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1. Introduction

In many research articles, books, and monographs, Riemannian and pseudo-Riemannian
spaces have been studied. Some of the most significant authors who have developed the
theory of these spaces are L. P. Eisenhart [1], N. S. Sinyukov [2], J. Mikeš and his research
group [3–6], I. Hinterleitner [7,8], S. E. Stepanov [9], and many others.

An N-dimensional manifold MN equipped with the regular symmetric metric tensor

gij, gij = gji is [2–6,10,11] the (pseudo-)Riemannian space
g
RN , where ij denote the sym-

metrization with respect to indices i and j. The affine connection (Levi–Civita connection)

coefficients of the space
g
RN are the Christoffel symbols Γi

jk, Γi
jk = Γi

kj, where Γi
jk = giαΓα.jk,

Γi.jk =
1
2
(

gji,k − gjk,i + gik,j
)
.

One kind of covariant derivative with respect to the symmetric metric tensor gij is

ai
j|gk = ai

j,k + Γi
αkaα

j − Γα
jkai

α, (1)

for a tensor ai
j of the type (1, 1), the Christoffel symbols Γi

jk and the partial derivative ∂/∂xk

are denoted by commas.
One Ricci identity [2–6] is founded with respect to the covariant derivative (1),

ai
j|gm|gn − aj|gn|gm = aα

j

g
Ri

αmn − ai
α

g
Rα

jmn. With respect to this identity, the curvature tensor,

the Ricci tensor, and the scalar curvature of the associated space
g
RN are obtained
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g
Ri

jmn = Γi
jm,n − Γi

jn,m + Γα
jmΓi

αn − Γα
jnΓi

αm, (2)
g
Rij =

g
Rα

ijα = Γα
ij,α − Γα

iα,j + Γα
ijΓ

β
αβ − Γα

iβΓβ
jα, (3)

g
R = gαβ

g
Rαβ = gαβ(Γγ

αβ,γ − Γγ
αγ,β + Γγ

αβΓδ
γδ − Γγ

αδΓδ
βγ

)
. (4)

Based on research articles
(
L. P. Eisenhart, [10,11]

)
, many researchers have studied

and developed the theories of generalized Riemannian spaces and special kinds of them.
The physical meaning of curvature tensors in the sense of Eisenhart’s definition is presented
in [12].

The studies about the affine connection spaces with torsion are started by the research
of L. P. Eisenhart [13]. An N-dimensional manifold MN equipped with the affine connec-
tion with torsion ∇, whose coefficients are Li

jk, Li
jk ̸≡ Li

kj, for at least one pair of indices
(j, k), is the (general) affine connection space GAN .

The symmetric and antisymmetric parts of the coefficients Li
jk are

Li
jk =

1
2
(

Li
jk + Li

kj
)

and Li
jk
∨
=

1
2
(

Li
jk − Li

kj
)
.

The tensor Ti
jk = 2Li

jk
∨

is the torsion tensor for the space GAN .

The manifold MN equipped with the torsion-free affine connection
0
∇, whose coeffi-

cients are Li
jk, is the associated space AN of the space GAN .

One kind of covariant derivative with respect to the affine connection
0
∇ is [2–6]:

ai
j|k = ai

j,k + Li
αkaα

j − Lα
jkai

α.

The corresponding Ricci-type identity is ai
j|mn − ai

j|nm = aα
j Ri

αmn − ai
αRα

jmn, where

Ri
jmn = Li

jm,n − Li
jn,m + Lα

jmLi
αn − Lα

jnLi
αm, (5)

is the curvature tensor of the space AN .
The Ricci tensor of the associated space AN is

Rij = Rα
ijα = Lα

ij,α − Lα
iα,j + Lα

ijL
β
αβ − Lα

iβLβ
jα. (6)

1.1. Generalized Riemannian Spaces

An N-dimensional manifold MN equipped with the nonsymmetric metric tensor gij

is [1] the generalized Riemannian space G
g
RN

(
in the Eisenhart’s sense

)
.

The symmetric and antisymmetric parts of the metric tensor gij are

gij =
1
2
(

gij + gji
)

and gij
∨
=

1
2
(

gij − gji
)
.

We assume that the matrix
[
gij

]
is regular. In this case, gij is a metric tensor of some

Riemannian space, which we denote as
g
RN . Hence, the components gij of the contravariant

metric tensor are
[
gij] =

[
gij

]−1. For this reason, the equality giαgjα = δi
j holds for the
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Kronecker δ-symbol δi
j. For this reason, the tensors gij and gij are used for lowering and

raising the indices in the G
g
RN space.

The affine connection coefficients of the G
g
RN space are the generalized Christoffell

symbols [1]:

Γi
jk =

1
2

giα(gjα,k − gjk,α + gαk,j
)
.

One obtains that the symmetric and antisymmetric parts Γi
jk =

1
2
(
Γi

jk + Γi
kj
)

and

Γi
jk
∨
=

1
2
(
Γi

jk − Γi
kj
)

are

Γi
jk =

1
2

giα(gjα,k − gjk,α + gαk,j
)
,

Γi
jk
∨
= −1

2
giα(gαj

∨
,k + gjk

∨
,α − gαk

∨
,j
)
.

The tensor 2Γi
jk
∨

is the torsion tensor for the space G
g
RN .

Motivated by the Einstein Metricity Condition

gij≀k = gij,k − Γα
ikgαj − Γα

kjgiα = 0,

S. Ivanov and M. Lj. Zlatanović
(
see [14,15]

)
obtained the generalized Riemannian space

GRN , whose metric tensor is gij, but the affine connection coefficients are

Li
jk = Γi

jk −
1
2

giα(Tjαk + Tkαj + gkα|
1
j + gαj|

1
k − gjk|

1
α

)
+ Ti

jk, (7)

for gij|
1
k = gij,k − Lα

ikgαj − Lα
jkgiα and the torsion tensor Ti

jk, Ti
jk = −Ti

kj.

The curvature tensor and the Ricci tensor of the associated space RN are given by
((5) and (6)). The scalar curvature of the associated space RN is

R = gαβ(Lγ
αβ,γ − Lγ

αγ,β + Lγ
αβLδ

γδ − Lγ
αδLδ

βγ

)
, (8)

for the corresponding affine connection coefficients Li
jk.

The GRN space obtained and used in [14,15] is a special kind of affine connection
space GAN in Eisenhart’s sense [13].

1.2. Mappings of Space AN

Invariants of different mappings are significant objects in mathematical research.
Unlike in the theory of fixed points, where the existence of an object whose value does
not change under the action of a function is noted [16,17], in differential geometry, spe-
cific geometric objects are determined that do not change under the action of different
mappings [2–6,18,19].

The generalized Riemannian space G
g
RN in the Eisenhart’s sense [1] is the special case

of the affine connection space GAN
(
see [13]

)
.

A diffeomorphism f : AN → AN , in which the affine connection
0
∇ of the space AN

transforms to the affine connection
0
∇ of the space AN is the mapping of the space AN .
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If the mapping f transforms the affine connection coefficients Li
jk which correspond

to the affine connection
0
∇ of the space AN to the affine connection coefficients Li

jk of the

affine connection
0
∇ of the space AN , the tensor

Pi
jk = Li

jk − Li
jk, (9)

is the deformation tensor for the mapping f .
After adding a symmetric tensor πi

jk, πi
jk = πi

kj of the type (1, 2) to the affine connec-

tion coefficient Li
jk, i.e., Li

jk → Li
jk + πi

jk, one obtains the geometrical objects L̃i
jk which are

the coefficients of the corresponding (unique) affine connection
0
∇̃. For this reason, any

deformation tensor Pi
jk generates unique mapping f : AN → AN .

Geodesic Mappings of Space AN
A curve ℓ =

(
ℓi(t)

)
in the space AN is a curve that satisfies the following system of

partial differential equations [2–6]

∂2ℓi

∂t2 + Li
αβ

dℓα

dt
dℓβ

dt
= ρ

dℓi

dt
,

for a scalar function ρ.
A mapping f : AN → ĀN , which any geodesic line of space AN transmits to a geodesic

line of the space ĀN , is the geodesic mapping [2–6].
The basic equation of geodesic mapping f is

L̄i
jk = Li

jk + ψjδ
i
k + ψkδi

j, (10)

for a 1-form ψj.
N. S. Sinyukov [2] and J. Mikeš with his research group [3–6] contracted the equal-

ity (10) by i and k, expressed the 1-form ψj as ψj =
1

N + 1
(

L̄α
jα − Lα

jα
)
, substituted this

expression into the basic Equation (12), and obtained that it is T̄gi
jk = Tgi

jk for

Ti
jk = Li

jk −
1

N + 1
(

Lα
jαδi

k + Lα
kαδi

j
)
, (11)

and the corresponding T̄i
jk. The geometric object Ti

jk is the Thomas Projective parameter

initially obtained by T. Thomas [20].
After that, N. S. Sinyukov [2] and J. Mikeš with his collaborators [3–6] applied H.

Weyl’s methodology [21] to obtain invariant from the transformation of curvature tensor
Ri

jmn caused by the basic Equation (10):

R̄i
jmn = Ri

jmn +
(
ψj|n − ψjψn

)
δi

m −
(
ψj|m − ψjψm

)
δi

n +
(
ψm|n − ψn|m

)
δi

j. (12)

They contracted the relation (12) by i and j, and obtained that it is ψm|n −ψn|m = Rmn − R̄mn.
The contraction of relation (12) by i and n gave

ψj|m − ψjψm =

(
N

N2 − 1
Rjm +

1
N2 − 1

Rmj

)
−

(
N

N2 − 1
R̄jm +

1
N2 − 1

R̄mj

)
. (13)

When substituting the expression (13) into the Equation (12), they obtained the equality
W̄i

jmn = Wi
jmn for
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Wi
jmn = Ri

jmn +
1

N + 1
δi

j
(

Rmn − Rnm
)

+
1

N2 − 1

((
NRjn + Rnj

)
δi

n −
(

NRjm + Rmj
)
δi

n

)
,

(14)

and the corresponding W̄i
jmn.

All of the traces Wα
jmα, Wα

jαn, Wα
αmn vanish. For this reason, it is not possible to use

the Weyl projective tensor to obtain an invariant for the geodesic mapping that is a linear
monic polynomial of Ricci tensor Rij.

The last presented methodology was used for obtaining invariants of mappings de-
fined on a nonsymmetric affine connection space GAN . Many authors have obtained
significant results in these generalizations. Some of them are M. S. Stanković [22–24], M. Lj.
Zlatanović [22–26], S. M. Minčić [23], M. S. Najdanović [27], and many others.
Preferred Methodology for Obtaining Invariants of Mappings

Motivated by the basic Equation (10) for geodesic mapping f : AN → ĀN , with substi-

tuted ψj =
1

N + 1
(

L̄α
jα − Lα

jα
)
,

L̄i
jk = Li

jk +
1

N + 1
(

L̄α
jαδi

k + L̄α
kαδi

j
)
− 1

N + 1
(

Lα
jαδi

k + Lα
kαδi

j
)
, (10a)

the methodology for obtaining invariants of a mapping F : AN → ĀN is developed in the
following way [19]:

• The deformation tensor L̄i
jk − Li

jk is expressed as

L̄i
jk − Li

jk = ω̄i
jk − ωi

jk, (15)

for geometrical objects ωi
jk = ωkj ∈ RN , ω̄i

jk = ω̄i
kj ∈ R̄N .

• In the next step, it was concluded that L̄i
jk − ω̄i

jk = Li
jk − ωi

jk. In this way, it was

proved that the geometrical object T i
jk = Li

jk − ωi
jk is an invariant for the mapping F.

The geometrical object T i
jk is the associated basic invariant of Thomas type for the

mapping F.
• In the next, based on the equality

T̄i
jm,n − T̄i

jn,m + T̄α
jmT̄i

αn − T̄α
jnT̄i

αm = Ti
jm,n − Ti

jn,m + Tα
jmTi

αn − Tα
jnTi

αm,

the next invariant for mapping F is obtained:

W i
jmn = Ri

jmn − ωi
jm|n + ωi

jn|m + ωα
jmωi

αn − ωα
jnωi

αm. (16)

The invariant W i
jmn is the associated basic invariant of the Weyl type for the

mapping F.
• After contracting the difference W̄ i

jmn −W i
jmn = 0, another invariant Wi

jmn for the
mapping F was obtained.

• The trace Wα
ijα is a linear monic function of the Ricci tensor, unlike the trace Wα

ijα.

By using this methodology, we proved that two invariants with respect to the transfor-
mation of curvature tensor Ri

jmn may be obtained [28]. The trace Wα
ijα of the first of these

two invariants is a monic linear polynomial of Ricci tensor Rij.
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In this paper, we focused on the associated invariants of Thomas and Weyl type of the
third class for a special mapping. These invariants are

(
see the Equations (2.6, 2.9) in [19]

)
:

T i
(3).jk = Li

jk +
1
2

Pi
jk, (17)

W i
(3).jmn = Ri

jmn +
1
2

Pi
jm|n −

1
2

Pi
jn|m, (18)

where Ri
jmn is the curvature tensor of the associated space AN and Pi

jk =
1
2
(

Pi
jk + Pi

kj
)
.

1.3. Variations and Variational Derivatives

Let f (x) be a continuously differentiable function defined on the interval [a, b], a ≪
x ≪ b, and let F

[
x, y, z

]
be a function of three variables. The expression

J[ f ] =
∫ b

a
F
[
x, f (x), f ′(x)

]
dx,

where f (x) ranges over the set of all continuously differentiable functions defined on the
interval [a, b], is a functional [29].

The variational (or functional) derivative δJ/δ f of the operator J[ f ] is [29,30]

∫
δJ
δ f

ϕ(x)dx = lim
ε→0

J
[

f + εϕ
]
− J

[
f
]

ε
=

[
d
dε

J
[

f + εφ
]]

ε=0
,

where ϕ is an arbitrary function.
For a scalar L = L

[
f
]

in four-dimensional space and the corresponding operator
S =

∫
d4xL, it satisfies the equalities

δS
δ f

=
∫

d4x
δL
δ f

δ f and
δS1S2

δ f
=

δS1

δ f
S2 + S1

δS2

δ f
.

In particular, it holds the equality
δ

g
R

δgij =
g
Rij.

1.4. Motivation

The Einstein–Hilbert action that corresponds to the symmetric metric tensor gij is [31]

g
S =

∫
d4x

√
|g|

( g
R − 2Λ + LM),

for a term LM describing any matter fields appearing in the theory, the metric determinant
g = det

[
gij

]
and the cosmological constant Λ = 1.1056 × 10−52m−2.

The Einstein’s equations of motion are

g
Rij −

1
2

g
Rgij +

1
2

Λgij =
g
Tij, (19)

where
g
Tij is the energy–momentum tensor.

In [32], the energy–momentum tensor
g
Tij is expressed as

g
Tij =

g
ρuiuj + qiuj + qjui −

( g
phij + πij

)
,
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for the energy density
g
ρ, the pressure

g
p, the 4-velocity ui, uαuα = 1, the 1-form qi such

that uαqα = 0, the trace-free tensor πij of type (0, 2) which, together with the 4-velocity ui,
satisfies the equality πiαuα = 0 and the tensor hij = gij − uiuj.

The next equalities are satisfied [32]:

g
ρ =

g
Tαβuαuβ, and

g
p = −1

3

g
Tα

α +
1
3

g
Tαβuαuβ.

The following equalities are satisfied [12,33]

g
p =

1
3

g
Rαβuαuβ +

1
6

g
R − Λ and

g
ρ =

g
Rαβuαuβ − 1

2

g
R + Λ, (20)

in the reference system ui = giαuα, such as

g
p1 =

1
3

g
R11 +

1
6

g
R − Λ and

g
ρ1 =

g
R11 −

1
2

g
R + Λ, (21)

in the comoving reference system ui = giαuα = δi
1.

2. Main Results

With respect to Equation (7), we conclude the existence of the unique mapping

f : GRN → G
g
RN whose deformation tensor is

Pi
jk =

1
2

giα(Tjαk + Tkαj + gkα|
1
j + gjα|

1
k − gjk|

1
α

)
− Ti

jk.

In this section, we realize the next purposes of this paper: (1) To obtain the associated

invariants of Thomas and Weyl type of the third class for the mapping f : GRN → G
g
RN ,

whose deformation tensor is given by (9); (2) To study the transformation rules of the

pressure p and the energy density ρ with respect to the mapping f : GR4 → G
g
R4.

2.1. Invariants

After symmetrizing the Equation (7) by j and k, one obtains

Γi
jk = Li

jk +
1
2

giα
(

Tjαk + Tkαj + gkα|
1
j + gαj|

1
k − gjk|

1
α

)
. (22)

From the last equation, after using the equalities

Γi
jk − Li

jk = −1
2

Pi
jk −

(
− 1

2
Pi

jk
)
= ωi

(3).jk − ωi
(3).jk,

one obtains
ωi
(3).jk = −1

4
giα(Tjαk + Tkαj + gkα|

1
j + gαj|

1
k − gjk|

1
α

)
. (23)

Based on Li
jk = Li

jk +
1
2

Ti
jk, we conclude that gij|

1
k = gij|k −

1
2

Tα
ikgαj −

1
2

Tα
jkgiα such as

giα(gkα|
1
j + gjα|

1
k − gjk|

1
α

)
= giα(gkα|j + gjα|k − gjk|α

)
− giα(Tkαj + Tjαk

)
.

Hence, the geometrical object ωi
(3).jk given by (23) reduces to

ωi
(3).jk = −1

4
giα(gkα|j + gjα|k − gjk|α

)
. (23a)
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After substituting the expression (23a) into the Equations (17) and (18) multiplied by
4
3

, one obtains

T̃ i
(3).jk = Li

jk +
1
4

giα(gkα|j + gjα|k − gjk|α
)
, (24)

W̃i
(3).jmn = Ri

jmn −
1
3

giα(Rjαmn − g[mα|jn] + gj[m|αn]
)

− 1
3
(

giα
|[mgn]α|j + giα

|[mgαj|n] − giα
|[mgjn]|α

)
.

(25)

The next theorem holds.

Theorem 1. Let f : GRN → G
g
RN be the mapping which transforms the generalized Riemannian

space GRN in the sense of Ivanov and Zlatanović’s definition [14] of the generalized Riemannian

space G
g
RN in the sense of Eisenhart’s definition [1]. The geometrical objects T̃ i

(3).jk and W̃i
(3).jmn,

given by (24), (25), are the associated basic invariants of the Thomas and Weyl type of the third class
for the mapping f .

2.2. Physical Examples

In this part of the paper, we compare the pressures, energy densities, and state param-

eters generated by the spaces G
g
R4 and GR4. We also assume that the equality

δR

δgij = Rij

holds for the contravariant metric tensor gij obtained from the metric tensor gij.
Let us consider the Einstein–Hilbert action

S =
∫

d4x
√
|g|

(
R − 2Λ + LM

)
, (26)

for the scalar curvature of the associated Riemannian space R4 in the sense of the definition
from [14,15].

As in [12], after varying the Einstein–Hilbert action (26) by gij we obtain

Rij −
1
2

Rgij +
1
2

Λgij = Tij.

In a reference system ui = giαuα, the pressure and the energy density are

p =
1
3

Rαβuαuβ +
1
6

R − Λ, (27)

ρ = Rαβuαuβ − 1
2

R + Λ, (28)

for the 4-velocity (u1, u2, u3, u4).
In the comoving reference system ui = giαuα = δi

1, the pressure and the energy
densitygiven by (27), (28) reduce to

p1 =
1
3

R11 +
1
6

R − Λ, (29)

ρ1 = R11 −
1
2

R + Λ. (30)

With respect to Equations (22) and (23a), we get

Γi
jk = Li

jk +
1
2

giα(gkα|j + gjα|k − gjk|α
)
≡ Li

jk − 2ωi
(3).jk, (22a)

for the tensor ωi
(3).jk given by (23a).
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After substituting the expression (22a) in Equations (3), (4), (6), and (8), one obtains

g
Rij = Rij − 2

(
ωα
(3).ij|α − ωα

(3).iα|j
)
+ 4

(
ωα
(3).ijω

β

(3).αβ
− ωα

(3).iβω
β

(3).jα

)
, (31)

g
R = R − 2gαβ(ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
+ 4gαβ(ω

γ
(3).αβ

ωδ
(3).γδ − ω

γ
(3).αδ

ωδ
(3).βγ

)
. (32)

As we concluded above, the symmetric part of the deformation tensor for the mapping

f : GR4 → G
g
R4 is Pi

jk = −2ωi
(3).jk. Hence, the geometrical object ωi

(3).jkω
p
(3).qr is an

invariant for the mapping f . The contravariant symmetric metric tensor gij is also an
invariant for the mapping f .

If one substitutes Equations (31) and (32) in the expressions (19)–(21), (27)–(30), one
will complete the proof for the next theorem.

Theorem 2. The mapping f : GR4 → G
g
R4 transforms the energy–momentum tensor Tij to the

energy–momentum tensor
g
Tij by the rule

g
Tij = Tij − 2ωα

(3).ij|α + 2ωα
(3).iα|j + gαβ(ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
gij.

The following equalities E1 − E4 are equivalent

E1 : Tij =
g
Tij, E2 : ωα

(3).ij|α − ωα
(3).iα|j =

1
2

gαβ(ω
γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
gij,

E3 : ωα
(3).ij|α = ωα

(3).iα|j, E4 : gαβ(ω
γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
= 0.

The pressures p and
g
p obtained with respect to the spaces GR4 and G

g
R4 satisfy the equation

g
p = p − 1

3
(
ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
·
(
2uαuβ + gαβ). (33)

In the comoving reference system ui = giαuα = δi
1, the Equation (33) reduces to

g
p1 = p1 −

2
3
(
ωα
(3).11|α − ωα

(3).1α|1
)
− 1

3
gαβ(ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
.

The pressure p is an invariant for the mapping f : GR4 → G
g
R4 if and only if

0 =
(
ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
·
(
2uαuβ + gαβ). (34)

In the comoving reference system ui = giαuα = δi
1, the condition (34) reduces to

ωα
(3).11|α − ωα

(3).1α|1 = −1
2

gαβ(ωγ
(3).αβ|γ − ω

γ
(3).αγ|β

)
.

The energy densities ρ and
g
ρ obtained with respect to the spaces GR4 and G

g
R4 satisfy

the equation
g
ρ = ρ −

(
ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
·
(
2uαuβ − gαβ).

In the comoving reference system ui = giαuα = δi
1, the Equation (33) reduces to

g
ρ1 = ρ1 − 2

(
ωα
(3).11|α − ωα

(3).1α|1
)
+ gαβ(ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
.



Axioms 2024, 13, 463 10 of 12

The energy density ρ is an invariant for the mapping f : GR4 → G
g
R4 if and only if

0 =
(
ω

γ
(3).αβ|γ − ω

γ
(3).αγ|β

)
·
(
2uαuβ − gαβ). (35)

In the comoving reference system ui = giαuα = δi
1, the condition (35) reduces to

ωα
(3).11|α − ωα

(3).1α|1 =
1
2

gαβ(ωγ
(3).αβ|γ − ω

γ
(3).αγ|β

)
.

The geometrical object ωi
(3).jk used in this theorem is given by (23a).

2.3. Contorsion and Spin Tensors

The covariant contorsion tensor of space GRN is

Kijk =
1
2

giα(Lα.jk
∨
− Lj.αk

∨
+ Lk.αj

∨

)
.

The corresponding spin tensor is [34]

σi
jk =

1
κ

giα(Li.jα
∨
+ δi

j L
α
kα
∨
− δi

kLα
jα
∨

)
. (36)

After lowering the index i in (36), we obtain the covariant spin tensor

σijk =
1
κ

gαβ(gkαLi.jβ
∨
+ gikLj.αβ

∨
− gjkLk.αβ

∨

)
=

1
κ

Li.jk
∨

.

3. Conclusions

In this paper, we connected different definitions of generalized Riemannian spaces
through their corresponding mapping.

In Section 2.1, we obtained the associated invariants of Thomas and Weyl type for this
mapping. The Purpose 1 of this paper is realized in this section.

In Section 2.2, we analyzed some physical terms and their changes with respect to
transformation from one to another definition of the generalized Riemannian space. We
obtained the necessary and sufficient conditions for these terms to be invariant under
this transformation.

Author Contributions: All authors have equal contributions. Conceptualization, M.S., N.V., D.S. and
B.R.; Methodology, M.S., N.V., D.S. and B.R.; Software, M.S., N.V., D.S. and B.R.; Validation, M.S.,
N.V., D.S. and B.R.; Formal analysis, M.S., N.V., D.S. and B.R.; Investigation, M.S., N.V., D.S. and B.R.;
Resources, M.S., N.V., D.S. and B.R.; Data curation, M.S., N.V., D.S. and B.R.; Writing—original draft,
M.S., N.V., D.S. and B.R.; Writing—review & editing, M.S., N.V., D.S. and B.R.; Visualization, M.S.,
N.V., D.S. and B.R.; Supervision, M.S., N.V., D.S. and B.R.; Project administration, M.S., N.V., D.S. and
B.R.; Funding acquisition, M.S., N.V., D.S. and B.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper is partially supported by the Ministry of Science and Technological Development
through grants 451-03-65/2024-03/200102 and 451-03-65/2024-03/200251.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.
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