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* Correspondence: bane@elfak.ni.ac.rs
† These authors contributed equally to this work.

Abstract: This paper presents the results concerning a space of invariants for second type almost
geodesic mappings. After discussing the general formulas of invariants for mappings of symmetric
affine connection spaces, based on these formulas, invariants for second type almost geodesic
mappings of symmetric affine connection spaces and Riemannian spaces are obtained, as well as
their mutual connection. Also, one invariant of Thomas type and two invariants of Weyl type for
almost geodesic mappings of the second type were attained.
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1. Introduction

In this research, invariants for almost geodesic mappings of the second type of a
symmetric affine connection space are obtained. Invariants for second type almost geodesic
mappings of a Riemannian space are obtained as a special case.

This research is based on symmetric affine connection spaces and Riemannian spaces
in the sense of Eisenhart’s definitions [1,2].

Transformations of affine connections of different symmetric affine connection and
Riemannian spaces are studied in [3–9] and in many other scientific papers and mono-
graphs. The authors of [3–5,9–11] have considered a special transformation of a torsion-free
affine connection space known as the second type almost geodesic mapping.

1.1. Symmetric Affine Connection Space in Eisenhart’s Sense

An N-dimensional manifold MN equipped with torsion-free affine connection
0
∇,

whose coefficients are Lα
βγ, Lα

βγ = Lα
γβ, is the symmetric affine connection space AN

(see [2–5]).
There are many authors that deal with symmetric affine connection spaces, as well as

studying torsion-free affine connection spaces [2–5].

The covariant derivative of a tensor aα
β with respect to the affine connection

0
∇ in the

direction of xγ is defined as [3–5]

aα
β|γ = aα

β,γ + Lα
δγaδ

β − Lϵ
βγaα

ϵ , (1)

for partial derivative ∂/∂xγ denoted by comma.
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From the alternation aα
β|γ|δ − aα

β|δ|γ, one Ricci identity is obtained (for details, see [3,5]).
In this way, one curvature tensor of space AN is defined

0
Rα

βγδ = Lα
βγ,δ − Lα

βδ,γ + Lϵ
βγLα

ϵδ − Lϵ
βδLα

ϵγ. (2)

The corresponding Ricci tensor
0
Rαβ =

0
Rϵ

αβϵ is

0
Rαβ = Lϵ

αβ,ϵ − Lϵ
αϵ,β + Lϵ

αβLζ
ϵζ − Lϵ

αζ Lζ
βϵ. (3)

The alternation of the Ricci tensor is

0
R[αβ] = −Lϵ

αϵ,β + Lϵ
βϵ,α. (4)

After involving the abbreviation Lα
βγ|δ = Lα

βγ,δ + Lα
ϵδLϵ

βγ − Lϵ
βδLα

ϵγ − Lϵ
γδLα

βϵ, we obtain

0
R[αβ] = −Lϵ

[αϵ|β]. (5)

1.2. Riemannian Space in Eisenhart’s Sense

A special kind of symmetric affine connection spaces are referred to as Riemannian
spaces. An N-dimensional manifold MN equipped with symmetric metric tensor ĝ, whose
components are gαβ, gαβ = gβα, det

[
gαβ

]
̸= 0, is the Riemannian space RN

(
see [1,3,5]

)
.

Because of the regularity of matrix
[
gαβ

]
, the metric tensor with upper indices is defined as[

gαβ] = [gαβ

]−1.
The affine connection coefficients of space RN are the second kind of Christoffell symbols

Γα
βγ =

1
2

gαδ
(

gβδ,γ − gβγ,δ + gδγ,β
)
. (6)

The second kind of Christoffell symbols, Γα
βγ, are symmetric by β and γ uniquely

generate the torsion-free affine connection
0
∇g. With respect to this affine connection, one

kind of covariant derivative of the tensor aα
β in the direction of xγ is [3,5]

aα
β|gγ = aα

β,γ + Γα
δγaδ

β − Γδ
βγaα

δ . (7)

The curvature tensor and the Ricci tensor of space RN are

0
Rgα

βγδ = Γα
βγ,δ − Γα

βδ,γ + Γϵ
βγΓα

ϵδ − Γϵ
βδΓα

ϵγ, (8)

0
Rg

αβ = Γϵ
αβ,ϵ − Γϵ

αϵ,β + Γϵ
αβΓζ

ϵζ − Γϵ
αζΓζ

βϵ. (9)

The Ricci tensor
0
Rg

αβ is symmetric by α and β, i.e., it holds the equation

0
Rg

[αβ] = 0. (10)

1.3. Almost Geodesic Mappings

In an attempt to generalize the concept of geodesics, N. S. Sinyukov defined the almost
geodesic curve of a space AN as a curve ℓ = ℓ(t) which satisfies the next system of partial
differential equations [3–5,9–13]
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λα
(2) = a(t)λα + b(t)λα

(1), λα
(1) = λα

|βλβ, λα
(2) = λα

(1)|βλβ, (11)

where λ = dℓ/dt is tangential vector to ℓ, and a(t) and b(t) are functions of t.
A curve ℓ = ℓ(t) is an almost geodesic line of Riemannian space RN if the following

system of partial differential equations is satisfied

λα
(2) = a(t)λα + b(t)λα

(1), λα
(1) = λα

|g β
λβ, λα

(2) = λα
(1)|g β

λβ. (12)

A mapping f : AN → ĀN which any geodesic line of the space AN transforms to an
almost geodesic line of the space ĀN is the almost geodesic mapping of AN .

A mapping f : RN → R̄N which any geodesic line of the space RN transforms to an
almost geodesic line of the space R̄N is the almost geodesic mapping of RN .

It is proved [5,9–11,13] that a mapping f : AN → ĀN is almost geodesic if and only
if in the common coordinate system x1, . . . , xN , the deformation tensor Pα

βγ = L̄α
βγ − Lα

βγ

satisfies identically with respect to x1, . . . , xN and λ1, . . . , λN the conditions(
Pα

βγ|δ + Pα
ϵβPϵ

γδ

)
λβλγλδ = bPα

βγλβλγ + aλα. (13)

In this equation, λ1, . . . , λN are components of some vector, and a and b are invariants
depending on x1, . . . , xN and λ1, . . . , λN .

The expressions of invariant b as

b = bαλα, b =
bαβλαλβ

σγλγ
, b =

bαβγλαλβλγ

σγδλγλδ
, (14)

correspond to three types of almost geodesic mappings of space AN . These types are π1,
π2, and π3.

After reducing the Equation (13) to the case of affine connections
0
∇g and

0
∇̄g of

Riemannian spaces RN and R̄N , the necessary and sufficient condition for a mapping
f : RN → R̄N to be almost geodesic is(

Pgα
βγ|gδ + Pgα

ϵβPgϵ
γδ

)
λβλγλδ = bPgα

βγλβλγ + aλα. (15)

for the deformation tensor Pgα
βγ = Γ̄α

βγ − Γα
βγ. As in the case of almost geodesic mappings

of symmetric affine connection spaces, there are three types of almost geodesic mappings
of Riemannian spaces as well. These three types are determined with the expressions (14)
of invariant b.

A mapping f : AN → ĀN determined with the following system of partial differen-
tial equations{

L̄α
βγ = Lα

βγ + ψγδα
β + ψβδα

γ + 2σγFα
β + 2σβFα

γ ,

Fα
β|γ + Fα

γ|β + 2σβFδ
γFα

δ + 2σγFδ
β Fα

δ = νγδα
β + νβδα

γ + µγFα
β + µβFα

γ ,
(16)

for 1-forms ψα, σα, µα, να, and an affinor Fα
β , is the second type almost geodesic mapping [3,5,12].

The class of second-type almost geodesic mappings is marked as π2.
The mapping f has the property of reciprocity if the affinor Fα

β is an invariant for this

mapping and the inverse mapping f−1 is an almost geodesic mapping of the second type.
The basic equations for the second type almost geodesic mapping f , which has the property
of reciprocity, are Equation (16) together with the condition

Fα
γ Fγ

β = eδα
β, e = ±1. (17)
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Almost geodesic mappings of symmetric affine connection space of the second type
are elements of class π2. The subclass of almost geodesic mappings of the second type,
which have the property of reciprocity, is π2(e).

1.4. Invariants for Geometric Mappings

Important objects in mathematics are those ones which do not change after transfor-
mations. In differential geometry, several such objects have been determined [3,5,14–18].

After expressing the difference L̄α
βγ − Lα

βγ as

L̄α
βγ − Lα

βγ = ω̄α
βγ − ωα

βγ, (18)

it was obtained
(
see [17]

)
that the geometrical objects

0
T α

βγ = Lα
βγ − ωα

βγ, (19)

0
Wα

βγδ =
0
Rα

βγδ − ωα
βγ|δ + ωα

βδ|γ + ωϵ
βγωα

ϵδ − ωϵ
βδωα

ϵγ, (20)

are invariants for the mapping f : AN → ĀN whose deformation tensor is given by
(18). These invariants are the basic invariants of Thomas and Weyl type for mapping
f , respectively.

In [19,20], two kinds of invariance of geometrical objects under mappings of non-
symmetric affine connection spaces are defined. Non-symmetricity is not of great impor-
tance in the next definition.

Definition 1. Let f be a mapping between two affine connection spaces, both symmetric or non-
symmetric affine connected ones, and let U

α1 ...αp
β1 ...βq

be a geometrical object of type (p, q), p, q ∈ N0.

1. If the transformation f preserves value of the object U
α1 ...αp
β1 ...βq

but changes its form to V̄
α1 ...αp
β1 ...βq

,

then the invariance for geometrical object U
α1 ...αp
β1 ...βq

under transformation f is valued.

2. If the transformation f preserves both the value and the form of geometrical object U
α1 ...αp
β1 ...βq

,
then the invariance for geometrical object under the transformation f is total.

1.5. Motivation

Invariants for different geometric mappings of symmetric affine connection spaces
and Riemannian spaces have been obtained [21,22].

Scalar curvature π of a 2n-dimensional Riemannian manifold is defined in [23]. This
scalar curvature and the corresponding scalar curvature obtained with respect to the
corresponding complex metric are correlated in [23].

In cosmology [24,25], research on this topic starts with the Friedman–Lemaitre–
Robertson–Walker (RLRW) metric

ds2 = −a2dη2 + a2(dx12
+ dx22

+ dx32)
, (21)

where η is conformal time, x1, x2, x3 are spatial coordinates, and a = a(η) is the scale factor.
The perturbed FLRW metric is [24]

ds2 = −(1 + 2A)a2dη2 + 2
(
∂iB
)
a2dxidη

+

[(
1 − 2

(
D +

1
3

δkl(∂k∂lE
)))

δij + 2
(
∂i∂jE

)]
a2dxidxj,

(22)

for i, j, k, l = 1, 2, 3, and scalar functions A, B, D, E.
The perturbation of metric (21)→(22), ˆ̄g → ĝ, induces the perturbation of Christoffell

symbols and components of curvature tensor induced by the FLRW metric. If g = det
[
gµν

]
,
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µ, ν = 0, 1, 2, 3, is the determinant of the perturbed metric then the corresponding Einstein–
Hilbert action is

S =
1

2κ

∫
d4x
√
−g
(

Rg + LM
)
, (23)

for the Einstein gravitational constant κ = 2.08 × 10−43N−1, scalar curvature Rg obtained
from the perturbed metric, and the term LM describing any matter fields from the theory.
The action S should be invariant under the variation, i.e., it would be [24,25]

0 = δS =
∫

d4√−g

[
1

2κ

( δRg

δgµν +
Rg

√−g
δ
√−g
δgµν

)
+

1√−g
δ
(√−gLM

δgµν

]
δgµν,

for variational derivative δ/δgµν. The last relation is equivalent to the equations of motion

Rg
µν −

1
2

Rggµν = κTµν, (24)

for the energy–momentum tensor Tµν.
The Weyl conformal curvature tensor with respect to the perturbed metric is [3,5,21]

Cπ
µνσ = Rgπ

µνσ +
1
2
(

Rgπ
σ gµν − Rgπ

ν gµσ + Rg
µνδπ

σ − Rg
µσδπ

ν

)
+

1
6

Rg(δπ
ν gµσ − δπ

σ gµν

)
. (25)

The traces Cα
µνα, Cα

µαν, Cα
αµν of the Weyl conformal tensor vanish. That means that it is

not possible to contract the geometrical object Cπ
µνσ by π and some of the covariant indices,

µ, ν, σ, to obtain a non-trivial invariant of the form Rg
µν +Dµν, where Dµν is a tensor of

the type (0, 2).
Motivated by the trace-free Weyl conformal tensor, R. Bach proposed a quadratic

action [26]

S2 =
∫

d4xCπµνσCπµνσ
√
−g, (26)

which is invariant under the conformal group (the group of transformations from the space
to itself that preserve angles). From the last action, the modified equations of motion
are obtained.

With respect to the transformations in cosmology, and the methodology for obtaining

the Einstein tensor Rg
µν −

1
2

Rggµν, we are motivated to obtain invariants from the transfor-
mation of the curvature tensor under second type almost geodesic mappings. Unlike in the
case of the Weyl conformal tensor, the trace of one of these invariants will not be identically
equal to zero. For this reason, in future work, our results will be applicable for research in
cosmology analogously, as in (26), but for linear cosmological models.

In the next part, the main aims of the paper are presented.

1. To review results about invariants for mappings of symmetric affine connection spaces
obtained in [18].

2. To express the deformation tensor Pα
βγ of second type almost geodesic mapping

f : AN → ĀN in the form

Pα
βγ = ψγδα

β + ψβδα
γ + ρ̄α

βγ − ρα
βγ,

for tensors ρ̄α
βγ and ρα

βγ symmetric by β and γ and obtain the corresponding basic
invariants (19 and 20) for almost geodesic mappings of second type of space AN .

3. To obtain the corresponding invariants for second type almost geodesic mappings of
Riemannian space RN .

2. Review of Basic and Derived Invariants

Let us consider a mapping f : AN → ĀN whose deformation tensor Pα
βγ is
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Pα
βγ = ψγδα

β + ψβδα
γ + ρ̄α

βγ − ρα
βγ, (27)

for tensors ρα
βγ and ρ̄α

βγ symmetric by covariant indices. The forthcoming theorem is going
to be proved.

Theorem 1. Let f : AN → ĀN be a mapping of symmetric affine connection space AN , whose
deformation tensor is given by (18).

The geometrical objects

0
T α

βγ = Lα
βγ − ρα

βγ − 1
N + 1

((
Lδ

γδ − ρδ
γδ

)
δα

β +
(

Lδ
βδ − ρδ

βδ

)
δα

γ

)
, (28)

0
Wα

βγδ =
0
Rα

βγδ − ρα
βγ|δ + ρα

βδ|γ + ρϵ
βγρα

ϵδ − ρϵ
βδρα

ϵγ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)

− 1
(N + 1)2 δα

γ

(
(N + 1)

(
Lϵ

βϵ|δ − ρϵ
βϵ|δ + ρϵ

βδ

(
Lζ

ϵζ − ρ
ζ
ϵζ

))
+
(

Lϵ
βϵ − ρϵ

βϵ

)(
Lζ

δζ − ρ
ζ
δζ

))

+
1

(N + 1)2 δα
δ

(
(N + 1)

(
Lϵ

βϵ|γ − ρϵ
βϵ|γ + ρϵ

βγ

(
Lζ

ϵζ − ρ
ζ
ϵζ

))
+
(

Lϵ
βϵ − ρϵ

βϵ

)(
Lζ

γζ − ρ
ζ
γζ

))
,

(29)

are the basic invariants of Thomas and Weyl type for the mapping f .
If ρ̄α

βγρ̄δ
ϵζ = ρα

βγρδ
ϵζ , for the geometrical objects ρα

βγ and ρ̄α
βγ used in the basic Equation (27),

the invariant
0
Wα

βγδ reduces to

0
Wα

βγδ =
0
Rα

βγδ − ρα
βγ|δ + ρα

βδ|γ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)

− 1
(N + 1)2 δα

γ

(
(N + 1)

[
Lϵ

βϵ|δ − ρϵ
βϵ|δ + ρϵ

βδLζ
ϵζ

]
+ Lϵ

βϵLζ
δζ − Lϵ

βϵρ
ζ
δζ − Lϵ

δϵρ
ζ
βζ

)
+

1
(N + 1)2 δα

δ

(
(N + 1)

[
Lϵ

βϵ|γ − ρϵ
βϵ|γ + ρϵ

βγLζ
ϵζ

]
+ Lϵ

βϵLζ
γζ − Lϵ

βϵρ
ζ
γζ − Lϵ

γϵρ
ζ
βζ

)
.

(30)

The derived invariant of Weyl type for the mapping f is the geometrical object

0
Wα

βγδ =
0
Rα

βγδ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)
+

N
N2 − 1

δα
[γ

0
Rβδ] +

1
N2 − 1

δα
[γ

0
Rδ]β

− ρα
βγ|δ + ρα

βδ|γ + ρϵ
βγρα

ϵδ − ρϵ
βδρα

ϵγ

− 1
N − 1

δα
[γρϵ

βδ]|ϵ +
1

N − 1
δα
[γρϵ

βδ]ρ
ζ
ϵζ −

1
N − 1

δα
[γρϵ

βζρ
ζ
δ]ϵ

+
N

N2 − 1
δα
[γρϵ

βϵ|δ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|β.

(31)

If ρ̄α
βγρ̄δ

ϵζ = ρα
βγρδ

ϵζ , the derived invariant of Weyl type for the mapping f is

0
Wα

βγδ =
0
Rα

βγδ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)
+

N
N2 − 1

δα
[γ

0
Rβδ] +

1
N2 − 1

δα
[γ

0
Rδ]β

− ρα
βγ|δ + ρα

βδ|γ − 1
N − 1

δα
[γρϵ

βδ]|ϵ +
N

N2 − 1
δα
[γρϵ

βϵ|δ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|β.
(32)

The invariants for mapping f listed in this theorem are totalled.

Proof. After contracting the Equation (27) by α and γ, one obtains

ψβ =
1

N + 1
(

L̄δ
βδ − ρ̄δ

βδ

)
− 1

N + 1
(

Lδ
βδ − ρδ

βδ

)
.
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Hence, the Equation (27) transforms to

L̄α
βγ = Lα

βγ + ρ̄α
βγ − ρα

βγ +
1

N + 1
δα

γ

((
L̄δ

γδ − ρ̄δ
γδ

)
δα

β +
(

L̄δ
βδ − ρ̄δ

βδ

)
δα

γ

)
− 1

N + 1

((
Lδ

γδ − ρδ
γδ

)
δα

β +
(

Lδ
βδ − ρδ

βδ

)
δα

γ

)
.

(33)

After comparing the Equations (33) with (18), we obtain

ωα
βγ = ρα

βγ +
1

N + 1

((
Lδ

γδ − ρδ
γδ

)
δα

β +
(

Lδ
βδ − ρδ

βδ

)
δα

γ

)
. (34)

Hence, the basic invariants of Thomas and Weyl type for mapping [17,18] f are

0
T α

βγ = Lα
βγ − ρα

βγ − 1
N + 1

((
Lδ

γδ − ρδ
γδ

)
δα

β +
(

Lδ
βδ − ρδ

βδ

)
δα

γ

)
,

0
Wα

βγδ =
0
Rα

βγδ − ρα
βγ|δ + ρα

βδ|γ + ρϵ
βγρα

ϵδ − ρϵ
βδρα

ϵγ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)

− 1
(N + 1)2 δα

γ

(
(N + 1)

(
Lϵ

βϵ|δ − ρϵ
βϵ|δ + ρϵ

βδ

(
Lζ

ϵζ − ρ
ζ
ϵζ

))
+
(

Lϵ
βϵ − ρϵ

βϵ

)(
Lζ

δζ − ρ
ζ
δζ

))

+
1

(N + 1)2 δα
δ

(
(N + 1)

(
Lϵ

βϵ|γ − ρϵ
βϵ|γ + ρϵ

βγ

(
Lζ

ϵζ − ρ
ζ
ϵζ

))
+
(

Lϵ
βϵ − ρϵ

βϵ

)(
Lζ

γζ − ρ
ζ
γζ

))
.

In the case of ρ̄α
βγρ̄δ

ϵζ = ρα
βγρδ

ϵζ , the basic invariant
0
Wα

βγδ given by (29) reduces to

0
Wα

βγδ =
0
Rα

βγδ − ρα
βγ|δ + ρα

βδ|γ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)

− 1
(N + 1)2 δα

γ

(
(N + 1)

[
Lϵ

βϵ|δ − ρϵ
βϵ|δ + ρϵ

βδLζ
ϵζ

]
+ Lϵ

βϵLζ
δζ − Lϵ

βϵρ
ζ
δζ − Lϵ

δϵρ
ζ
βζ

)
+

1
(N + 1)2 δα

δ

(
(N + 1)

[
Lϵ

βϵ|γ − ρϵ
βϵ|γ + ρϵ

βγLζ
ϵζ

]
+ Lϵ

βϵLζ
γζ − Lϵ

βϵρ
ζ
γζ − Lϵ

γϵρ
ζ
βζ

)
.

After contracting the difference 0 =
0
W̄α

βγδ −
0
Wα

βγδ by α and β, one obtains the triv-
ial equality.

On the other hand, if one contracts the equality 0 =
0
W̄α

βγδ −
0
Wα

βγδ, for
0
Wα

βγδ and
0
W̄α

βγδ of the form (29), by α and δ, one obtains

0 =
( 0

R̄βγ −
0
Rβγ

)
−
(
ρ̄ϵ

β[γ∥ϵ] − ρϵ
β[γ|ϵ]

)
+
(
ρ̄ϵ

βγρ̄
ζ
ϵζ − ρϵ

βγρ
ζ
ϵζ

)
−
(
ρ̄ϵ

βζ ρ̄
ζ
γϵ − ρϵ

βζ ρ
ζ
γϵ

)
− 1

N + 1
( 0

R̄[βγ] + ρ̄ϵ
[βϵ∥γ]

)
− 1

N + 1
( 0

R[βγ] + ρϵ
[βϵ|γ]

)
+ (N − 1)Xβγ,

for the corresponding tensor Xβγ. If expressing Xβγ from the last equality, it becomes

Xβγ = − N
N2 − 1

( 0
R̄βγ −

0
Rβγ

)
− 1

N2 − 1
( 0

R̄γβ −
0
Rγβ

)
− 1

N − 1
(
ρ̄ϵ

βγρ̄
ζ
ϵζ − ρϵ

βγρ
ζ
ϵζ

)
+

1
N − 1

(
ρ̄ϵ

βζ ρ̄
ζ
γϵ − ρϵ

βζρ
ζ
γϵ

)
+

1
N − 1

(
ρ̄ϵ

βγ∥ϵ − ρϵ
βγ|ϵ
)
− N

N2 − 1
(
ρ̄ϵ

βϵ∥γ − ρϵ
βϵ|γ
)
− 1

N2 − 1
(
ρ̄ϵ

γϵ∥β − ρϵ
γϵ|η

)
.
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Based on this computation, it is proved that is

0
Wα

βγδ =
0

Wα
βγδ,

for
0

Wα
βγδ =

0
Rα

βγδ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)
+

N
N2 − 1

δα
[γ

0
Rβδ] +

1
N2 − 1

δα
[γ

0
Rδ]β

− ρα
βγ|δ + ρα

βδ|γ + ρϵ
βγρα

ϵδ − ρϵ
βδρα

ϵγ

− 1
N − 1

δα
[γρϵ

βδ]|ϵ +
1

N − 1
δα
[γρϵ

βδ]ρ
ζ
ϵζ −

1
N − 1

δα
[γρϵ

βζρ
ζ
δ]ϵ

+
N

N2 − 1
δα
[γρϵ

βϵ|δ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|β,

and the corresponding
0

W̄α
βγδ. If ρ̄α

βγρ̄δ
ϵζ = ρα

βγρδ
ϵζ , the geometrical object

0
Wα

βγδ reduces to

0
Wα

βγδ =
0
Rα

βγδ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)
+

N
N2 − 1

δα
[γ

0
Rβδ] +

1
N2 − 1

δα
[γ

0
Rδ]β

− ρα
βγ|δ + ρα

βδ|γ − 1
N − 1

δα
[γρϵ

βδ]|ϵ +
N

N2 − 1
δα
[γρϵ

βϵ|δ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|β.

Using simple calculus, one finds that traces
0
T ϵ

βϵ,
0

Wϵ
ϵγδ,

0
Wϵ

βϵδ,
0

Wϵ
βγϵ vanish. That means

that no one invariant may be obtained after contracting equalities 0 =
0
T̄ α

βγ −
0
T α

βγ and

0 =
0
W̄α

βγδ −
0
Wα

βγδ by α and any of the covariant indices.
The following equalities hold

0
T α

βγ =
0
T α

γβ,
0
Wα

βγδ = −
0
Wα

βδγ,
0

Wα
βγδ = −

0
Wα

βδγ. (35)

Because the invariants
0
T α

βγ and
0
T̄ α

βγ have the same form, the basic invariant of Thomas

type for the mapping f is total. The basic invariant of Weyl type for the mapping f is
obtained with respect to the functional combination of the basic invariants of Thomas type.
Because this combination does not affect the form of the resulting object, the basic invariant
of Weyl type for the mapping f is total. The derived invariant for the mapping f is obtained

by contraction of equality 0 =
0
W̄α

βγδ −
0
Wα

βγδ by α and δ. For this reason, and because
the basic invariant of Weyl type for the mapping f is total, the derived invariant for the
mapping f is total, too.

Corollary 1. The geometrical objects

0
T gα

βγ = Γα
βγ − ρα

βγ − 1
N + 1

((
Γδ

γδ − ρδ
γδ

)
δα

β +
(
Γδ

βδ − ρδ
βδ

)
δα

γ

)
, (36)

0
W gα

βγδ =
0
Rgα

βγδ − ρα
βγ|gδ + ρα

βδ|gγ + ρϵ
βγρα

ϵδ − ρϵ
βδρα

ϵγ +
1

N + 1
δα

βρϵ
[γϵ|gδ]

− 1
(N + 1)2 δα

γ

(
(N + 1)

(
Γϵ

βϵ|gδ − ρϵ
βϵ|gδ + ρϵ

βδ

(
Γζ

ϵζ − ρ
ζ
ϵζ

))
+
(
Γϵ

βϵ − ρϵ
βϵ

)(
Γζ

δζ − ρ
ζ
δζ

))

+
1

(N + 1)2 δα
δ

(
(N + 1)

(
Γϵ

βϵ|gγ − ρϵ
βϵ|gγ + ρϵ

βγ

(
Γζ

ϵζ − ρ
ζ
ϵζ

))
+
(
Γϵ

βϵ − ρϵ
βϵ

)(
Γζ

γζ − ρ
ζ
γζ

))
,

(37)
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are basic invariants for mapping f : RN → R̄N determined by

Γ̄α
βγ = Γα

βγ + ψγδα
β + ψβδα

γ + ρ̄α
βγ − ρα

βγ. (38)

If ρ̄α
βγρ̄δ

ϵζ = ρα
βγρδ

ϵζ , the invariant
0
W gα

βγδ reduces to

0
W gα

βγδ =
0
Rgα

βγδ − ρα
βγ|gδ + ρα

βδ|gγ +
1

N + 1
δα

βρϵ
[γϵ|gδ]

− 1
(N + 1)2 δα

γ

(
(N + 1)

(
Γϵ

βϵ|gδ − ρϵ
βϵ|gδ + ρϵ

βδΓζ
ϵζ

)
+ Γϵ

βϵΓζ
δζ − Γϵ

βϵρ
ζ
δζ − Γϵ

δϵρ
ζ
βζ

)
+

1
(N + 1)2 δα

δ

(
(N + 1)

(
Γϵ

βϵ|gγ − ρϵ
βϵ|gγ + ρϵ

βγΓζ
ϵζ

)
+ Γϵ

βϵΓζ
γζ − Γϵ

βϵρ
ζ
γζ − Γϵ

γϵρ
ζ
βζ

)
.

The derived invariant of Weyl type for the mapping f is
0

Wgα
βγδ =

0
Rgα

βγδ +
1

N + 1
δα

βρϵ
[γϵ|gδ] +

1
N − 1

( 0
Rg

βδδα
γ −

0
Rg

βγδα
δ

)
− ρα

βγ|gδ + ρα
βδ|gγ + ρϵ

βγρα
ϵδ − ρϵ

βδρα
ϵγ

− 1
N − 1

δα
[γρϵ

βδ]|gϵ +
1

N − 1
δα
[γρϵ

βδ]ρ
ζ
ϵζ −

1
N − 1

δα
[γρϵ

βζ ρ
ζ
δ]ϵ

+
N

N2 − 1
δα
[γρϵ

βϵ|gδ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|g β,

(39)

which reduces to

0
Wgα

βγδ =
0
Rgα

βγδ +
1

N + 1
δα

βρϵ
[βϵ|gγ] +

1
N − 1

( 0
Rg

βδδα
γ −

0
Rg

βγδα
δ

)
− ρα

βγ|gδ + ρα
βδ|gγ − 1

N − 1
δα
[γρϵ

βδ]|gϵ +
N

N2 − 1
δα
[γρϵ

βϵ|gδ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|g β,
(40)

in the case of ρ̄α
βγρ̄δ

ϵζ = ρα
βγρδ

ϵζ .
The invariants for mapping f listed in this corollary are total.

3. Invariants for Second Type Almost Geodesic Mappings of Space AN

The next theorem will be proved below.

Theorem 2. Let f : AN → ĀN be a second type almost geodesic mapping of a symmetric affine
connection space AN .

The geometrical objects

AG2
0
T α

βγ = Lα
βγ − ρα

βγ − 1
N + 1

[(
Lδ

γδ − ρδ
γδ

)
δα

β +
(

Lδ
βδ − ρδ

βδ

)
δα

γ

]
, (41)

AG2
0
Wα

βγδ =
0
Rα

βγδ − ρα
βγ|δ + ρα

βδ|γ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)

− 1
(N + 1)2 δα

γ

(
(N + 1)

(
Lϵ

βϵ|δ − ρϵ
βϵ|δ + ρϵ

βδLζ
ϵζ

)
+ Lϵ

βϵLζ
δζ − Lϵ

βϵρ
ζ
δζ − Lϵ

δϵρ
ζ
βζ

)
+

1
(N + 1)2 δα

δ

(
(N + 1)

(
Lϵ

βϵ|γ − ρϵ
βϵ|γ + ρϵ

βγLζ
ϵζ

)
+ Lϵ

βϵLζ
γζ − Lϵ

βϵρ
ζ
γζ − Lϵ

γϵρ
ζ
βζ

)
,

(42)

for ρα
βγ = −σγFα

β − σβFα
γ , are the basic invariants of Thomas and Weyl type for the mapping f .

The geometrical object

AG2
0

Wα
βγδ =

0
Rα

βγδ +
1

N + 1
δα

β

( 0
R[γδ] + ρϵ

[γϵ|δ]
)
+

N
N2 − 1

δα
[γ

0
Rβδ] +

1
N2 − 1

δα
[γ

0
Rδ]β

− ρα
βγ|δ + ρα

βδ|γ − 1
N − 1

δα
[γρϵ

βδ]|ϵ +
N

N2 − 1
δα
[γρϵ

βϵ|δ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|β,
(43)
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for ρα
βγ and the corresponding covariant derivatives as in the basic invariants (41) and (42), is the

derived invariant for mapping f .

The invariant AG2
0
T α

βγ for mapping f is total.

The invariants AG2
0
Wα

βγδ and AG2
0

Wα
βγδ for mapping f are valued. They are total if and only

if the mapping f has the property of reciprocity.

Proof. It is appropriate to assume that geometrical objects ψγδα
β + ψβδα

γ and σγFα
β + σβFα

γ

in the first of Equation (16) are linearly independent. Otherwise, this mapping reduces to
the geodesic one.

Because the geometrical objects ψγδα
β + ψβδα

γ and ρ̃α
βγ = σγFα

β + σβFα
γ are linearly

independent, we obtain the tensor ˆ̄̃ρ of type (1, 2), whose components are ˜̄ρα
βγ = −ρ̃α

βγ.
From the first of the basic equations from (16), compared with (27), we obtain

ρα
βγ = −ρ̃α

βγ = −σγFα
β − σβFα

γ .

Based on the second of basic Equation (16), the covariant derivative
(
σβFα

γ

)
|δ is(

σβFα
γ

)
|δ = σβ|δFα

γ − σβFα
δ|γ − σβσδFϵ

γFα
ϵ − σβσγFϵ

δ Fα
ϵ

+ σβνγδα
δ + σβνδδα

γ + σβµγFα
δ + σβµδFα

γ .

From this expression, one obtains the following

ρα
βγ|δ = −σβ|δFα

γ + σβFα
δ|γ + σβσδFϵ

γFα
ϵ + 2σβσγFϵ

δ Fα
ϵ

− σγ|δFα
β + σγFα

δ|β + σγσδFϵ
β Fα

ϵ

− σβνγδα
δ − σβνδδα

γ − σβµγFα
δ − σβµδFα

γ

− σγνβδα
δ − σγνδδα

β − σγµβFα
δ − σγµδFα

β .

Finally, the next equations hold

−ρα
βγ|δ + ρα

βδ|γ = −σβ|[γFα
δ] + σβFα

[γ|δ] + σβσ[γFϵ
δ]F

α
ϵ − σ[γ|δ]F

α
β + σ[γFα

δ]|β

+ δα
[γσδ]σβ − σ[γνδ]δ

α
β − σ[γµβFα

δ] − σ[γµδ]F
α
β ,

ρϵ
βϵ|δ = −σβ|ϵFϵ

δ + σβ|δF + σβFδ − σβFϵ
δ|ϵ + σβσϵFζ

δ Fϵ
ζ − σβσδFζ

ϵ Fϵ
ζ

− σϵ|δFϵ
β + σδ|ϵFϵ

β + σϵFϵ
δ|β − σδFβ

+ (N − 1)σβσδ − σ[βνδ] − σϵµβFϵ
δ + σδµβF − σϵµδFϵ

β + σδµϵFϵ
β ,

ρϵ
[βϵ|δ] = −2σ[β|ϵFϵ

δ] + σ[β|δ]F + 2σ[βFδ] − σ[βFϵ
δ]|ϵ + σ[βσϵFζ

δ]
Fϵ

ζ

+ σϵ|[βFϵ
δ] − σϵFϵ

[β|δ] − 2σ[βνδ] − σ[βµδ]F − σ[βµϵFϵ
δ],

for F = Fα
α and Fβ = F|β.

In the case of almost geodesic mapping f , it holds ρ̄α
βγρ̄δ

ϵζ = ρα
βγρδ

ϵζ , which completes
the proof of this theorem.

Invariants for π2-Mappings of Space RN

A mapping f : RN → R̄N determined with basic equations{
Γ̄α

βγ = Γα
βγ + ψγδα

β + ψβδα
γ + 2σγFα

β + 2σβFα
γ ,

Fα
β|gγ

+ Fα
γ|g β

+ 2σβFδ
γFα

δ + 2σγFδ
β Fα

δ = νγδα
β + νβδα

γ + µγFα
β + µβFα

γ ,
(44)
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for 1-forms ψβ, σβ, µβ, νβ, and affinor Fα
β , is the second type almost geodesic mapping of

Riemannian space RN .
The almost geodesic mapping f has the property of reciprocity if its inverse mapping,

f−1 : R̄N → RN , is an almost geodesic mapping of second type and affinor Fα
β is an

invariant for this mapping.
The necessary and sufficient condition for almost geodesic mapping f of space RN to

have the property of reciprocity is given by (17).
Analogously as above, the validity of the next theorem will be confirmed.

Theorem 3. Let f : RN → R̄N be a second type almost geodesic mapping of a Riemannian
space RN .

The geometrical objects

AG2
0
T gα

βγ = Γα
βγ − ρα

βγ − 1
N + 1

[(
Γδ

γδ − ρδ
γδ

)
δα

β +
(
Γδ

βδ − ρδ
βδ

)
δα

γ

]
, (45)

AG2
0
W gα

βγδ = Rgα
βγδ − ρα

βγ|gδ + ρα
βδ|gγ +

1
N + 1

δα
β

(
Rg

[γδ] + ρϵ
[γϵ|gδ]

)
− 1

(N + 1)2 δα
γ

(
(N + 1)

(
Γϵ

βϵ|gδ − ρϵ
βϵ|gδ + ρϵ

βδΓζ
ϵζ

)
+ Γϵ

βϵΓζ
δζ − Γϵ

βϵρ
ζ
δζ − Γϵ

δϵρ
ζ
βζ

)
+

1
(N + 1)2 δα

δ

(
(N + 1)

(
Γϵ

βϵ|gγ − ρϵ
βϵ|gγ + ρϵ

βγΓζ
ϵζ

)
+ Γϵ

βϵΓζ
γζ − Γϵ

βϵρ
ζ
γζ − Γϵ

γϵρ
ζ
βζ

)
,

(46)

for ρα
βγ == −σγFα

β − σβFα
γ are the basic invariants of Thomas and Weyl type for the mapping f .

The geometrical object

AG2
0

Wgα
βγδ = Rgα

βγδ +
1

N + 1
δα

βρϵ
[γϵ|gδ] +

1
N − 1

(
δα

γRg
βδ + δα

δ Rg
βγ

)
− ρα

βγ|gδ + ρα
βδ|gγ − 1

N − 1
δα
[γρϵ

βδ]|gϵ +
N

N2 − 1
δα
[γρϵ

βϵ|gδ] +
1

N2 − 1
δα
[γρϵ

δ]ϵ|g β,
(47)

for ρα
βγ and the corresponding covariant derivatives as in the basic invariants (45) and (46), is the

derived invariant for mapping f .

The invariant AG2
0
T gα

βγ for mapping f is total.

The invariants AG2
0
W gα

βγδ and AG2
0

Wgα
βγδ for mapping f are valued. They are totalled if

and only if the mapping f has the property of reciprocity.

Proof. Let f : RN → R̄N be an almost geodesic mapping of the second type. The basic
equations of this mapping are given by (44).

From the first of these equations, we recognize that is ρα
βγ = −σγFα

β − σβFα
γ . For the

geometrical object ρα
βγ given in this way, the following equations hold:

−ρα
βγ|gδ + ρα

βδ|gγ = −σβ|g [γFα
δ] + σβFα

[γ|gδ] + σβσ[γFϵ
δ]F

α
ϵ − σ[γ|gδ]F

α
β + σ[γFα

δ]|β

+ δα
[γσδ]σβ − σ[γνδ]δ

α
β − σ[γµβFα

δ] − σ[γµδ]F
α
β ,

(48)

ρϵ
βϵ|gδ = −σβ|gϵFϵ

δ + σβ|gδF + σβFδ − σβFϵ
δ|gϵ + σβσϵFζ

δ Fϵ
ζ − σβσδFζ

ϵ Fϵ
ζ

− σϵ|gδFϵ
β + σδ|gϵFϵ

β + σϵFϵ
δ|g β − σδFβ

+ (N − 1)σβσδ − σ[βνδ] − σϵµβFϵ
δ + σδµβF − σϵµδFϵ

β + σδµϵFϵ
β ,

(49)

ρϵ
[βϵ|gδ] = −2σ[β|gϵFϵ

δ] + σ[β|gδ]F + 2σ[βFδ] − σ[βFϵ
δ]|gϵ + σ[βσϵFζ

δ]
Fϵ

ζ

+ σϵ|g [βFϵ
δ] − σϵFϵ

[β|gδ] − 2σ[βνδ] − σ[βµδ]F − σ[βµϵFϵ
δ],

(50)

for F = Fα
α and Fβ = F|g β.
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After substituting the expressions (48)–(50) into the Equations (36), (37), (39) and (40),
the proof of this theorem is completed.

Theorem 4. The geometrical objects GA2
0
T α

βγ and GA2
0
T gα

βγ given by (41) and (45) satisfy the
following equation

GA2
0
T α

βγ = GA2
0
T gα

βγ + Pα
βγ +

1
N + 1

(
P δ

γδδα
β + P δ

βδδα
γ

)
. (51)

The geometrical objects GA2
0
Wα

βγδ and GA2
0
W gα

βγδ given by (42) and (46) are correlated as

AG2
0
Wα

βγδ = AG2
0
W gα

βγδ + Pα
βγ|gδ −Pα

βδ|gγ + Pϵ
βγPα

ϵδ −P ϵ
βδPα

ϵγ

+ Pα
ϵ[γρϵ

βδ] −P ϵ
β[γρα

ϵδ] −
1

N + 1
δα

βPϵ
[γϵ|gδ]

− 1
(N + 1)2 δα

γ

(
(N + 1)

(
Pϵ

βϵ|gδ −P ϵ
βδΓζ

ϵζ + ρϵ
βδP

ζ
ϵζ

)
+ Γϵ

βϵP
ζ
δζ + Γϵ

δϵP
ζ
βζ + Pϵ

βϵP
ζ
δζ −P ϵ

βϵρ
ζ
δζ −P ϵ

δϵρ
ζ
βζ

)
+

1
(N + 1)2 δα

δ

(
(N + 1)

(
Pϵ

βϵ|gγ −Pϵ
βγΓζ

ϵζ + ρϵ
βγP

ζ
ϵζ

)
+ Γϵ

βϵP
ζ
γζ + Γϵ

γϵP
ζ
βζ + Pϵ

βϵP
ζ
γζ −P ϵ

βϵρ
ζ
γζ −P ϵ

γϵρ
ζ
βζ

)
.

(52)

The next equation holds

AG2
0

Wα
βγδ = AG2

0
Wgα

βγδ + Pα
βγ|gδ −Pα

βδ|gγ + Pϵ
βγP

α
βδ −Pϵ

βδP
α
ϵγ + Pα

ϵ[γρϵ
βδ] −Pϵ

β[γρα
ϵδ]

− 1
N + 1

δα
βP

ϵ
[γϵ|gδ] −

1
N − 1

(
δα
[γP

ϵ
ζϵρ

ζ
βδ]

− δα
[γP

ζ
βϵρϵ

ζδ] − δα
[γP

ζ
δ]ϵ

ρϵ
βζ

)
+

1
N − 1

(
δα
[γP

ϵ
βδ]|gϵ − δα

[γP
ϵ
βϵ|gδ] + δα

[γP
ϵ
βδ]

(
P ζ

ϵζ − ρ
ζ
ϵζ

)
− δα

[γP
ϵ
βζP

ζ
δ]ϵ

)
+

1
N2 − 1

δα
[γP

ϵ
βϵ|gδ] −

1
N2 − 1

δα
[γP

ϵ
δ]ϵ|g β

(53)

for the geometrical objects AG2
0

Wα
βγδ and AG2

0
Wgα

βγδ given by (43) and (47).

Proof. The difference of Lα
βγ − Γα

βγ in the common reference system is the tensor,

Pα
βγ = Lα

βγ − Γα
βγ. Hence, the next equations hold:

ρα
βγ|δ − ρα

βγ|gδ = Pα
ϵδρϵ

βγ −P ϵ
βδρα

ϵγ −P ϵ
γδρα

βϵ, (54)

ρϵ
βδ|ϵ − ρϵ

βδ|gϵ = Pϵ
ζϵρ

ζ
βδ −P ζ

βϵρϵ
ζδ −P ζ

δϵρϵ
βζ , (55)

ρϵ
βϵ|δ − ρϵ

βϵ|gδ = −Pϵ
βδρ

ζ
ϵζ , (56)

ρϵ
[βϵ|δ] − ρϵ

[βϵ|gδ] = 0, (57)

Lϵ
βϵ|δ − Γϵ

βϵ|gδ = Pϵ
βϵ|gδ − 2Pϵ

βδΓζ
ϵζ , (58)

Lϵ
βϵLζ

δζ − Γϵ
βϵΓζ

δζ = Γϵ
βϵP

ζ
δζ + Γϵ

δϵP
ζ
βζ + Pϵ

βϵP
ζ
δζ , (59)

0
Rα

βγδ −
0

Rgα
βγδ = Pα

βγ|gδ −Pα
βδ|gγ + Pϵ

βγPα
ϵδ −P ϵ

βδPα
ϵγ, (60)

0
Rβγ −

0
Rg

βγ = Pϵ
βγ|gϵ −P ϵ

βϵ|gγ + Pϵ
βγP

ζ
ϵζ −P ϵ

βζP
ζ
γϵ, (61)

0
R[βγ] −

0
Rg

[βγ] = −Pϵ
[βϵ|gγ]. (62)
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With respect to the expressions (54)–(62) substituted in differences
0
Wα

βγδ −
0
W gα

βγδ,

and
0

Wα
βγδ −

0
Wgα

βγδ, together with the difference Lα
βγ − Γα

βγ = Pα
βγ, the proof of this theorem

is completed.

4. Conclusions

In this research, we obtained different invariants for almost geodesic mappings of the
second type defined on symmetric affine connection spaces and on Riemannian spaces,
as well. The achieved results are as follows:

The results about invariants presented in [17] were reviewed. Through this review,
the general formula of invariants for mappings of symmetric affine connection spaces
was accentuated.

The review of results obtained in [17] was completed with the formula of invariants
with respect to mappings whose deformation tensor is expressed in the form (27). Together
with this formula, the definition of two types of invariants was reviewed [20].

One invariant of Thomas type and two invariants of Weyl type were obtained through
a review of results from [17,18]. As the main result of this research, one invariant of Thomas
type (the basic one) and two invariants of Weyl type (the basic and the derived ones) for
second type almost geodesic mappings of the type π2 were obtained.

The obtained invariants of Weyl type for second almost geodesic mappings were
totalled if and only if the mapping had the property of reciprocity. Otherwise, these
mappings were valued. The invariants of Thomas type for second type almost geodesic
mappings were totalled. It was the last result achieved in this research.

Using the difference AG2W gα
µνα −AG2W̄ gα

µνα = 0, the variation of Einstein tensor

Eµν = Rg
µµ − 1

2
gµνRg, δEµν = Ēµν − Eµν, under the second type almost geodesic mapping

f : R4 → R̄4 could be obtained.
In this study, the transformation rules of self dual affine connections and the corre-

sponding transformation rules of affine connection coefficients and the corresponding
curvature tensors under second type almost geodesic mappings were analysed. In future
research, the analysis of invariants for second type almost geodesic mappings equipped
with the affine connection ∇ and the corresponding dual affine connection ∇∗ defined
in [27,28] are going to be studied.

Author Contributions: Conceptualization, N.O.V.; methodology, N.O.V.; formal analysis, N.O.V.
and D.J.S.; investigation, D.J.S.; resources, D.J.S.; data curation, D.J.S.; writing—original draft,
N.O.V.; writing—review and editing, D.J.S. and B.M.R.; supervision, B.M.R.; project administra-
tion, B.M.R.; funding acquisition, B.M.R. All authors have read and agreed to the published version
of the manuscript.

Funding: This paper is partially supported by the Ministry of Science and Technological Development
through grants 451-03-65/2024-03/200102 and 451-03-65/2024-03/200251.

Data Availability Statement: Data are contained within the article
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