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Abstract As shown by Abramsky and Coecke, quantum mechanics can be studied in terms of dagger compact
closed categories with biproducts. Within this structure, many well-known quantum protocols can be described and
their validity can be shown by establishing the commutativity of certain diagrams in that category. In this paper, we
propose an explicit realization of a category with enough structure to check the validity of a certain class of quantum
protocols. To do this, we construct a category based on one-dimensional cobordisms with attached elements of a
certain group freely generated by a finite set. We use this category as a graphical language, and we show that it is
dagger compact closed with biproducts. Then relying on the coherence result for compact closed categories, proved
by Kelly and Laplaza, we show the coherence result, which enables us to check the validity of quantum protocols
just by drawing diagrams. In particular, we show the validity of quantum teleportation, entanglement swapping (as
formulated in the work of Abramsky and Coecke) and superdense coding protocol.
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1 Introduction

This paper offers amathematical result and its application in the field of quantum information. The goal is to provide a
minimal graphical language sufficient for the verification of categorical quantum protocols. This is achieved through
a category 1Cob⊕

G based on the category of one-dimensional cobordisms. We will work out in some detail a few
quantum protocols and apply a technique of their verification based on the category 1Cob⊕

G. This work contains
both pure mathematical results as well as results in the applied field of quantum information, which are related to
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both physics and computer science. Therefore, we will try to make our exposition sufficiently detailed to make the
results available to a larger group of scientists from different areas.

There are several diagrammatic calculi proposed earlier (e.g., [7,31]) appropriate for the verificationof categorical
quantum protocols. Our intention is to make one within a frame of a category relevant to quantum mechanics—the
category of cobordisms. This is achieved by relying on a result from Ref. [20] just by relaxing (i.e., neglecting some
components of) the arrows of a category constructed in that paper. However, some labels of connected components
of the underlying manifolds remain in our calculus, but we have minimized their role. One way to get rid of all
labels is to increase the dimension of cobordisms in question. We discuss this suggestion in Sect. 9. Note that we
are not trying to provide a diagrammatic calculus that is better for practical purposes than the existing ones (for
example, ZX calculus [8]), but rather to, in a very precise manner, formulate one calculus that uses geometry and
that is able to capture some aspects of quantum mechanics. We are aware that our method is not universal and that
the complexity of certain quantum phenomena cannot be captured by one-dimensional cobordisms. Also, we do
not claim that we can formulate and check the validity of all quantum protocols (for example, it is hard to simulate
the most general unitary operator acting on two qubits). A language based on cobordisms should be taken as a
mathematical tool having some computational advantages compared to standard “linear-word” languages. However,
as usual with syntax, such a language does not capture all the mathematical details of the subject.

Ever since its formulation in the first half of the twentieth century, quantum mechanics is naturally set to live in a
separable Hilbert space. This enables one to talk about notions such as entanglement and measurement in an almost
trivial way. However, they are far from being understood by the scientific community. While the basic mathematical
formalism is easy to understand, its physical meaning is much less clear and various interpretations of quantum
mechanics are possible, without currently any basis onwhichwe could select only one that is correct. Thismeans that
it could be fruitful to reconsider some basic notions about quantum mechanics and to try to formulate it in terms of
a different mathematical structure. For example, a recently emerged and fast expanding field of fractional quantum
mechanics is developed by applying the fractional calculus (which is a generalization of classical differential and
integral calculus) in quantum physics. Following this approach, and in a similar spirit to our research, authors in the
recent study, Ref. [3] simulated the spatial form of the fractional Schrödinger equation for the electrical screening
potential using the fractional derivatives and the numerical simulation methods.

Similar motivation led authors of Ref. [1] to develop the so-called categorical approach to quantummechanics in
terms of dagger compact closed categories with biproducts. Of course, the starting point is naturally the case where
standard Hilbert-space formalism leads to the consideration of finite dimensional spaces (for example, consideration
of spin 1/2 gives rise to the two dimensional Hilbert space; on the other hand, it is not too hard to construct classical
theories whose Hilbert space after quantization turns out to be finite dimensional, [33], although they are much
less known for an average physicist). For simplicity, and for the practical application, we restrict to the case of
two dimensional Hilbert spaces (qubits). Basis vectors are |0〉 and |1〉 (we use Dirac notation for this part). If we
denoteH = span (|0〉, |1〉), then the total Hilbert space of a composite bipartite system isH⊗H. As we use tensor
product, there are no projections toH, and we can introduce the notion of an entangled state. For example, we can
form a basis inH ⊗ H from the entangled states as

|β1〉 = 1√
2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉),

|β2〉 = 1√
2
(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉),

|β3〉 = 1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉),

|β4〉 = 1√
2
(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉).
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Basis {βi }i=4
i=1 is usually referred to as Bell basis (see e.g., Ref. [27]). Of course, this construction is made on a few

assumptions. The first one is a linear structure of vector spaces. Historically, linear structure was a natural guess
based on an intuition about wavelike properties of particles (electrons). For example, it was known long before the
birth of quantum mechanics that light can be described in terms of oscillating electric and magnetic fields and that
for those fields, the superposition principle holds (linearity of Maxwell’s equations). Moreover, the intensity of a
wave is proportional to |E|2 (where E stands for a complex representative of the electric field), and this further
motivates the Born rule for probabilities associated with the measurement outcome. Despite its success, it is still
intriguing to consider theories without vector space structure.

Passing from Hilbert spaces to categorical semantics of quantum protocols means abstracting the superfluous
structure and keeping only the properties of the category of Hilbert spaces necessary to express these protocols.
There are no other assumptions about the categories which could cause suspicion during the process of protocol
validation. This means that checking the validity of such protocols using categorical semantics could be instantiated
in any type of categories satisfying these properties. Needless to say that it includes the category of Hilbert spaces,
where quantum mechanics is formulated.

Quantum mechanics can be considered as a special case of quantum field theories for 0 + 1 dimensions. On
the other hand, it is well known that one approach to quantum field theories (especially to the case of topological
quantum field theories) is using cobordisms to represent space-time evolution processes. This opens another natural
question, and that is to what extent one can use the category 1Cob (of one-dimensional cobordisms) to simulate
quantum mechanical processes. In addition, there are ideas from quantum gravity, in the context of AdS/CFT
correspondence [24], that some aspects of quantum theory (for example, entanglement entropy) could be obtained
from geometry [30]. Quantum–geometry relation is also evident in ER = EPR proposal [25]. Therefore, seeking
the role of geometry in quantum physics is interesting on its own. The results of our paper can be viewed as a
step toward understanding the connection between quantum mechanics and geometry. We have to note that our
ambitions are not to define the most useful computing tool for checking quantum protocols, but rather to show that
there are cases where geometry and quantum physics combine, and where their relations can be formulated using
very precise mathematics. See also Ref. [6] for some other relations between geometry and quantum physics.

To obtain this correspondence, we will introduce the notion of G-cobordisms. They correspond to regular
cobordisms (for a precise definition of 1-dimensional cobordisms, see the following sections), but with additional
structure, such that each connected component has an element of a group G attached. This introduces a notion
of a G-segment or a G-circle. Group elements will play the role of (unitary) transformations that can be done
on a quantum state. Note that a similar idea was discussed in Ref. [19], but without explicitly referring to the
categorical quantum mechanics. In our applications to quantum protocols, we will use specific group elements that
are suitable for applications in those protocols we describe, but one could, in general, use, without changing the
main conclusions, other examples to describe other protocols.

On the other hand, a motivation for our work can be purely mathematical. In category theory and its application,
it is of great importance to establish whether a certain diagram commutes. Usually, this is done by inspection, using
a set of equalities (for example, as those from Appendix A). Though, in principle, a straightforward task, it usually
consumes a non-negligible amount of time. For this reason, it is practical to prove certain coherence results. Such a
result enables one to check the commutativity of diagrams, consisting of canonical arrows of a certain categorical
structure, just by drawing pictures in an appropriate graphical language. It is clear that such a calculation by
drawing pictures requires some effort, and our intention was to prepare such a graphical language that minimizes
the possibility of errors and decreases the computational complexity.

A detailed explanation of our approach to coherence is given in [29, Introduction], where also results akin to
those proven here are presented. Briefly, we start with a freely generated category built out of syntax material,
whose objects are formulae and arrows are equivalence classes of terms in an equational system. Then we show a
completeness result with respect to a model in the form of a graphical category.

In Sect. 2, we review some basic categorical notions relevant for this paper. In Sect. 3, we further discuss the
category 1Cob. Section4 introduces two compact closed categories with some additional structure both freely
generated by a free group considered as a category. The isomorphism of these two categories is established in that
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section. The next two sections (Sects. 5 and 6) are technical necessities and could be skipped in the first reading. In
Sect. 7, we introduce gradually (in several steps) the category 1Cob⊕

G, and formulate the coherence result essential
for the verification of certain categorical quantum protocols, a task we perform in Sect. 8. A possibility of omitting
the labels via increasing the dimension of cobordisms is given in Sect. 9. We give our final remarks in Sect. 10.
Appendix A contains an equational presentation of dagger compact closed categories with dagger biproducts and
Appendix B discusses a categorical approach to scalars and probability amplitudes.

To conclude, this is a theoretical study. It is experimentally validated as far as the mentioned quantum protocols
are.We expectmore real-world examples, implementations, and applications of this theory aftermaking an extension
with three-dimensional cobordisms, which is an ongoing project.

2 Closed categories and biproducts

Some notions from category theory relevant for this paper are introduced in this section. A symmetric monoidal
category is a category A equipped with a distinguished object I , a bifunctor ⊗: A × A → A (we abbreviate
1a ⊗ f and f ⊗ 1a by a ⊗ f and f ⊗ a, respectively) and the natural isomorphisms α, λ and σ with components
αa,b,c : a ⊗ (b⊗ c) → (a ⊗ b) ⊗ c, λa : I ⊗ a → a and σa,b : a ⊗ b → b⊗ a. (Note that in Ref. [1], λ denotes the
inverse of our λ and due to the presence of symmetry, we do not introduce a name for the isomorphism a ∼= a ⊗ I .)
Moreover, the coherence conditions concerning the arrows of A (see the equalities A.6–A.8 in Appendix A) hold.
A symmetric monoidal category ismonoidally strict when the operation ⊗ on its objects is associative with I being
the neutral, and moreover, the arrows α and λ are identities.

A compact closed category is a symmetric monoidal category in which every object a has its dual a∗. This means
that there are units ηa : I → a∗ ⊗a and counits εa : a⊗a∗ → I such that the equalities A.9 of Appendix A hold. If
a functor between two compact closed categories preserves this structure “on the nose”, then we say that it strictly
preserves the compact closed structure, and we use the same terminology in other cases.

It is straightforward to conclude that the following isomorphisms hold in every compact closed category.

ua,b : (a ⊗ b)∗ ∼= b∗ ⊗ a∗, v : I ∗ ∼= I, wa : a∗∗ ∼= a

(In a monoidally strict compact closed category,

ua,b = (b∗ ⊗ a∗ ⊗ εa⊗b) ◦ (b∗ ⊗ ηa ⊗ b ⊗ (a ⊗ b)∗) ◦ (ηb ⊗ (a ⊗ b)∗)

v = εI and wa = (εa∗ ⊗ a) ◦ (σa∗∗,a∗ ⊗ a) ◦ (a∗∗ ⊗ ηa).) A compact closed category is strict when it is monoidally
strict and (a ⊗ b)∗ = b∗ ⊗ a∗, I ∗ = I and a∗∗ = a, while ua,b, v and wa are identities.

For quantum protocols discussed below, the following derived operations on arrows of a compact closed category
are frequently used. For f : a → b, its name � f � : I → a∗ ⊗ b and its coname � f � : a ⊗ b∗ → I are defined as

� f � = (a∗ ⊗ f ) ◦ ηa, � f � = εb ◦ ( f ⊗ b∗).

The function ∗ on objects of a compact closed categoryA, extends to a functor ∗ : Aop → A in the following way.
For f : a → b, let f ∗ : b∗ → a∗ be

λa∗ ◦ σa∗,I ◦ (a∗ ⊗ εb) ◦ α−1
a∗,b,b∗ ◦ ((a∗ ⊗ f ) ⊗ b∗) ◦ (ηa ⊗ b∗) ◦ λ−1

b∗ .

A dagger category is a category A equipped with a functor † : A → Aop such that for every object a and every
arrow f of this category, a† = a, and f †† = f . (For more details, see Refs. [15,31].) A dagger compact closed
category is a compact closed category A, which is also a dagger category satisfying the equalities A.21–A.23 of
Appendix A.

By composing the functors † and ∗, one obtains the functor ∗ = ∗ ◦ † : A → A (a∗ = a∗, f∗ = ( f †)∗). For a
strict dagger compact closed category A, the functor ∗ satisfies

f∗∗ = f, ( f∗)∗ = ( f ∗)∗.

123



A graphical language for quantum. . .

A zero-object is an object which is both initial and terminal. For a category with a zero-object 0, there is a
composite 0a,b : a → 0 → b for every pair a, b of its objects, and for every other zero-object 0′ of this category,
the composite a → 0′ → b is equal to 0a,b. A biproduct of a1 and a2 in a category with a zero-object consists of a
coproduct and a product diagram

a1
ι1−→ a1 ⊕ a2

ι2←− a2, a1
π1←− a1 ⊕ a2

π2−→ a2

for which

π j ◦ ιi =
{

1ai , i = j,
0ai ,a j , otherwise,

(2.1)

where i, j ∈ {1, 2} (cf. the equalities A.16–A.17 in Appendix A). For arrows f1 : a1 → c and f2 : a2 → c, the
unique arrow h : a1 ⊕ a2 → c for which h ◦ ιi = fi , i ∈ {1, 2} is denoted by [ f1, f2], and for arrows g1 : c → a1
and g2 : c → a2, the unique arrow h : c → a1 ⊕ a2 for which π i ◦ h = gi , i ∈ {1, 2} is denoted by 〈 f1, f2〉.

More generally, a biproduct of a family of objects {a j | j ∈ J } consists of a universal cocone (coproduct diagram)
and a universal cone (product diagram)

{ι j : a j → ⊕ j∈J a j | j ∈ J }, {π j : ⊕ j∈J a j → a j | j ∈ J }
for which the equality 2.1 holds for all i, j ∈ J . A category with biproducts is a category with a zero-object and
biproducts for every pair of objects. A biproduct is a dagger biproduct when for every pair a, b of objects the
equalities A.24 of Appendix A hold.

For f, g : a → b in a category with biproducts whose codiagonal and diagonal maps are μb : b ⊕ b → b and
μ̄a : a → a ⊕ a, one defines f + g as μb ◦ ( f ⊕ g) ◦ μ̄a . This operation on the set Hom (a, b) of arrows from a
to b is commutative and has 0a,b as neutral. Moreover, the composition distributes over +. Hence, every category
with biproducts may be conceived as a category enriched over the category Cmd of commutative monoids.

Alternatively, to define biproducts in a category enriched over Cmd, it suffices to assume the existence of a
bifunctor ⊕, a special object 0, and for every pair of objects a, b the arrows π1

a,b : a ⊕ b → a, π2
a,b : a ⊕ b → b,

ι1a,b : a → a ⊕ b and ι2a,b : b → a ⊕ b, for which the equalities A.14–A.19 of Appendix A hold. As a justification
of this approach, see the proof of Corollary 1 below.

In a compact closed categorywith biproducts, tensor distributes over⊕, i.e., there existdistributivity isomorphisms
τa,b,c : a ⊗ (b ⊕ c) → (a ⊗ b) ⊕ (a ⊗ c) and υa,b,c : (a ⊕ b) ⊗ c → (a ⊗ c) ⊕ (b ⊗ c) explicitly given by

τa,b,c = 〈1a ⊗ π1
b,c, 1a ⊗ π2

b,c〉, τ−1
a,b,c = [1a ⊗ ι1b,c, 1a ⊗ ι2b,c], (2.2)

υa,b,c = 〈π1
a,b ⊗ 1c, π2

a,b ⊗ 1c〉, υ−1
a,b,c = [ι1a,b ⊗ 1c, ι2a,b ⊗ 1c]. (2.3)

(We are aware that it is hard to distinguish between the Latin letter v, which is reserved for the isomorphism from
I ∗ to I and the Greek letter υ denoting the isomorphism of the form (a ⊕ b) ⊗ c → (a ⊗ c) ⊕ (b ⊗ c), but we
decided to follow the notation from Ref. [20] relevant for the strict compact closed structure, and from Ref. [1]
which is relevant for categorical quantum protocols.)

In a compact closed categories with biproducts, the scalars, i.e., the endomorphisms from I to I form a com-
mutative semiring Hom (I, I ). The multiplication in this semiring is given by composition, for which 1I is the
neutral, and the addition is defined as above. (We will omit ◦ when we compose, i.e., multiply, scalars.) For a scalar
s : I → I and an object a of such a category, one defines the arrow sa : a → a as the composition

a
λ−1
a−→ I ⊗ a

s⊗a−→ I ⊗ a
λa−→ a,

and the operation s• on arrows such that for f : a → b, the arrow s • f is f ◦ sa . It is straightforward to check that
this new operation satisfies the following equalities.

a ⊗ (s • f ) = s • (a ⊗ f ), (s • f ) ⊗ a = s • ( f ⊗ a), (2.4)

(s2 • f2) ◦ (s1 • f1) = s2s1 • ( f2 ◦ f1), (2.5)

〈s • f1, . . . , s • fn〉 = s • 〈 f1, . . . , fn〉. (2.6)
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Example 1 As a paradigm for dagger compact closed category with dagger biproducts, we use the category fdHilb
of finite dimensional Hilbert spaces over the field C of complex numbers. The objects of this category are finite
dimensional Hilbert spaces (finite dimensional vector spaces with inner product). The arrows of this category
correspond to (bounded) linear maps between vector spaces. Dagger is given by the adjoint map. Since every vector
space over C of dimension n is isomorphic to C

n , we can pass from fdHilb to its skeleton consisting of objects
of the form C

n . By choosing orthogonal bases of such objects, the linear maps are envisaged as matrices. In this
case, dagger corresponds to the usual adjoint of matrices (conjugation and transposition), and the operation ∗ on
arrows corresponds to the complex conjugation of an operator (matrix). Also, the operation ∗ on arrows is given by
a matrix transpose.

3 The category 1Cob

The category 1Cob of one-dimensional cobordisms has as objects closed oriented zero-dimensional manifolds, i.e.,
finite (possibly empty) sequences of points together with their orientation (either +++ or−−−). For example, an object of
1Cob is ++++++−−−+++−−−−−−. Since there will be several roles of ∅ in this paper, we denote the empty sequence of points by o.

A compact oriented one-dimensional topological manifold with boundary, i.e., a finite collection of oriented
circles and line segments, is called here 1-manifold. For objects a and b of 1Cob, a 1-cobordism from a to b is a
triple (M, f0 : a → M, f1 : b → M), where M is a 1-manifold and f0, f1 are embeddings. The boundary of M
is �0

∐
�1 and its orientation is induced from the orientation of M (the initial point of an oriented segment is +++

while the terminal is−−−). The embedding f0 is orientation preserving and its image is �0, while the embedding f1 is
orientation reversing and its image is �1. Two cobordisms (M, f0, f1) and (M ′, f ′

0, f ′
1) from a to b are equivalent,

when there is an orientation preserving homeomorphism F : M → M ′ such that the following diagram commutes.

a

M

M ′

b

f0 f1

f ′
0 f ′

1

F
�����

�����

�����

�����
�

The equivalence classes of 1-cobordisms are the arrows of 1Cob. The identity 1a : a → a is the equivalence
class of (a × I, x �→ (x, 0), x �→ (x, 1)), which in the case a = o stands for the empty 1-cobordism from the
empty sequence of oriented points o to itself. Two cobordisms (M, f0, f1) : a → b and (N , g0, g1) : b → c are

composed by “gluing”, i.e., by making the pushout of M
f1←− b

g0−→ N . All the arrows of 1Cob are illustrated so
that the source of an arrow is at the top, while its target is at the bottom of the picture. Therefore, the direction of
pictures is top to bottom, a convention used in Ref. [29]. Note that some authors use a different convection, left to
right, or bottom to top [22,34]. The latter is presumably the most popular in the physics literature.

The category 1Cob is dagger strict compact closed. We have symmetric monoidal structure on 1Cob in which
⊗ on objects is defined by concatenation, the empty sequence o is the neutral and serves as the unit object I , while
⊗ on arrows is given by putting two cobordisms “side by side”. The arrows α and λ are identities and symmetry σ

is generated by transpositions ++++++ → ++++++, +++−−− → −−−+++, −−−+++ → +++−−− and −−−−−− → −−−−−−. These transpositions are illustrated
as follows:

+++ +++

+++ +++

+++

+++

−−−

−−− +++ −−−

−−− +++

−−− −−−

−−− −−−

For example, the transposition+++−−− → −−−+++ is a cobordism given by the manifold consisting of two oriented segments
and two embeddings of the source +++−−− and the target −−−+++ into its boundary (when a sign is mapped to the same
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sign, then the boundary point belongs to the source, and it is mapped to the opposite sign, then the boundary point
belongs to the target of the cobordism).

+++

−−− −−−

+++

+++

+++

−−−

−−−

The dual a∗ of an object a is the reversed sequence of points with reversed orientation. For example, if a = +++−−−−−−,
then a∗ = ++++++−−−. (Note that this definition differs from the one given in Ref. [29] where just the orientation was
reversed—both definitions are correct in presence of symmetry.) The arrows η : o → a∗ ⊗ a and ε : a ⊗ a∗ → o,
for a as above are the following cobordisms:

+++ +++ +++−−− −−− −−−

+++ +++ +++−−− −−− −−−o

o

It is not difficult to check that the arrows ua,b, v and wa are all identities.
Let f : a → b be an arrow of 1Cob represented by a triple (M, f0 : a → M, f1 : b → M). Its name � f � : o →

a∗ ⊗ b is represented by the triple (M, g0 : o → M, g1 : a∗ ⊗ b → M), where for every point x of a and the
corresponding point x̄ of a∗, we have g1(x̄) = f0(x) and for every point y of b, we have g1(y) = f1(y). The
coname � f � of f is defined in 1Cob analogously.

+++ −−− +++

+++

−−− +++ −−−

−−− −−−

+++

+++ +++

f : � f � : � f � :

o

o

The arrow f ∗ : b∗ → a∗ is represented by the triple (M, h0 : b∗ → M, h1 : a∗ → M), where for every point x of
a and the corresponding point x̄ of a∗, we have h1(x̄) = f0(x), and for every point y of b and the corresponding
point ȳ of b∗, we have h0(ȳ) = f1(y).

The cobordism f † : b → a is obtained by reversing the orientation of the 1-manifold representing the cobordism
f : a → b. It is not hard to check that the equalities A.21–A.23 of Appendix A hold.

−−− −−−

−−−

−−− −−−

−−− −−−+++

+++ +++ +++

+++

f ∗ : f † : f∗ :

By the above definitions of f ∗ and f † for a cobordism f : a → b, it is straightforward to reconstruct the cobordism
f∗ = ( f †)∗ : a∗ → b∗.

4 A pair of free categories

We start with a construction of a dagger compact closed category F† with dagger biproducts freely generated by
a single object p and a set 
 of unitary endomorphisms on this object. An arrow f : a → b in a dagger category
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is unitary when f † : b → a is its both-sided inverse. The universal property of F† is the following: for every
dagger compact closed category C with dagger biproducts, and a function ϕ from the set 
 to the set of unitary
endomorphisms of an object c of C, there exists a unique functor F : F† → C strictly preserving the whole structure,
such that Fp = c and for every γ ∈ 
, Fγ = ϕ(γ ).

Our construction of this category is syntactical; it is akin to the construction of the category FA from Ref. [20,
Sections 3–4], and it follows the construction of the category FP from Ref. [29, Section 4]. As noted in [20], it is
“perfectly general, applying to categories with any explicitly given equational extra structure”. The objects of F†

are the formulae built out of a single letter p and the constants I and 0, with the help of one unary connective ∗
(written as a superscript) and two binary connectives ⊗ and ⊕.

The arrows of F† are obtained as equivalence classes of terms built in the following manner. We start with
primitive terms, which are of the form γ , γ −1 for every γ ∈ 
, or 1a , αa,b,c, α−1

a,b,c, λa , λ−1
a , σa,b, ηa , εa , π1

a,b,

π2
a,b, ι

1
a,b, ι

2
a,b and 0a,b, for all objects a, b, and c of F†. The terms are built out of primitive terms with the help of

one unary operational symbol † and four binary operational symbols ⊗, ⊕, + and ◦. (Each such term is equipped
with the source and the target, which are objects of F†, e.g., the source and the target of every γ ∈ 
 is p, and
constructions of terms with + and ◦ are restricted to appropriate sources and targets.) The equivalence classes of
these terms, i.e., the arrows of F†, are obtained modulo the congruence generated by the equalities A.1–A.24 of
Appendix A and, for every γ ∈ 
, the equalities 4.1–4.2 below.

γ ◦ γ −1 = 1p = γ −1 ◦ γ, (4.1)

γ † = γ −1. (4.2)

On the other hand, consider the category F with the same objects and the same primitive terms as F†, just the
terms of F are constructed without the unary operational symbol †. The arrows of F , are the equivalence classes
of these terms, modulo the congruence generated by the equalities A.1–A.19 and 4.1. The category F is a compact
closed category with biproducts freely generated by the group (envisaged as a category with one object) freely
generated by the set 
. The universal property of F is the following: for every compact closed category C with
biproducts, and a function ϕ from the set 
 to the set of automorphisms of an object c of C, there exists a unique
functor F : F → C strictly preserving the whole structure, such that Fp = c and for every γ ∈ 
, Fγ = ϕ(γ ).

Proposition 1 The categories F† and F are isomorphic.

Proof From the equalities A.20–A.26, it follows that every arrow of F† (as an equivalence class of terms) contains
a †-free term. Also, every equality assumed for F† in which † appears boils down to the trivial identity after †-
elimination at both sides. Thus, the identity on objects and the function on arrows that maps the equivalence class
of a term in F to the equivalence class of the same term in F† is an isomorphism between these two categories. ��

5 Injections and projections

For the functor ∗ : Fop → F defined as in Sect. 2, the unit η and the counit ε become dinatural, i.e., for f : a → b
the following equalities hold:

(a∗ ⊗ f ) ◦ ηa = ( f ∗ ⊗ b) ◦ ηb, εa ◦ (a ⊗ f ∗) = εb ◦ ( f ⊗ b∗). (5.1)

Also, for arrows f, g : a → b in F , the following equality holds,

( f + g)∗ = f ∗ + g∗. (5.2)

Definition 1 Let a be an object of F . By induction on complexity of a, we define two finite sequences Ia =
(ι0a, . . . , ι

n−1
a ) (the injections of a) and �a = (π0

a , . . . , πn−1
a ) (the projections of a) of arrows ofF in the following

way. If a is the letter p or either I or 0, then n = 1 and Ia = (1a) = �a . Let us assume that Ia1 = (ι01, . . . , ι
n1−1
1 ),

�a1 = (π0
1 , . . . , π

n1−1
1 ) and Ia2 = (ι02, . . . , ι

n2−1
2 ), �a2 = (π0

2 , . . . , π
n2−1
2 ) are already defined. For �x� being the

floor function of a real x , i.e., the greatest integer less than or equal to x , and i mod n being the residue of i modulo
n, we have the following.
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⊗ If a = a1 ⊗ a2, then n = n1 · n2, and for 0 ≤ i < n1 · n2,
ιia = ι

�i/n2�
1 ⊗ ι

i mod n2
2 , π i

a = π
�i/n2�
1 ⊗ π

i mod n2
2 .

∗ If a = a∗
1 , then n = n1, and for 0 ≤ i < n1,

ιia = (π i
1)

∗, π i
a = (ιi1)

∗.

⊕ If a = a1 ⊕ a2, then n = n1 + n2, and for 0 ≤ i < n1 + n2, si =
⌊
min{i,n1}

n1

⌋

ιia =
{

ι1a1,a2 ◦ ιi1, 0 ≤ i < n1,

ι2a1,a2 ◦ ι
i−n1
2 , otherwise,

= ι1+si
a1,a2 ◦ ι

i−n1·si
1+si

,

π i
a =

{
π i
1 ◦ π1

a1,a2 , 0 ≤ i < n1,

π
i−n1
2 ◦ π2

a1,a2 , otherwise.
= π

i−n1·si
1+si

◦ π1+si
a1,a2 .

Example 2 Let a = (p ⊕ I ) ⊕ 0 and b = ((p ⊕ 0) ⊕ p) ⊗ (I ⊕ p)∗. Then ιia and π i
a for 0 ≤ i < 3 as well as ι

j
b

and π
j
b for 0 ≤ j < 6 are given in the following tables.

ι0a ι1p⊕I,0 ◦ ι1p,I

ι1a ι1p⊕I,0 ◦ ι2p,I

ι2a ι2p⊕I,0

π0
a π1

p,I ◦ π1
p⊕I,0

π1
a π2

p,I ◦ π1
p⊕I,0

π2
a π2

p⊕I,0

ι0b (ι1p⊕0,p ◦ ι1p,0) ⊗ (π1
I,p)

∗ π0
b (π1

p,0 ◦ π1
p⊕0,p) ⊗ (ι1I,p)

∗

ι1b (ι1p⊕0,p ◦ ι1p,0) ⊗ (π2
I,p)

∗ π1
b (π1

p,0 ◦ π1
p⊕0,p) ⊗ (ι2I,p)

∗

ι2b (ι1p⊕0,p ◦ ι2p,0) ⊗ (π1
I,p)

∗ π2
b (π2

p,0 ◦ π1
p⊕0,p) ⊗ (ι1I,p)

∗

ι3b (ι1p⊕0,p ◦ ι2p,0) ⊗ (π2
I,p)

∗ π3
b (π2

p,0 ◦ π1
p⊕0,p) ⊗ (ι2I,p)

∗

ι4b ι2p⊕0,p ⊗ (π1
I,p)

∗ π4
b π2

p⊕0,p ⊗ (ι1I,p)
∗

ι5b ι2p⊕0,p ⊗ (π2
I,p)

∗ π5
b π2

p⊕0,p ⊗ (ι2I,p)
∗

Remark 1 For every 0 ≤ i < n, the target of ιia and the source of π i
a are both equal to a, while the source ai of ιia

is equal to the target of π i
a , and a

i is ⊕-free. Moreover, if a is ⊕-free, then Ia = (1a) = �a .

The following proposition establishes the desired properties of injections and projections.

Proposition 2 For every object a of F

π
j
a ◦ ιia =

{
1ai , i = j,
0ai ,a j , otherwise,

n−1∑
i=0

ιia ◦ π i
a = 1a .

Proof We proceed by induction on complexity of a. When a is p, I or 0, all injections and projections are identities,
and the claim holds. For the inductive step, we consider the following three cases.
(1) Suppose that a = a1 ⊗ a2, where |Ia1 | = |�a1 | = n1 and |Ia2 | = |�a2 | = n2. Then we have

π
j
a ◦ ιia =

(
π

� j
n2

�
1 ⊗ π

j mod n2
2

)
◦

(
ι
� i
n2

�
1 ⊗ ι

i mod n2
2

)

=
(

π
� j
n2

�
1 ◦ ι

� i
n2

�
1

)
⊗

(
π

j mod n2
2 ◦ ι

i mod n2
2

)
,

and the first claim follows by the inductive hypothesis. Also, using the inductive hypothesis and the equality A.27
of Appendix A, we have

n−1∑
i=0

ιia ◦ π i
a =

n−1∑
i=0

(
ι
� i
n2

�
1 ⊗ ι

i mod n2
2

)
◦

(
π

� i
n2

�
1 ⊗ π

i mod n2
2

)
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=
n−1∑
i=0

(
ι
� i
n2

�
1 ◦ π

� i
n2

�
1

)
⊗

(
ι
i mod n2
2 ◦ π

i mod n2
2

)

=
n1−1∑
k=0

(
(ιk1 ◦ πk

1 ) ⊗
n2−1∑
l=0

(ιl2 ◦ π l
2)

)
=

n1−1∑
k=0

(ιk1 ◦ πk
1 ) ⊗ a2

=
(
n1−1∑
k=0

(ιk1 ◦ πk
1 )

)
⊗ a2 = 1a1 ⊗ a2 = 1a1⊗a2 .

(2) When a = a∗
1 , we have

π
j
a ◦ ιia = (ι

j
1)

∗ ◦ (π i
1)

∗ = (π i
1 ◦ ι

j
1)

∗,

and the first claim follows by the inductive hypothesis. Also, using the inductive hypothesis and the equality 5.2,
we have

n−1∑
i=0

ιia ◦ π i
a =

n−1∑
i=0

(π i
1)

∗ ◦ (ιi1)
∗ =

n−1∑
i=0

(ιi1 ◦ π i
1)

∗ =
(
n−1∑
i=0

ιi1 ◦ π i
1

)∗
= (1a1)

∗ = 1a .

(3) Suppose that a = a1 ⊕ a2, and again |Ia1 | = |�a1 | = n1 and |Ia2 | = |�a2 | = n2. We have

π
j
a ◦ ιia = π

j−n1·s j
1+s j

◦ π
1+s j
a1,a2 ◦ ι1+si

a1,a2 ◦ ι
i−n1·si
1+si

.

Since i �= j implies 1 + si �= 1 + s j or i − n1 · si �= j − n1 · s j , the first claim follows according to the inductive
hypothesis. For the second claim, we have

n−1∑
i=0

ιia ◦ π i
a =

n−1∑
i=0

ι1+si
a1,a2 ◦ ι

i−n1·si
1+si

◦ π
i−n1·si
1+si

◦ π1+si
a1,a2

=
n1−1∑
i=0

ι1a1,a2 ◦ ιi1 ◦ π i
1 ◦ π1

a1,a2 +
n2−1∑
j=0

ι2a1,a2 ◦ ι
j
2 ◦ π

j
2 ◦ π2

a1,a2

= ι1a1,a2 ◦
(
n1−1∑
i=0

ιi1 ◦ π i
1

)
◦ π1

a1,a2 + ι2a1,a2 ◦
⎛
⎝n2−1∑

j=0

ι
j
2 ◦ π

j
2

⎞
⎠ ◦ π2

a1,a2

= ι1a1,a2 ◦ π1
a1,a2 + ι2a1,a2 ◦ π2

a1,a2 = 1a1⊕a2 .

��
As a corollary of Proposition 2, we have the following.

Corollary 1 For every object a of F , the cocone (a, Ia) together with the cone (a,�a) make a biproduct.

Proof To show that the cocone (a, Ia) is universal, consider for 0 ≤ i < n arrows f i : ai → c of F and define
h : a → c to be

∑n−1
i=0 f i ◦ π i

a . For every 0 ≤ i < n, by the left-hand side equality of Proposition 2, we have that h
satisfies h ◦ ιia = f i . Assume that h′ : a → c for every 0 ≤ i < n satisfies h′ ◦ ιia = f i . We conclude that

h′ ◦
n−1∑
i=0

ιia ◦ π i
a =

n−1∑
i=0

f i ◦ π i
a = h,

and by the right-hand side equality of Proposition 2, we have h′ = h. That (a,�a) is a universal cone is proved
analogously. ��
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6 A normalization

Our normalization of arrows of the categoryF is a procedure derived from the one developed in Ref. [29, Section 5].
The goal is to represent every arrow of F , whose source and target are ⊕-free, by a term free of occurrences of ⊕,
ι and π .

For every arrow u : a → b of F , where Ia = (ι0a, . . . , ι
n−1
a ), �b = (π0

b , . . . , πm−1
b ), let Mu be the m × n matrix

whose i j-entry is π i
b ◦ u ◦ ι

j
a : a j → bi . Let X be an m × n matrix whose i j-entry is an arrow of F from a j to

bi and let Y be a q × r matrix whose i j-entry is an arrow of F from c j to di . We define X ⊗ Y as the Kronecker
product of matrices over a field, save that the multiplication in the field is replaced by the tensor product of arrows
in F . For example,(
x00 x01 x02
x10 x11 x12

)
⊗

(
y00 y01
y10 y11

)

is⎛
⎜⎜⎝
x00 ⊗ y00 x00 ⊗ y01 x01 ⊗ y00 x01 ⊗ y01 x02 ⊗ y00 x02 ⊗ y01
x00 ⊗ y10 x00 ⊗ y11 x01 ⊗ y10 x01 ⊗ y11 x02 ⊗ y10 x02 ⊗ y11
x10 ⊗ y00 x10 ⊗ y01 x11 ⊗ y00 x11 ⊗ y01 x12 ⊗ y00 x12 ⊗ y01
x10 ⊗ y10 x10 ⊗ y11 x11 ⊗ y10 x11 ⊗ y11 x12 ⊗ y10 x12 ⊗ y11

⎞
⎟⎟⎠ .

Also, we define X ⊕ Y as the matrix of arrows of F , schematically presented as(
X 0
0 Y

)
.

More precisely, for X = (xi j )m×n and Y = (yi j )q×r as above, X ⊕ Y is the (m + q) × (n + r) matrix
whose i j-entry is:

1. xi j , when i < m, j < n,
2. y(i−m)( j−n), when i ≥ m, j ≥ n,
3. 0a j ,di−m , when i ≥ m, j < n,
4. 0c j−n ,bi , when i < m, j ≥ n.

If m = q, n = r , for every 0 ≤ j < n, a j = c j , and for every 0 ≤ i < m, bi = di , i.e., X and Y are of the same
type having the corresponding elements in the same hom-sets, then X + Y is the matrix of the same type whose
i j-entry is xi j + yi j . If n = q and for every 0 ≤ k < n, ak = dk , i.e., X is an m × n matrix, Y is an n × r matrix
and for every 0 ≤ i < m, 0 ≤ j < r , 0 ≤ k < n the composition xik ◦ yk j is defined, then we define X ◦ Y as the
m × r matrix whose i j-entry is

∑n−1
k=0 xik ◦ yk j (this sum is defined since every xik ◦ yk j is from c j to bi ).

Just by omitting the case (2) of Ref. [29, Proposition 5.1] we obtain the following.

Proposition 3 For • ∈ {⊗,⊕,+, ◦}, we have
Mu1•u2 = Mu1 • Mu2 .

Our next proposition is related to Ref. [29, Propositions 5.2, 8.2]

Proposition 4 If u is a primitive term of F , then all the entries of the matrix Mu are primitive terms of F , not of
the form π or ι, whose indices are ⊕-free.

Proof We illustrate just a couple of cases. If u is γ , for γ ∈ 
, then Mu is a 1 × 1 matrix whose only entry is γ .
The same holds when γ is replaced by γ −1. If u is α−1

a,b,c, then for some i1, i2, i3 and j1, j2, j3

(Mu)i, j = π i
a⊗(b⊗c) ◦ α−1

a,b,c ◦ ι
j
(a⊗b)⊗c

= (π i1
a ⊗ (π

i2
b ⊗ π i3

c )) ◦ α−1
a,b,c ◦ ((ι

j1
a ⊗ ι

j2
b ) ⊗ ι

j3
c )

123



D̄orD̄ević et al.

=
{

α−1
ai1 ,bi2 ,ci3

, i1 = j1, i2 = j2, i3 = j3,

0(a j1⊗b j2 )⊗c j3 ,ai1⊗(bi2⊗ci3 ), otherwise.

If u is σa,b, then for some i1, i2 and j1, j2

(Mu)i, j = π i
b⊗a ◦ σa,b ◦ ι

j
a⊗b

= (π
i1
b ⊗ π i2

a ) ◦ σa,b ◦ (ι
j1
a ⊗ ι

j2
b )

=
{

σa j1 ,b j2 , j1 = i2, j2 = i1,

0a j1⊗b j2 ,bi1⊗ai2 , otherwise.

If u is εa , then Mu is a row matrix and for some j1, j2 we have

(Mu)1, j = εa ◦ ι
j
a⊗a∗ = εa ◦ (ι

j1
a ⊗ (π

j2
a )∗) (5.1)= εa j2 ◦ ((π

j2
a ◦ ι

j1
a ) ⊗ (a j2)∗)

=
{

εa j2 , j1 = j2,

0a j1⊗(a j2 )∗,I , otherwise.

If u is π1
a,b, then (Mu)i, j = π i

a ◦π1
a,b ◦ ι

j
a⊕b, which is either π i

a ◦π1
a,b ◦ ι1a,b ◦ ι

j1
a for some j1, or π i

a ◦π1
a,b ◦ ι2a,b ◦ ι

j2
b ,

for some j2. The statement holds since

π i
a ◦ π1

a,b ◦ ι1a,b ◦ ι
j1
a =

{
1ai , i = j1,

0a j1 ,ai , otherwise,
π i
a ◦ π1

a,b ◦ ι2a,b ◦ ι
j2
b = 0b j2 ,ai .

We proceed analogously when u is 1a , αa,b,c, λa , λ−1
a , ηa , π2

a,b, ι
1
a,b, ι

2
a,b or 0a,b. ��

Corollary 2 For every arrow u of F , every entry of Mu is expressible free of ⊕, ι and π .

As a consequence of Remark 1 and Corollary 2, we have the following.

Corollary 3 Every arrow of F whose source and target are ⊕-free is expressible free of ⊕, ι, and π .

7 The category 1Cob⊕
G and coherence

The aim of this section is to introduce a category providing a diagrammatical checking of the validity of quantum
protocols. We start with a set 
 (usually finite and non-empty) and a group G freely generated by 
. The category
1Cob and the groupG deliver the category 1CobG through the following construction. The objects of 1CobG are the
objects of 1Cob and to define the arrows of 1CobG, we introduce the notions ofG-components andG-cobordisms
first.

A G-component is a connected, oriented 1-manifold, possibly with boundaries, together with an element of G.
When aG-component is closed, we call itG-circle, otherwise it is aG-segment. We call the element ofG associated
to a component the label of this component.

A G-cobordism from a to b is a finite collection of G-components whose underlying manifold is M , together
with two embeddings f0 : a → M and f1 : b → M such that (M, f0, f1) is a 1-cobordism from a to b. Two G-
cobordisms are equivalent, when the underlying 1-cobordisms are equivalent and the homeomorphism F witnessing
this equivalence satisfies:

1. Every segment and its F-image are labeled by the same element of G;
2. The labels of a circle and its F-image could differ only in a circular permutation, i.e., if one is of the form g2 · g1,

the other could be g1 · g2.
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The operation † on G-cobordisms is defined so that it is applied to the underlying cobordism and every label is
replaced by its inverse.

+++ +++

+++

+++

+++ +++

−−−

−−−

g

g−1

h h−1f : f † :

The category 1CobG has the equivalence classes ofG-cobordisms as arrows. The identity 1a : a → a is the ordinary
identity cobordism in which every segment is labeled by the neutral e of G. Two G-cobordisms are composed so
that the underlying 1-cobordisms are composed in the ordinary manner. It remains to label the resulting segments
and circles: if the segments l1, . . . , lk with labels g1, . . . , gk respectively, are glued together in a segment or a circle
of the resulting 1-cobordism so that the terminal point of li is identified with the initial point of li+1, then gk · . . . · g1
is the (“a” in the case of a circle) label of the resulting component. The category 1CobG has dagger strict compact
closed structure inherited from 1Cob (all segments in canonical arrows σ , η and ε are labeled in 1CobG by the
neutral e of G).

Let us compare the above construction with the construction of the category GA given in Ref. [20], forA being
the groupoidG, i.e., the category with a single object p whose arrows are the elements ofG and the composition is
the multiplication inG. Themain theorem of Ref. [20] claims thatGG is a compact closed category freely generated
by the category G. This means that for every compact closed category C and a function ϕ from the set 
 to the set
of automorphisms of an object c of C, there exists a unique functor
F : GG → C
that strictly preserves compact closed structure, and such that Fp = c and for every γ ∈ 
, Fγ = ϕ(γ ).

One could easily conclude that 1CobG is a strict compact closed version of GG. More precisely, the functor
F st : GG → 1CobG obtained by the above universal property of GG is defined as follows. It maps every object X
of GG to the sequence of signs corresponding to the signed set P(X) (see [20, Section 3]). On arrows, it is defined
just by replacing the source and the target by the corresponding sequences of signs. Namely, an arrow of GG (see
Ref. [20, Section 3]) is represented by a triple, which is essentially contained in the notion ofG-cobordism. Hence,
F st maps an arrow (neglecting its source and target) to itself. It is straightforward to see that we have the following.

Proposition 5 The functor F st : GG → 1CobG is faithful.

In another words, to pass from 1CobG to GG, one has to “decorate” the objects of 1CobG with propositional
formulae built in the language including single propositional letter, constant I , unary connective ∗ and binary
connective⊗. However, this just disguises strict compact closed nature of 1CobG, which is intrinsic to this category.

Let 1Cob+
G be the category with the same objects as 1CobG, while the arrows of 1Cob+

G from a to b are the
formal sums of arrows of 1CobG from a to b. These formal sums may be represented by finite (possibly empty)
multisets of G-cobordisms from a to b. Formally, a multiset of elements of a set X is a function from X to the set
of natural numbers (including zero). Less formally, it is a set in which elements may have multiple occurrences.

We abuse the notation using the set brackets {, } for multisets and by denoting a singleton multiset { f } by f .
Note that in this notation © + ©, i.e., {©,©} is not equal to ©©, i.e., {©©}, where © is a circular component
with arbitrary label.

The identity arrow1a : a → a is the singletonmultiset 1a : a → a, while the composition of { f j : a → b | j ∈ J }
and { fk : b → c | k ∈ K } is
{ fk ◦ f j : a → c | j ∈ J, k ∈ K }.

Again, because of too many roles of ∅ in this paper, we denote the empty multiset of G-cobordisms from a to
b by 0a,b, and call it zero-arrow. The existence of zero-arrows implies that every hom-set in 1Cob+

G is inhabited.
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The category 1Cob+
G is enriched over the category Cmd. The addition in Hom (a, b) is the operation + (disjoint

union) on multisets and the neutral is 0a,b.
Let 1Cob⊕

G be the biproduct completion of 1Cob+
G constructed as follows (see Ref. [31, Section 5.1]). The

objects of 1Cob⊕
G are finite (possibly empty) sequences (a0, . . . , an−1), n ≥ 0, of objects a0, . . . , an−1 of 1CobG.

(We abuse the notation by denoting a singleton sequence (a0) by a0.) For example, (++++++−−−+++−−−−−−, o,+++,−−−−−−+++, o) is an
object of 1Cob⊕

G. (Here, according to our convention, o denotes the empty sequence of oriented points.)
The empty sequence of objects of 1CobG plays the role of zero-object in 1Cob⊕

G, and for the above reasons,
we denote it by 0 and not by ∅. Note the distinction between this object and the object presented by the singleton
sequence o whose only member is the empty sequence of oriented points.

The arrows of 1Cob⊕
G from (a0, . . . , an−1) to (b0, . . . , bm−1) are the m × n matrices whose i j-entry is an arrow

of 1Cob+
G from a j to bi . If m = 0, i.e., (b0, . . . , bm−1) = 0, then the empty matrix is the unique arrow from

a = (a0, . . . , an−1) to 0, and we denote it by 0a,0. We proceed analogously when n = 0.
The identity arrow 1a on a = (a0, . . . , an−1) in 1Cob⊕

G is the n × n matrix with corresponding identity arrows
of 1Cob+

G in the main diagonal and corresponding zero-arrows of 1Cob+
G elsewhere. The arrows are composed

by the rule of matrix multiplication, save that the addition and multiplication in a field are replaced by addition in
hom-sets and composition in the category 1Cob+

G. For a = (a0, . . . , an−1) and b = (b0, . . . , bm−1), we denote by
0a,b, or simply 0m×n , the m × n matrix whose i j-entry is the zero-arrow 0a j ,bi of 1Cob+

G. In the limit cases, when
we compose the empty matrices 0a,0 and 00,b, we define the result as the zero-matrix 0a,b.

Proposition 6 The category 1Cob⊕
G has the structure of strict compact closed category with biproducts. The group

of automorphisms of the object +++ in this category is isomorphic to G. Moreover, † is definable in 1Cob⊕
G, which

makes it dagger strict compact closed category with dagger biproducts, while the automorphisms of +++ are unitary.

Proof We define the compact closed structure on 1Cob⊕
G as follows. The tensor product of objects (a0, . . . , an−1)

and (b0, . . . , bm−1) is the object (a0 ⊗ b0, . . . , a0 ⊗ bm−1, . . . , an−1 ⊗ bm−1) of 1Cob⊕
G. If either n = 0 or m = 0,

the result is zero-object 0. The unit object is o. The tensor product of arrows of 1Cob⊕
G is defined as the Kronecker

product of matrices over a field, save that this time the multiplication in the field is replaced by the tensor product
in the category 1Cob+

G.
The arrows α and λ are identities. For a = (a0, . . . , an−1) and b = (b0, . . . , bm−1), the (n ·m) × (m · n) matrix

σa,b (an arrow of 1Cob⊕
G) is defined as the permutation matrix representing the isomorphism between V ⊗ W and

W ⊗ V for V being n-dimensional and W being m dimensional vector space, save that instead of the entries 1, we
have arrows σ from 1Cob+

G, with corresponding indices, and instead of entries 0, we have zero-arrows (i.e., empty
multisets) of 1Cob+

G with corresponding indices. For example, if a = (a0, a1, a2) and b = (b0, b1), the matrix σa,b

(with indices of zero-arrows omitted) is
⎛
⎜⎜⎜⎜⎜⎜⎝

σa0,b0 0a0⊗b1,b0⊗a0 0 0 0 0
0 0 σa1,b0 0 0 0
0 0 0 0 σa2,b0 0
0 σa0,b1 0 0 0 0
0 0 0 σa1,b1 0 0
0 0 0 0 0 σa2,b1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The operation ∗ on objects of 1Cob⊕
G is defined componentwise. The arrow ηa for a = (a0, . . . , an−1) is

the n2 × 1 matrix with the singleton multiset ηak in the k · (n + 1)-th row, for 0 ≤ k < n, and zero-arrows of
1Cob+

G, with corresponding indices, elsewhere. The arrow εa is the 1 × n2 matrix having εak in the k · (n + 1)-th
column, for 0 ≤ k < n, and zero-arrows of 1Cob+

G, with corresponding indices, elsewhere. One can verify that the
equalities A.1–A.12 hold in 1Cob⊕

G. Moreover, the arrows ua,b, v and wa defined in Sect. 2 are identities. Hence,
1Cob⊕

G is a strict compact closed category.
The operation + on arrows from (a0, . . . , an−1) to (b0, . . . , bm−1) is defined componentwise and zero-matrices

are the neutrals for this operation. Equations A.10–A.12 hold, which guarantees that 1Cob⊕
G is enriched over Cmd.

123



A graphical language for quantum. . .

For objects a = (a0, . . . , an−1) and b = (b0, . . . , bm−1), the object a ⊕ b is the sequence

(a0, . . . , an−1, b0, . . . , bm−1).

The object 0 is the zero-object of 1Cob⊕
G and it is the neutral for ⊕. For arrows Am×n and Bp×q of 1Cob⊕

G, its
direct sum A ⊕ B is the (m + p) × (n + q) matrix(

A 0m×q

0p×n B

)
.

For a = (a0, . . . , an−1) and b = (b0, . . . , bm−1), the arrows π1
a,b, π

2
a,b, ι

1
a,b and ι2a,b are defined as

π1
a,b = (

1a 0n×m
)
, π2

a,b = (
0m×n 1b

)
,

ι1a,b =
(

1a
0m×n

)
, ι2a,b =

(
0n×m

1b

)
.

After checking that the equalities A.13–A.19 hold in 1Cob⊕
G, one concludes that this category is strict compact

closed with biproducts.
That the group of automorphisms of the object +++ in 1Cob⊕

G is isomorphic to G is shown as follows. Every
arrow from +++ to itself is a 1 × 1 matrix whose entry is a multiset of arrows of 1CobG from the singleton sequence
of oriented points +++ to itself. This multiset is a singleton in the case of an isomorphism, which follows from the
fact that the composition in 1Cob+

G of a multiset of cardinality n with a multiset of cardinality m is a multiset of
cardinality n ·m, and an isomorphism must be canceled to 1+++ : +++ → +++, which is the singleton multiset 1+++. Hence,
every isomorphism from +++ to +++ in 1Cob⊕

G is of the form ψ : +++ → +++, for ψ an arrow of 1CobG. Moreover, ψ must
be an isomorphism in 1CobG. An arrow of 1CobG from+++ to+++ consists of a singleG-segment and several (possibly
zero) G-circles. Since ψ is an isomorphism and G-circles are not cancelable, there are no G-circles in ψ and it
could be identified with the underlying G-segment. The label of this segment is the element of G corresponding to
the initial isomorphism of 1Cob⊕

G. It is evident that this correspondence is a one-to-one homomorphism.
The operation † on arrows of 1Cob+

G is defined as

({ f j : a → b | j ∈ J })† = { f †j : b → a | j ∈ J }.
The operation † on a matrix representing an arrow of 1Cob⊕

G is defined by transposing this matrix, and by applying
the operation †, defined above, to each of its entries. To verify that 1Cob⊕

G is dagger strict compact closed with
dagger biproducts, it remains to check that the equalities A.20–A.24 of Appendix A hold. The definition of † in
1CobG guarantees that the automorphisms of +++ are unitary. ��
Remark 2 For our purposes, it is useful to have a direct presentation of � f �, � f �, f∗ and 〈 f1, . . . , fn〉 at least
for arrows f, f1, . . . , fn of 1CobG. The first three operations are defined as in 1Cob (the labels of G-components
remain the same in the first two cases, while in the case of f∗ the labels become the inverses of the initial labels).
The last operation (see the definition of biproducts in Sect. 2) produces the n × 1 matrix⎛
⎜⎝

f1
...

fn

⎞
⎟⎠ .

Remark 3 By relying on the equalities 2.3, it is not difficult to show that the left distributivity isomorphism
υa,b,c : (a ⊕ b) ⊗ c → (a ⊗ c) ⊕ (b ⊗ c) is the identity in the category 1Cob⊕

G. Similarly, if we assume that
a is a singleton sequence, then by relying on the equalities 2.2, we can show that the right distributivity isomor-
phism τa,b,c : a ⊗ (b ⊕ c) → (a ⊗ b) ⊕ (a ⊗ c) is also the identity in 1Cob⊕

G.

Remark 4 By the universal property of the category F from Sect. 4, there exists a unique functor H : F → 1Cob⊕
G

that strictly preserves the compact closed structure with biproducts, for which Hp = +++ and for every γ ∈ 
, Hγ
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is the G-cobordism from +++ to +++ given by one G-segment labeled by γ . The isomorphism of F and F† from the
proof of Proposition 1 enables one to consider H as a functor from F† to 1Cob⊕

G that strictly preserves the dagger
compact closed structure with dagger biproducts.

Proposition 7 The functor H : F → 1Cob⊕
G is faithful.

Proof Let f, g : a → b be two arrows of F such that H f = Hg, and let Ia = (ι0a, . . . , ι
n−1
a ) and �b =

(π0
b , . . . , πm−1

b ). By Corollary 1 and properties of biproducts, it suffices to show that, for every 0 ≤ i < m
and 0 ≤ j < n,

π i
b ◦ f ◦ ι

j
a = π i

b ◦ g ◦ ι
j
a . (7.1)

By Corollary 3, both sides of 7.1 are expressible free of ⊕, ι, and π . By relying on the equalities A.11, A.12, A.27
and A.28, both sides are expressible as sums of terms, which are all free of⊕,+ and 0, ι, π -arrows. Here, the empty
sum is denoted by 0a j ,bi .

If one side of the above equality is equal to 0a j ,bi , then it is mapped by H to the empty multiset. By functorial
properties of H , the sum at the other side must be mapped by H to the empty multiset too, which means that this
sum is empty, i.e., it is 0a j ,bi .

It remains the case when for n,m ≥ 1, the left-hand side of 7.1 is equal to
∑n

k=1 fk and the right-hand side of
this equality is equal to

∑m
k=1 gk , for fk, gk free of ⊕, + and 0, ι, π -arrows. We have that

{H fk | 1 ≤ k ≤ n} = H
n∑

k=1

fk = H
m∑

k=1

gk = {Hgk | 1 ≤ k ≤ m},

which means that n = m, and modulo some permutation of elements of these multisets, for every 1 ≤ k ≤ n,
H fk = Hgk . The terms fk and gk belong entirely to the compact closed fragment generated by G. Hence, these
terms represent arrows of a compact closed category FG freely generated by G (see Ref. [20, Section 4]). The
functor H restricts to FG as the composition of an isomorphism (from FA to GA, for A being G; see Ref. [20,
Sections 3–4]) and the faithful functor F st of Proposition 5, whichmeans that this restriction is faithful.We conclude
that fk and gk represent the same arrow of FG, and hence of F . ��

8 Validity of categorical quantum protocols

There are a lot of different frameworks for studying quantum protocols and checking its validity. Let us mention here
only the recent studies Refs. [9] and [26] as the illustrative examples. To determine the requirements of quantum
network protocols, the authors inRef. [9] developed a software for themodeling and simulation of quantumnetworks
(a network simulator for quantum information). In Ref. [26], the author showed (by estimating the validity of the
quantum key distribution protocol as a paradigmatic situation) that an ensemble of states that can be distinguished
by local operations and classical communication is more efficient for quantum information processing protocol than
those states that cannot be discriminated deterministically in this way. Compared to these studies, our approach is
more theoretical, and it relies on the work of Abramsky and Coecke [1].

It was suggested in Ref. [1] that compact closed categories with biproducts provide a generalization of von Neu-
mann’s presentation of quantum mechanics in terms of Hilbert spaces, [37]. Such an approach is called categorical
quantum mechanics. For a survey of theory of categorical quantum mechanics, we recommend Ref. [2,35] and
references therein.

In this section, we use Proposition 7 to establish commutativity of diagrams in the category F , which provides
a verification of the corresponding protocols from the realm of categorical quantum mechanics. All the protocols
verified in Ref. [1] require a compact closed category with dagger biproducts, possessing some additional structure.
For the first two protocols below, this extra structure consists of an object Q (the qubit), an arrow from 4 · I to
Q∗ ⊗ Q and a scalar s satisfying some conditions listed in [1, Section 9]. (Here we abbreviate ((I ⊕ I ) ⊕ I ) ⊕ I
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by 4 · I , and more generally, n · a and n · f abbreviate the n-fold biproducts, associated to the left, of an object a
and an arrow f respectively.)

However, the only additional structure upon a compact closed structure with dagger biproducts important for
the verification diagrams consists of four unitary isomorphisms β1, β2, β3, β4 : Q → Q. Hence, to establish that
the verification diagrams are commutative in an arbitrary such category, i.e., that the categorical quantum protocols
are correct, it suffices to establish their commutativity in the compact closed category F with biproducts freely
generated by the free group G on four generators. (Since β1 is standardly taken to be identity, a group with three
generators suffices.) The role of the generator p for objects of F (see Sect. 4) belongs now to the qubit Q.

Our Proposition 7 enables one to check the commutativity of diagrams inF by “drawing pictures” and this is the
style of verification given below. We are aware that our graphical language is specific to the proposed framework,
and it may have limited explanatory power for complex quantum phenomena. The qubit Q is interpreted in 1Cob⊕

G
as +++. At some points, we have to draw matrices of pictures and this is done in the first example below, otherwise
just the i j element of such a matrix is described. Of course, we focus on a certain class of protocols, as our goal is
to show that there are cases where validity of quantum protocols can be checked using diagrams that are geometric,
meaning that they correspond to manifolds (and a group element, but see the next section on ideas how to remove
those elements).

8.1 Quantum teleportation

Quantum teleportation is a well-known quantum protocol [1,27]. Assume that Alice has a qubit in some state |ψ〉
and wishes to send this state to Bob without any knowledge of what this state is. This is done by taking an entangled
pair of qubits (EPR-pair, |β1〉) and sending one to Alice and another to Bob. Then Alice measures (in the Bell basis)
her qubit and the qubit that is entangled with the one Bob has. In the next step, she communicates the result of the
measurement to Bob, who applies unitary corrections to his qubit, depending on Alice’s outcome. The final result
is that Bob’s qubit is in the same state as Alice’s qubit originally was (Alice does not have a qubit in state |ψ〉 after
this protocol is done).

Qa

Qa ⊗ I

Qa ⊗ (Q∗
b ⊗ Qc)

(Qa ⊗ Q∗
b) ⊗ Qc

(4 · I ) ⊗ Qc

4 · Qc

4 · Qc

�4
ac

σI,a ◦ λ−1
a import unknown state

1a ⊗ �1bc� produce EPR-pair

αa,b,c spatial delocation

〈�βab
i �〉i=4

i=1 ⊗ 1c teleportation observation

(4 · λc) ◦ υ4I,c classical comunication

⊕i=4
i=1(β

c
i )

−1 unitary correction

(8.1)
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The correctness of the quantum teleportation protocol is expressed by commutativity of the diagram given in
Ref. [1, Theorem 9.1]. One can easily factor the scalars out of both legs in this diagram just by appealing to the
equalities 2.4–2.6. This makes the commutativity of Diagram 8.1 sufficient for the correctness of the protocol. We
follow the terminology and notation introduced in Ref. [1] in this diagram.

Note that we treat Qa , Qb, and Qc as three instances of the same object Q ofF . Also,�4
a,c is an abbreviation for

〈1Q, 1Q, 1Q, 1Q〉. For example, producing the EPR-pair means to apply the arrow 1Q ⊗ �1Q�, which is interpreted
in 1Cob⊕

G as:

+++

+++ +++−−−

e e

This is the first nontrivial step in the diagram 8.1. (Note that since 1Cob⊕
G is a strict compact closed category, the

steps called “import unknown state” and “spatial delocation” are interpreted as identities in this category.)
In drawings of G-cobordisms, when we interpret the arrows of the diagram 8.1 and the diagrams below, the

orientation and the label e (denoting the neutral ofG) will be omitted. As we noted at the beginning of this section,
our group G is generated by the set 
 = {β1, β2, β3, β4}. The second nontrivial step in the diagram 8.1 is the
teleportation observation, given by 〈�βi�〉i=4

i=1 ⊗ 1Q , or in terms of arrows of 1Cob⊕
G:

⎛
⎜⎝

+++ +++

+++

+++ +++

+++

+++ +++

+++

+++ +++

+++

−−− −−− −−− −−−

β1 β2 β3 β4

⎞
⎟⎠

T

By composing this 4 × 1 matrix with the 1 × 1 matrix representing production of EPR-pair, we get

⎛
⎜⎜⎜⎜⎝ +++ +++

+++

+++ +++

+++

+++ +++

+++

+++ +++

+++

−−− −−− −−− −−−
β1 β2 β3 β4

+++ +++ +++ +++ ⎞
⎟⎟⎟⎟⎠

T

At this point, Alice had performed hermeasurement, and communicated the result to Bob using classical interchange
of bits. By Remark 3, we know that the distributivity isomorphism υ4I,c is the identity in 1Cob⊕

G. This, together
with the strictness of this category, makes the step named “classical communication” trivial, i.e. it is interpreted as
identity.

Next, Bob applies unitary corrections, given by ⊕i=4
i=1(βi )

−1. In our matrix representation, ⊕ corresponds to the
direct sum of matrices. We, therefore, have the unitary correction
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β−1
1

β−1
2

β−1
3

β−1
4

+++

+++ +++

+++ +++

+++ +++

+++

0 0 0

0 0

0

0

0

0

0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By composing the last two matrices, we get the final result

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+++ +++

+++

+++ +++

+++

+++ +++

+++

+++ +++

+++

−−− −−− −−− −−−
β1 β2 β3 β4

+++ +++ +++ +++

+++ +++ +++ +++
β−1
1 β−1

2 β−1
3 β−1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

By stretching the diagrams, the group elements cancel out, andwe are left with the diagonal�4 = 〈1Q, 1Q, 1Q, 1Q〉.

8.2 Entanglement swapping

The idea of this protocol is to, starting with two pairs of mutually entangled qubits in EPR-states, obtain again two
pairs of entangled states, but with different pairing. Assume Alice, as well as Bob, share a single EPR-pair with a
third person, named Charlie. Then Charlie performs a measurement on his qubits, and via classical communication
transfers information on his outcomes to other parties, upon which a unitary correction is applied. The net result of
this protocol is that Alice and Bob share an entangled EPR-pair, while Charlie is left with another EPR-pair. We,
thus, say that the entanglement is swapped. A complete description of this protocol in terms of categorical quantum
mechanics is presented in Ref. [1, Theorem 9.3]. Again, as in Sect. 8.1, by relying on the equalities 2.4–2.6, one may
completely neglect the role of scalars and just check the commutativity of the diagram 8.2 below for the correctness
of this protocol.

Let τ : Q∗
d ⊗ (4 · ((Qa ⊗ Q∗

b) ⊗ Qc)) → 4 · (Q∗
d ⊗ ((Qa ⊗ Qb∗) ⊗ Qc)) and υ : (4 · ((Qa ⊗ Q∗

b)) ⊗ Qc →
4 · ((Qa ⊗ Q∗

b) ⊗ Qc) be distributivity isomorphisms, and let

γi = (βi )∗,
Pi = �γi� ◦ �βi�,

ζ aci =
⊕i=4

i=1
((1∗

b ⊗ βi ) ⊗ (1∗
d ⊗ β−1

i )),

�ab = 1∗
d ⊗ (〈Pi 〉i=4

i=1 ⊗ 1c),

ϕ = (4 · ((σab ⊗ 1dc) ◦ α−1
ab,d,c ◦ (σd,ab ⊗ 1c) ◦ αd,ab,c)) ◦ τ ◦ (1d ⊗ υ),
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�ab = 〈�1ba� ◦ �1dc�〉i=4
i=1.

The commutativity of the diagram from Ref. [1, Theorem 9.3] justifies the correctness of the entanglement
swapping protocol. By factoring the scalars out from the legs, it reduces to the following diagram.

I ⊗ I

(Q∗
d ⊗ Qa) ⊗ (Q∗

b ⊗ Qc)

Q∗
d ⊗ ((Qa ⊗ Q∗

b) ⊗ Qc)

Q∗
d ⊗ ((4 · (Qa ⊗ Q∗

b)) ⊗ Qc)

4 · ((Q∗
b ⊗ Qa) ⊗ (Q∗

d ⊗ Qc))

4 · ((Q∗
b ⊗ Qa) ⊗ (Q∗

d ⊗ Qc))

�ab

�1da� ⊗ �1bc� produce EPR-pairs

(1d ⊗ αa,b,c) ◦ α−1
d,a,bc spatial delocation

�ab Bell-base measurement

ϕ classical communication

ζ aci unitary correction

(8.2)

The right-hand side of this diagram is represented in 1Cob⊕
G by the 4 × 1 matrix whose i1-entry is the following

G-cobordism (note that we ignore associativity and distributivity isomorphisms since they are identities).

βi

β−1
i

�1da� ⊗ �1bc�

�ab

ζ aci

σd,ab ⊗ 1c

σa,b ⊗ 1dc

βi β−1
i

−−− −−−

−−− −−−

−−− −−−

−−− −−−

−−− −−−

+++ +++

+++ +++

+++ +++

+++ +++

+++ +++

By stretching the above diagram and canceling βi and β−1
i , we are left with the following G-cobordism.
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−−− −−−+++ +++

On the other side, �ab is represented in 1Cob⊕
G by 4× 1 matrix, whose i1-entry is exactly the aboveG-cobordism.

Due to Proposition 7, this proves the commutativity of the diagram 8.2.

8.3 Superdense coding

In this section, we will apply our diagrammatic verification to another protocol, called superdense coding, [27]
(sometimes referred to as dense coding). This quantum algorithm can be considered as the opposite of quantum
teleportation. The idea is to transfer some amount of classical information using qubits. A review of this protocol
can be found in Ref. [35], where its validity was shown in a similar manner.

The validity of this protocol is expressed in the categorical setting by the commutativity of a diagram in which
some special scalars, namely traces of some arrows, occur. Every compact closed category can be lifted to the traced
category by a suitable definition of a categorical trace. This can be achieved as follows. Let f : a → a be an arrow
in a compact closed category. The scalar Tr( f ) : I → I is defined as1

Tr( f ) = εa ◦ ( f ⊗ a∗) ◦ σa∗,a ◦ ηa . (8.3)

In terms of diagrams, we have

f
f

A category appropriate for the superdense coding requires the same structure as in the first two protocols. Moreover,
the following conditions must be satisfied. If i �= j , then Tr(βiβ

†
j ) = 0I,I , and Tr(1Q) �= 0I,I (see Appendix B for

the details why we demand this condition to be satisfied). With this in mind, the arrow � : I → 16 · I defined as

〈Tr(β1β
†
1 ),Tr(β1β

†
2 ),Tr(β1β

†
3 ),Tr(β1β

†
4 ), . . . ,Tr(β4β

†
1 ),Tr(β4β

†
2 ),Tr(β4β

†
3 ),Tr(β4β

†
4 )〉

is actually 〈t, 0, 0, 0, 0, t, 0, 0, 0, 0, t, 0, 0, 0, 0, t〉, for t = Tr(1Q). The assumption above also enables Bob to
make a distinction between the four quadruples of scalars in this row.

1 More generally, categorical trace corresponds to the partial trace in Hilbert-space picture, though we will not review this here, as our
interest lies only in pure states.

123



D̄orD̄ević et al.

Our task is to show that the following diagram, which verifies the superdense coding protocol, commutes.

I

Q∗
a ⊗ Qb

(4 · Q∗
a) ⊗ Qb

4 · (Qb ⊗ Q∗
a)

16 · I

�

�1ab� preparation of EPR-pair

〈(βi )∗〉i=4
i=1 ⊗ 1b selection of classical information

(4 · σab) ◦ υ4a,b spatial delocation

〈�βab
i �〉i=4

i=1 observation

(8.4)

Here, again, the first step is the EPR-pair production, achieved by a cap diagram.

−−− +++

One qubit is located at Alice’s point, and another at Bob’s. Alice then applies an unitary transformation to her
qubit, depending on the classical infromation she wants to communicate. This is achieved by 〈(βi )∗〉i=4

i=1 ⊗ 1b. By
composing the first two arrows, we get a 4 × 1 matrix, whose i1-entry is given by a following arrow.

β−1
i

−−− +++

−−− +++

Spatial delocation is represented by a transposition, and after applying it, we obtain a matrix with i1-entry given
by

−−−+++

+++−−−

+++−−−
β−1
i

Finally, Alice sends her qubit to Bob, who performs an entangled state measurement, given by a suitable coname.
The result is a 16 × 1 matrix, whose (4(i − 1) + j)1- element is given by the G-circle

β−1
i

β j
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and the same matrix is obtained by interpreting the arrow � : I → 16 · I in the category 1Cob⊕
G. The additional

assumptions on the compact closed structure, listed in the paragraph where the arrow � is defined, enable Bob to
distinguish between different Alice’s messages.

9 Omitting labels

This section, in an informal way, illustrates possibility of elimination of labels assigned to cobordisms in graphical
categories, introduced in Sect. 7, that serve as models for syntactical categories, introduced in Sect. 4. In the case
when we have some additional equations concerning the unitary endomorphisms from 
, it may produce a finite
group of automorphisms of p. Then it is not necessary to increase the dimension of cobordisms, since such a group
appears as a subgroup of a symmetric group Sn , for some n. One can represent p by n points and interpret every
element of 
 as the corresponding permutation.

For example, the teleportation protocol requires the dihedral group D4, which is a subgroup of S4. This means
that it is sufficient to define the syntactical category F† so that 
 is a set of two elements that satisfy, besides the
equalities 4.1 and 4.2, the equalities of the standard presentation of D4. In this case, the category 1Cob⊕

G should be
replaced by a thickened version. This means that before labeling, every segment is replaced by four parallel threads
(the diagram is thickened), and every label is replaced by the corresponding permutation of four threads. The two
elements of 
 correspond to the following permutations.

� � � �

� � ��

β2 =

+++ +++ +++ +++

+++ +++ +++ +++

� � �

� ���

�

β3 =

+++ +++ +++ +++

+++ +++ +++ +++

However, there is no possibility to interpret an infinite group in such a way.
By increasing the dimension by one, according to the remark given in the penultimate paragraph on page 60 (after

Proposition 1.4.9) of [22], the situation remains the same. This remark says that the only invertible 2-cobordisms
are the permutation cobordisms.

Hence, for the interpretation of an infinite group generated by 
, one has to consider 3-cobordisms. We rely here
on Ref. [18, Definition 2.3] to introduce cobordisms that replace G-cobordisms from Sect. 7. Namely, for every
orientation preserving homeomorphism h : �g → �g , where �g is a closed oriented surface of genus g, there is a
cobordism (�g × I, f0, f1), where f0(x) = (x, 0) and f1(x) = (h(x), 1). Two such cobordisms, corresponding to
homeomorphisms h and h′, respectively, are equivalent if and only if h and h′ are pseudo-isotopic. According to
Ref. [11], this is equivalent to the fact that h and h′ are isotopic.

By applying technique introduced in Ref. [23], the cobordism (�g × I, f0, f1) is equivalent to the cobordism
(M, f0, f ′

1), where M is�g × I with some extra surgery, and f ′
1(x) = (x, 1). Here we will illustrate just the case of

the group freely generated by one generator. In the case of a group freely generated by more generators, according
to comments from the preceding paragraph, the results concerning free subgroups of the mapping class groups of
surfaces, obtained in Ref. [4,16,17] are relevant.

In our example,we suggest to replace theG-segment labeled by the generator ofG, i.e., aG-cobordism introduced
in Sect. 7, by a 3-cobordismC obtained as follows. For T 2 being the 2-dimensional torus, the underlyingmanifold of
C is T 2× I with some additional surgery.Moreover, for i ∈ {0, 1}, the embeddings fi are of the form fi (x) = (x, i).
Topresent such a cobordism,weuse the diagrammatical language introduced inRef. [28] (seeFig. 1 for a presentation
of C).

Roughly speaking, tubular neighborhoods of the red and the blue circle are removed from S3 and the surgery along
the black unknot is performed. Note that the twist of this unknot indicates the framing 1 of this surgery component.
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Fig. 1 Cobordism C

Fig. 2 Cobordisms C ◦ C and C−1

Fig. 3 Cobordism corresponding to the labeled G-circle

We refer to Ref. [28] for details of the interpretation of such diagrams. The rules for composing diagrams say that
C ◦ C is presented by the diagram at the left-hand side of Fig. 2 and that the G-segment labeled by the inverse of
the generator of G should be replaced by the cobordism C−1 illustrated at the right-hand side of Fig. 2.

The same rules say that theG-circle labeled by the product of the generator with itself should be replaced by the
cobordism (closed 3-manifold) illustrated in Fig. 3.

Though this switching to dimension three could be less practical at some points, it could bring some new insight to
the subject through the variant of Kirby calculus introduced in Ref. [13]. Our plan for a future work is to investigate
this 3-dimensional calculus.

10 Concluding remarks

After the introduction of categorical quantum mechanics, it is natural to seek for a different dagger compact closed
categories with biproducts, to check whether they can sustain quantum protocols, as quantum teleportation. The
possible complication is the existence of a base. Abstractly, base can be defined using biproducts: we demand
existence of unitary arrows I ⊕ I → Q. The problem with the category of cobordisms is that there does not seem
to be enough options to construct the desired unitary morphism. This was alluded, in a slightly different context, in
Ref. [5]. Luckily, to verify protocols as quantum teleportation, it is not mandatory to use the described morphism.

Furthermore, in low dimensions, it is hopeless to try to accommodate different unitary transformations present
in quantum protocols as different cobordisms. To heal this problem, we introduced a group structureG. We believe
that the approach suggested in the preceding section could provide a solution for these problems.

Of course, this raises some conceptual questions. First, by identifying the qubit state space with +++ (or −−−), we
are not able to use our graphical language to define states, i.e., morphisms of the form I → Q. In all mentioned
quantum protocols, this was not an issue, as we used names to create entangled states, and this can be seen in 1CobG

123



A graphical language for quantum. . .

language. To circumvent this issue, one could increase the dimension of cobordisms as suggested in the preceding
section, or to take zero-dimensional spheres, i.e., the two element sequences +++ −−− to represent state spaces. Then
one has the possibility to introduce morphisms that define states. Also, we can use this new type of qubits to define
measurements on a single qubit, not just on an entangled pair. Considerations of this type could be of interest when
dealing with single-particle protocols [10].

In addition to those limitations we already discussed, we stress that one drawback to our work is that it is not
applicable to any quantum protocol. It would probably be hopeless to try dealing with complicated quantum systems
whose entanglement structure is some complicated tensor network [6,36]. However, we still showed that there are
quantum protocols, relying on the notion of entanglement, that are captured in this framework. On the other side,
our work shows the possibility of connecting quantum mechanics and geometry, and this is the most important
theoretical implication of the proposed framework. Furthermore, our work demonstrates that this relation can be
made using the categorical approach to quantum mechanics and, therefore, hints that it could be fruitful to extend
this approach to deal with other quantum systems, including quantum gravity.

Finally, we comment on the future directions of our work, continuing the discussion from the last section. We
believe that it would be useful to obtain a three-dimensional structure that could distinguish between some different
non-homeomorphicmanifolds and that this structure could be used to check the validity of certain quantumprotocols.
In this light, our ambition is to add new cobordisms to our category that are not present in one-dimensional cases (as
objects in this case are too simple). This way, we should be able to truly obtain quantum/geometry duality, which
is, in the present case, spoiled by the introduction of group elements. Hopefully, pursuing this direction will tell us
something new about the quantum world or at least emphasize some aspects that could be overlooked otherwise.
One example is the notion of measurement in quantum mechanics. Even though this approach does not suggest a
new way of looking at the measurement postulate of quantum mechanics, we notice that in our graphical language
with matrices of pictures, the fact that the size of a matrix is enlarged after measurement resembles the many-world
interpretation of quantum mechanics [12].

We conclude this section with a comment concerning the generality of quantum protocols brought by replacing
the Hilbert spaces by objects of a compact closed category. It is known that (with minor provisos) all the one-
dimensional topological quantum field theories, i.e., functors from the category 1Cob to the category of finite
dimensional vector spaces over a field, are faithful according to Ref. [32]. However, this does not mean that the
whole 1Cob⊕

G could be faithfully represented by matrices over a field. On the other hand, since protocols do not use
the full strength of 1Cob⊕

G, one could expect that some could be verified by relying on the matrix calculus (working
again in the skeleton of fdHilb with chosen bases). This could be an advantage concerning computational issues of
the problem.
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Appendix

Appendix A The language and the equations for dagger compact closed categories with dagger biproducts

Our choice of a language for dagger compact closed categorieswith dagger biproducts is the one inwhich enrichment
over Cmd is primitive and not derived from the biproduct structure. Such a language is siutable for the proofs of our
results. A dagger compact closed category with dagger biproductsA consists of a set of objects and a set of arrows.
There are two functions (source and target) from the set of arrows to the set of objects of A. For every object a
of A there is the identity arrow 1a : a → a. The set of objects includes two distinguished objects I and 0. Arrows
f : a → b and g : b → c compose to give g ◦ f : a → c, and arrows f1, f2 : a → b add to give f1 + f2 : a → b.
For every object a ofA, there is the object a∗, and for every pair of objects a and b ofA, there are the objects a⊗ b
and a ⊕ b. Also, for every arrow f : a → b, there is the arrow f † : b → a, and for every pair of arrows f : a → a′
and g : b → b′ there are the arrows f ⊗ g : a ⊗ b → a′ ⊗ b′ and f ⊕ g : a ⊕ b → a′ ⊕ b′. In A we have the
following families of arrows indexed by its objects.

αa,b,c : a ⊗ (b ⊗ c) → (a ⊗ b) ⊗ c, α−1
a,b,c : (a ⊗ b) ⊗ c → a ⊗ (b ⊗ c),

λa : I ⊗ a → a, λ−1
a : a → I ⊗ a,

σa,b : a ⊗ b → b ⊗ a,

ηa : I → a∗ ⊗ a, εa : a ⊗ a∗ → I

π1
a,b : a ⊕ b → a, ι1a,b : a → a ⊕ b,

π2
a,b : a ⊕ b → b, ι2a,b : b → a ⊕ b,

0a,b : a → b.

The arrows of A should satisfy the following equalities:

f ◦ 1a = f = 1a′ ◦ f, (h ◦ g) ◦ f = h ◦ (g ◦ f ), (A.1)

1a ⊗ 1b = 1a⊗b, ( f2 ⊗ g2) ◦ ( f1 ⊗ g1) = ( f2 ◦ f1) ⊗ (g2 ◦ g1), (A.2)

(( f ⊗ g) ⊗ h) ◦ αa,b,c = αa′,b′,c′ ◦ ( f ⊗ (g ⊗ h)),

α−1
a,b,c ◦ αa,b,c = 1a⊗(b⊗c), αa,b,c ◦ α−1

a,b,c = 1(a⊗b)⊗c,
(A.3)

f ◦ λa = λa′ ◦ (I ⊗ f ), λ−1
a ◦ λa = 1I⊗a, λa ◦ λ−1

a = 1a, (A.4)

(g ⊗ f ) ◦ σa,b = σa′,b′ ◦ ( f ⊗ g), σb,a ◦ σa,b = 1a⊗b, (A.5)

αa⊗b,c,d ◦ αa,b,c⊗d = (αa,b,c ⊗ d) ◦ αa,b⊗c,d ◦ (a ⊗ αb,c,d), (A.6)

λa⊗b = (λa ⊗ b) ◦ αI,a,b, (A.7)

αc,a,b ◦ σa⊗b,c ◦ αa,b,c = (σa,c ⊗ b) ◦ αa,c,b ◦ (a ⊗ σb,c), (A.8)

(a∗ ⊗ ε) ◦ α−1
a∗,a,a∗ ◦ (η ⊗ a∗) = σI,a∗ , (ε ⊗ a) ◦ αa,a∗,a ◦ (a ⊗ η) = σa,I , (A.9)

f1 + ( f2 + f3) = ( f1 + f2) + f3, f1 + f2 = f2 + f1, f + 0a,a′ = f, (A.10)

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f, g ◦ ( f1 + f2) = g ◦ f1 + g ◦ f2, (A.11)

0a′,b ◦ f = 0a,b, f ◦ 0b,a = 0b,a′ , (A.12)

1a ⊕ 1b = 1a⊕b, ( f2 ⊕ g2) ◦ ( f1 ⊕ g1) = ( f2 ◦ f1) ⊕ (g2 ◦ g1), (A.13)

( f ⊕ g) ◦ ι1a,b = ι1a′,b′ ◦ f, ( f ⊕ g) ◦ ι2a,b = ι2a′,b′ ◦ g, (A.14)

f ◦ π1
a,b = π1

a′,b′ ◦ ( f ⊕ g), g ◦ π2
a,b = π2

a′,b′ ◦ ( f ⊕ g), (A.15)

π1
a,b ◦ ι1a,b = 1a, π2

a,b ◦ ι2a,b = 1b, (A.16)

π2
a,b ◦ ι1a,b = 0a,b, π1

a,b ◦ ι2a,b = 0b,a, (A.17)
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ι1a,b ◦ π1
a,b + ι2a,b ◦ π2

a,b = 1a⊕b. (A.18)

00,0 = 10, (A.19)

1†a = 1a, (g ◦ f )† = f † ◦ g†, f †† = f, (A.20)

( f ⊗ g)† = f † ⊗ g†, (A.21)

α
†
a,b,c = α−1

a,b,c, λ†a = λ−1
a , σ

†
a,b = σb,a, (A.22)

ε† = σa∗,a ◦ η, (A.23)

(π1
a,b)

† = ι1a,b, (π2
a,b)

† = ι2a,b. (A.24)

The following equalities are derivable from A.1–A.24:

( f ⊕ g)† = f † ⊕ g†, (A.25)

( f + g)† = f † + g†, 0†a,b = 0b,a (A.26)

f ⊗ (g1 + g2) = ( f ⊗ g1) + ( f ⊗ g2), ( f1 + f2) ⊗ g = ( f1 ⊗ g) + ( f2 ⊗ g), (A.27)

f ⊗ 0b,b′ = 0a⊗b,a′⊗b′ = 0a,a′ ⊗ g. (A.28)

Appendix B Scalars and probability amplitudes

As firmly laid, quantum mechanics is based on complex vector spaces (Hilbert spaces, to be more precise). Implied
in this structure is the notion of scalars, that correspond here to the field of complex numbers. In categorical language,
one can define scalars more abstractly [1,20]. A scalar is a morphism s : I → I . It can be proved that the hom-set
Hom (I, I ), for a compact closed category, is a commutative monoid, therefore justifying further this structure’s
name.

In 1Cob, the scalars correspond to closed, one-dimensional manifolds, and the only candidate for such a structure
is a finite collection of circles S1 (as denoted on the left-hand side of the following picture). In 1CobG, we have
G-circles; topological circles dressed with group elements (right-hand side of the following picture). Due to the
compact closed structure of this category, there is a natural interpretation of those circles. Namely, any compact
closed category can be lifted to a traced category by a suitable definition of a categorical trace (see Sect. 8.3 for the
definition).

g1 g3

g2

That closed loops should be connected with traces is not limited to a categorical approach to quantum mechanics.
Even when considering Feynman diagrams in quantum electrodynamics, fermions loops are accompanied by a trace
in spinorial indices. Moreover, in TQFT, we are customed to the fact that closing manifold by gluing the outward
future to inward past (if possible), results in a trace, that for a cylinder, i.e. the identity, simply gives the dimension
of the respective Hilbert space.

Furthermore, as explained in [7], these traces correspond to the probability weights of different branches. This is
further confirmed by a Hilbert-space picture computations. Recall that one reason we have scalars (different from
the multiplicative unit) is normalization on states. In order to get the probabilistic interpretation, according to the
Born rule, wemust insist on normalized states. For a state β00|0〉⊗|0〉+β01|0〉⊗|1〉+β10|1〉⊗|0〉+β11|1〉⊗|1〉, we
have that its norm squared is given by |β00|2 +|β01|2 +|β10|2 +|β11|2 = Tr(β†β), where β is a 2×2 matrix whose
components are βi j constants. Therefore, we conclude that traces are as important in this set-up as in traditional
Hilbert-space formulation.
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When dealing with quantum protocols, one usually takes β to be proportional to Pauli sigmamatrices. (Extended)
Pauli matrices are defined as

σ0 =
(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We see that those matrices are unitary, self-adjoint and satisfy Tr(σiσ j ) = 2δi j , where δi j is a Kronecker delta
symbol (equal to one if i = j and zero otherwise). In order to make the connection with the Bell basis, introduced
in Sect. 1, we take β1 = σ0, β2 = σ1, β3 = σ3 and β4 = −iσ2. This implies that we have Tr(βiβ

†
j ) = 2δi j , with

the usual definition of matrix adjoint.
However, in order to check whether two diagrams commute, it is usually straightforward to include scalars into

consideration. One can then just neglect this issue of scalars and work without explicitly using them (as done
previously). They are, of course, needed if one is to obtain probabilities for different outcomes of a measurement,
but in our work (and related work of [1,7]) this is not a primary task.
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