find x(t) ∈ Y which is a fixed point of
function P. And for all t ∈ [0, 1], and x, u ∈ Y we have
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v3σb(Px(t), Pu(t)) = v3|Px(t) + Pu(t)|m

= v3
∣∣∣h(t, x(t)) + λ

∫ t
0 G(t, ρ)h(ρ, x(ρ))dρ + h(t, u(t))+λ

∫ t
0 G(t, ρ)h(ρ, u(ρ))dρ

∣∣∣m
= v3

∣∣∣[h(t, x(t)) + h(t, u(t))] + λ
[∫ t

0 G(t, ρ)h(ρ, x(ρ))dρ+
∫ t

0 G(t, ρ)h(ρ, u(ρ))dρ
]∣∣∣m

= v3
∣∣∣[h(t, x(t)) + h(t, u(t))] + λ

[∫ t
0 G(t, ρ)(h(ρ, x(ρ)) + h(ρ, u(ρ)))dρ

]∣∣∣m
≤ v3

∣∣∣A|x(t) + u(t)|+ λ
[∫ t

0 G(t, ρ)A|x(ρ) + u(ρ)|dρ
]∣∣∣m

= v3

∣∣∣∣∣∣A(|x(t) + u(t)|m
) 1

m + λ

∫ t
0 G(t, ρ)A

(
|x(ρ) + u(ρ)|m

) 1
m dρ

∣∣∣∣∣∣
m

= v3

∣∣∣∣∣∣A(b(x, u))
1
m + λ

∫ t
0 G(t, ρ)A(b(x, u))

1
m dρ

∣∣∣∣∣∣
m

= v3

∣∣∣∣∣∣A(b(x, u))
1
m + λA(b(x, u))

1
m
∫ t

0 G(t, ρ)dρ

∣∣∣∣∣∣
m

= v3

∣∣∣∣∣∣A(b(x, u))
1
m
(

1 + λ
∫ t

0 G(t, ρ)dρ
)∣∣∣∣∣∣

m

= v3 Amb(x, u)
∣∣∣1 + λ

∫ t
0 G(t, ρ)dρ

∣∣∣m
≤ v3 Amb(x, u)

∣∣∣∣ 1

A m√v4

∣∣∣∣m
≤ b(x, u)

v

(27)

Further, taking κ ∈ W4 as κ(γ1, γ2, γ3, γ4) = γ1 we can obtain:

v3b(Px(t), Pu(t)) ≤ 1
v

L(x, u).

Consequently, by choosing: F(ζ) = ln(ζ), τ = ln v we deduce

1
2v

b(x, Px) ≤ b(x, u) implies F
(

v3b(Px, Pu)
)
+ τ ≤ F(L(x, u))

which implies that P is a generalized Suzuki-type (v, F)-contraction. Thus, Corollary 1 is
applicable and x(t) is the fixed point of P which is the solution of the integral Equation (26). □

5. Conclusions

In this work, via the help of an implicit class of functions, we introduced new con-
tractive mappings, including linear and nonlinear contractions revised under the name of
Suzuki contractions. Our approach generates and resumes more well-known fixed point
theorems; it shows the validity and generality of the proof of the main result for broad
setting theorems. Also, it provides a further extension on the recent published work in the
fixed point theory.

A future focus holds for the following:

- A consistent improvement in the inequality condition can be considered in terms
of “v”;

- The extension of the established Suzuki results in extended b-m.l.s; rectangular metric space;
and b-rectangular metric spaces elaborating with the notion of α-admissible mappings.
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