
Proceedings of the
International Geometry Center
Vol. 17, no. 1 (2024) pp. 1–17

On new approach to semi-Fredholm
theory in unital C˚-algebras

Stefan Ivković

Abstract. Axiomatic Fredholm theory in unital C˚-algebras was estab-
lished in [D. Kečkić, Z. Lazović, Acta Sci. Math., 83(3-4):629–655, 2017].
Following the pure algebraic approach by Keckic and Lazovic, in the author’s
paper [S. Ivkovic, Banach J. Math. Anal., 17:51, 2023] we extended further
this theory to axiomatic semi-Fredholm and semi-Weyl theory in unital C˚-
algebras. However, recently, in [S. Ivković, arXiv:2306.01133] we developed
another approach to axiomatic Fredholm theory in unital C˚-algebras which
is based on the theory of Hilbert modules and is equivalent to the algebraic
approach by Kečkić and Lazović. In this paper, we extend further that new
Hilbert-module approach from Fredholm theory to semi-Fredholm and semi-
Weyl theory in unital C˚-algebras. Hence, we provide new proofs to the
results in [S. Ivkovic, Banach J. Math. Anal., 17:51, 2023].

Анотація. Аксіоматична теорія Фредгольма в унітальних C˚-алгебрах
розроблена в роботі [D. Kečkić, Z. Lazović, Acta Sci. Math., 83(3-4):629–
655, 2017]. Їх суто алгебраїчний підхід був далі узагальнений автором в
[S. Ivkovic, Banach J. Math. Anal., 17:51, 2023] до аксіоматичної теорії для
напів-Фредгольмової та напів-Вейлевої теорії в унітальних C˚-алгебрах.
Однак, нещодавно, в [S. Ivković, arXiv:2306.01133] запропоновано інший
підхід до аксіоматичної тоерії Фредгольма в унітальних C˚-алгебрах,
який базується на теорії гільбертових модулів і є еквівалентним до ал-
гебраїчного підходу Kečkić та Lazović. В даній роботі цей підхід узагаль-
нено і також отримано нові доведення деяких результатів з [S. Ivkovic,
Banach J. Math. Anal., 17:51, 2023].

1. INTRODUCTiON
The Fredholm and semi-Fredholm theory on Hilbert and Banach spaces

started by studying the integral equations introduced in the pioneering work
by Fredholm in 1903 in [6]. After that, the abstract theory of Fredholm
and semi-Fredholm operators on Hilbert and Banach spaces was further
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developed in numerous papers and books such as [1, 2]. In addition to
classical semi-Fredholm theory on Hilbert and Banach spaces, several gen-
eralizations of this theory have been considered. Breuer for example started
the development of Fredholm theory in von-Neumann algebras as a gene-
ralization of the classical Fredholm theory for operators on Hilbert spaces.
In [3] and [4] he introduced the notion of a Fredholm operator in a von
Neumann algebra and established its main properties. On the other hand,
Fredholm theory on Hilbert C˚-modules as another generalization of the
classical Fredholm theory on Hilbert spaces was started by Mishchenko and
Fomenko. In [16] they introduced the notion of a Fredholm operator on the
standard Hilbert C˚-module and proved a generalization in this setting of
some of the main results from the classical Fredholm theory. The interest
for considering these generalizations comes from the theory of pseudo diffe-
rential operators acting on manifolds. The classical theory can be applied
in the case of compact manifolds, but not in the case of non-compact ones.
Even operators on Euclidian spaces are hard to study, for example Lapla-
cian is not Fredholm. Kernels and cokernels of many operators are infinite
dimensional Banach spaces, however, they may also at the same time be
finitely generated Hilbert modules over some appropriate C˚-algebra. Sim-
ilarly, orthogonal projections onto kernels and cokernels of many bounded
linear operators on Hilbert spaces are not finite rank projections in the
classical sense, but they are still finite projections in an appropriate von
Neumann algebra. Therefore, many operators that are not semi-Fredholm
in the classical sense may become semi-Fredholm in a more general sense
if we consider them as operators on Hilbert C˚-modules or as elements of
an appropriate von Neumann algebra. Hence, by studying these genera-
lized semi-Fredholm operators, we get a proper extension of the classical
semi-Fredholm theory to new classes of operators.
Now, Kečkić and Lazović in [14] established an axiomatic approach to

Fredholm theory. They introduced the notion of a finite type element in
a unital C˚-algebra which generalizes the notion of the compact operator
on the standard Hilbert C˚-module and the notion of a finite operator in
a properly infinite von Neumann algebra. They also introduced the no-
tion of a Fredholm type element with respect to the ideal of these finite
type elements. This notion is at a same time a generalization of the clas-
sical Fredholm operator on a Hilbert space, Fredholm C˚-operator on the
standard Hilbert C˚-module defined by Mishchenko and Fomenko and the
Fredholm operator on a properly infinite von Neumann algebra defined by
Breuer. Index of this Fredholm type element takes values in the K-group.
They showed that the set of Fredholm type elements in a unital C˚-algebra
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is open in the norm topology and they proved a generalization of the Atkin-
son theorem. Moreover, they proved the multiplicativity of the index in the
K-group and that the index is invariant under perturbations of Fredholm
type elements by finite type elements. In [13] we went further in this direc-
tion and defined semi-Fredholm and semi-Weyl type elements in a unital
C˚-algebra. We investigated and proved several properties of these ele-
ments as a generalization of the results from the classical semi-Fredholm
and semi-Weyl theory on Hilbert and Banach spaces.
Recently, in [11], we introduced a new approach to axiomatic Fredholm

theory in unital C˚-algebras and we proved that this approach is in fact
equivalent to the above mentioned approach developed by Kečkić and La-
zović. In this new approach we use the fact that a unital C˚-algebra A is
isometrically isomorphic to the algebra of all A-linear operators on A when
A is considered as a Hilbert module over itself. This enables us to apply
some known results from operator theory on Hilbert C˚-modules, such as
the result concerning the complementability of the kernel and the image of
a closed range C˚-operator (for more details, see [15, Theorem 2.3.3]) and
in that way we bypass several technical lemmas from the paper by Kečkić
and Lazović [14] which require long proofs.
The aim of this paper is to obtain an axiomatic semi-Fredholm and semi-

Weyl theory in unital C˚-algebras based on the approach introduced in [11].
While [11] deals with axiomatic Fredholm theory based on the above men-
tioned Hilbert module approach, in this paper we establish semi-Fredholm
and semi-Weyl theory in unital C˚-algebras following the same approach.
Our motivation was to provide new and shorter proofs of the results given
in [13], and it is therefore the main topic and the purpose of this paper.

2. PRELiMiNARiES
Throughout this paperA always stands for a unital C˚-algebra and B(A)

denotes the set of all A-linear bounded operators on A when A is considered
as a right Hilbert module over itself. Since A is self-dual Hilbert module
over itself, by [15, Proposition 2.5.2] all operators that belong to B(A)
are adjointable. Hence, by [15, Corollary 2.5.3] the set B(A) is a unital
C˚-algebra.
Let V be the map from A into B(A) given by V (a) = La for all a P A

where La is the corresponding left multiplier by a. Then V is an isometric
˚-homomorphism, and, since A is unital, it follows that V is in fact an
isomorphism. Thus, B(A) can be identified with A by considering the left
multipliers.
We recall now the following definition.
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Definition 2.1 ([14, Definition 1.1]). Let A be an unital C˚-algebra, and
F Ď A be a subalgebra which satisfies the following conditions:
(i) F is a selfadjoint ideal in A, i.e. for all a P A, b P F there holds

ab, ba P F , and a P F implies a˚ P F ;
(ii) there is an approximate unit pα P F consisting of projections;
(iii) if p, q P F are projections, then there exists v P A, such that vv˚ = q

and v˚v K p, i.e. v˚v + p is a projection as well.
We shall call the elements of such an ideal finite type elements. Hencefor-
ward we shall denote this ideal by F .
Let V be the isometric ˚-isomorphism given above. If F is an ideal of

finite type elements in A, then it is not hard to see that V (F) is an ideal
of finite type elements in B(A), so we may identify F with V (F).
We let Proj(A) denote the set of all orthogonal projections in A, and,

similarly, Proj(F) denotes the set of all orthogonal projections in F . Now
we recall the notion of Murray-von Neumann equivalence between ortho-
gonal projections in C˚-algebras.
Definition 2.2 ([14, Definition 1.2]). Let A be a unital C˚-algebra, and
let F Ď A be an ideal of finite type elements. In the set Proj(A) we define
the equivalence relation:

p „ q ðñ Dv P A : vv˚ = p, v˚v = q,

i.e. Murray-von Neumann equivalence. The set S(F) = Proj(F)/ „ is a
commutative semigroup with respect to addition and K(F) = G(S(F)),
where G denotes the Grothendic functor, is a commutative group.
Definition 2.3 ([13, Definition 6]). Let p, q be orthogonal projections in
A. We will denote p ĺ q if there exists an orthogonal projection p1 in A
such that p1 ď q and p „ p1.
The following concept will be of crucial importance in this paper.

Definition 2.4 ([14, Definition 2.1]). Let a P A and p, q be projections in
A. We say that a is invertible up to a pair (p, q) if there exists some b P A
such that

(1 ´ q)a(1 ´ p)b = 1 ´ q, b(1 ´ q)a(1 ´ p) = 1 ´ p.

We refer to such b as almost inverse of a, or (p, q)-inverse of a.
We recall also the following useful technical lemma.

Lemma 2.5 ([13, Lemma 2]). Let a P A and p, q, p1, q1 be projections in
A. Suppose that p, q, p1 P F . If a is invertible up to a pair (p, q) and also
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invertible up to a pair (p1, q1), then q1 P F . Similarly, if instead of p, q, p1
we have that p, q, q1 P F , then we must have that p1 P F as well.
Finally, we recall the definition of semi-Fredholm elements in a unital

C˚-algebra.
Definition 2.6 ([14, Definition 2.2], [13, Definition 5]). Let F be the ideal
of finite type elements in A and a P A. We say that a is an upper semi-
Fredholm element with respect to the ideal F if a is invertible up to a pair
of projections (p, q) where p P F . Similarly, we say that a is a lower semi-
Fredholm element with respect to the ideal F , if a is invertible up to a pair
of projections (p, q) where q P F .
Finally, we say that a P A is of Fredholm type (or abstract Fredholm

element) with respect to the ideal F if there are projections p, q P F such
that a is invertible up to (p, q). The index of the element a (or abstract
index) is the element of the group K(F) defined by

ind(a) = ([p], [q]) P K(F),

or less formally
ind(a) = [p] ´ [q].

Below are some characterizations of semi-Fredholm type elements.

Lemma 2.7 ([13, Lemma 9]). Let a P A. Then the following holds.
(i) If a is an upper semi-Fredholm element and p, q are projections in A
such that a is invertible up to (p, q) and (1 ´ q)a(1 ´ p) = a, then a is
an upper semi-Fredholm element if and only if p P F .

(ii) If a is a lower semi-Fredholm element and p, q are projections in A
such that a is invertible up to (p, q) and (1 ´ q)a(1 ´ p) = a, then a is
a lower semi-Fredholm element if and only if q P F .

Lemma 2.8 ([13, Lemma 10]). Let a P A. Then a is an upper semi-
Fredholm element if and only if a is left invertible up to some projection
p P F . Similarly, a is a lower semi-Fredholm element if and only if a is
right invertible up to some projection q P F .
Next we recall the notion of a semi-Weyl type element in A as a genera-

lization of a semi-Weyl operator on a Hilbert space.
Definition 2.9 ([13, Definition 7]). Let a P A. We say that a is an upper
semi-Weyl type element with respect to the ideal F if there exist projections
p, q in A such that p P F , p ĺ q and a is invertible up to a pair (p, q).
Similarly, we say that a is a lower semi-Weyl type element with respect

to the ideal F , if a is invertible up to a pair of projections (p, q) where q P F
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and q ĺ p. Finally, we say that a is a Weyl type element with respect to
the ideal F if a is invertible up to a pair (p, q) where p, q are projections in
F and p „ q.
Remark 2.10 ([13, Remark 2]). Notice that every Weyl type element has
index zero. The converse is true if K(F) satisfies the cancellation property.
Set

KΦ+(A) = ta P A | a is an upper semi-Fredholm type element u,
KΦ´(A) = ta P A | a is a lower semi-Fredholm type element u,
KΦ(A) = ta P A | a is a Fredholm type element u,

KΦ+́(A) = ta P A | a is an upper semi-Weyl type element u,
KΦ+´(A) = ta P A | a is a lower semi-Weyl type elementu,
KΦ0(A) = ta P A | a is a Weyl type elementu.

It is understood that we consider a fixed ideal F of finite type elements.
Notice that by definition we have

KΦ+́(A) Ď KΦ+(A), KΦ+´(A) Ď KΦ´(A), KΦ0(A) Ď KΦ(A).

We recall also some properties of semi-Weyl type elements.

Proposition 2.11 ([13, Proposition 17]). Let a P A. Then the following
statements hold:
(i) a P KΦ+́(A) if and only if there exist a left invertible element b P A
and some f P F such that a = b+ f ;

(ii) a P KΦ+´(A) if and only if there exist a right invertible element b P A
and some f P F such that a = b+ f ;

(iii) a P KΦ0(A) if and only if there exist an invertible element b P A and
some f P F such that a = b+ f .

Proposition 2.12 ([13, Proposition 13]). The sets
KΦ+(A) zKΦ+́(A), KΦ´(A) zKΦ+´(A), KΦ(A) zKΦ0(A)

are open in the norm topology of A.

Lemma 2.13 ([13, Lemma 19]). Let a P KΦ+́(A) X KΦ+´(A) X KΦ(A).
Then there exist projections p, q in F such that a is invertible up to (p, q),
qa(1 ´ p) = 0, p ĺ q and q ĺ p.

In [5] Đorđević introduced the notion of a generalized Weyl operator on
a Hilbert space, which is a closed range operator whose kernel is isomorphic
to the orthogonal complement of its image. He proved in [5, Theorem 1]
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that a composition of two generalized Weyl operator is also a generalized
Weyl operator if this composition has closed image. The next proposition
is an algebraic generalization of this result in the case of unital C˚-algebras.

Proposition 2.14 ([13, Proposition 20]). Let, a, b P A and suppose that
there exist projections p, q, p1, q1, p̃, q̃ in A such that (1 ´ q)a(1 ´ p) = a,
(1 ´ q1)b(1 ´ p1) = b, (1 ´ q̃)ba(1 ´ p̃) = ba and a, b, ba are invertible up to
(p, q), (p1, q1) and (p̃, q̃) respectively. If p „ q and p1 „ q1, then p̃ „ q̃.
At the end, we recall the following definition regarding Hilbert modules.

Definition 2.15 ([15, Definition 2.3.1]). A closed submoduleN in a Hilbert
C˚-module M is called (topologically) complementable if there exists a
closed submodule L in M such tha N + L = M and N X L = 0.
By the symbol ‘̃ we denote the direct sum of modules as given in [15].
Thus, if M is a Hilbert C˚-module and M1, M2 are two closed submod-

ules of M , we write M = M1 ‘̃ M2 if M1 X M2 = t0u and M1 +M2 = M .
If M1 and M2 are mutually orthogonal, then we write M = M1 ‘ M2.
Remark 2.16 ([11, Remark 1.5]). If [ P B(A) is a (skew) projection,
then, since Im([) is closed, by [15, Theorem 2.3.3] we get that Im([)
is complementable. Hence, every closed and complementable submodule
M of A is orthogonally complementable. The corresponding orthogonal
projection onto M will be denoted by PM .

3. MAiN RESULTS
Throughout this section we let F be an ideal of finite type elements in A

and tPαu be an approximate unit for F consisting of orthogonal projections.
As observed in the previous section, A can be identified with B(A) by
considering the left multipliers on A. We start with the following definition,
which is an extended version of [11, Definition 2.8].
Definition 3.1. Let F P B(A). We say that F P MKΦ+(A) if there exists
a decomposition

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

with respect to which F has the matrix
[
F1 0
0 F4

]

where F1 is an isomorphism and PN1 P F . Analogously, we say that F is
in MKΦ´(A) if all the above conditions hold except that in this case we
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assume that PN2 P F . Finally, we say that F P MKΦ(A) if the above
conditions hold and both PN1PN2 P F . In this case, we put then

indF = [PN1 ] ´ [PN2 ]

in K(F).
By [11, Lemma 2.7] it follows that

MKΦ+(A) = KΦ+(A),

MKΦ´(A) = KΦ´(A),

MKΦ(A) = KΦ(A).

Here we again identify B(A) with A. We have the following lemma.

Lemma 3.2. Let F P MKΦ+(A) and suppose that

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A,

A = M 1
1 ‘̃ N 1

1
FÝÝÑ M 1

2 ‘̃ N 1
2 = A,

are two MKΦ+-decompositions for F . If PN2 P F , then PN 1
2

P F .
Proof. By exactly the same arguments as in the first part of the proof
of [11, Theorem 2.9] we can find a sufficiently large α and closed submodules
R and R1 of A such that,

Im(I ´ Pα) ‘̃ R – M1, Im(I ´ Pα) ‘̃ R1 – M 1
1

and

A = Im(I ´ Pα) ‘̃ (R ‘̃ N1)
FÝÝÑ F (Im(I ´ Pα)) ‘̃ (F (R) ‘̃ N2) = A,

A = Im(I ´ Pα) ‘̃ (R1 ‘̃ N 1
1)

FÝÝÑ F (Im(I ´ Pα)) ‘̃ (F (R1) ‘̃ N 1
2) = A

are two MKΦ+-decompositions for F , where R – F (R), R1 – F (R1), and
PR, PR1 P F . Indeed, we are in the position to apply the same arguments
as in the first part of the proof of [11, Theorem 2.9] because PN1 , PN 1

1
P F .

It follows that
F (R) ‘̃ N2 – F (R1) ‘̃ N 1

2

and from [11, Lemma 2.3] we also have that PF (R), PF (R1) P F . Hence,
if PN2 P F , from [11, Lemma 2.4] we deduce that PF (R) ‘̃ N2

P F . Since
F (R) ‘̃ N2 – F (R1) ‘̃ N 1

2, from [11, Lemma 2.3] we obtain that
PF (R1) ‘̃ N 1

2
P F .

Therefore, PN 1
2

P F since PN 1
2

ď PF (R1) ‘̃ N 1
2
and F is an ideal. □
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Again, by [11, Lemma 2.7] it follows that Lemma 3.2 is equivalent to
Lemma 2.5, however, we have provided here a different proof which is
motivated by the proof of [7, Lemma 2.16]. Next, we provide some charac-
terizations of MKΦ+- and MKΦ´-operators.

Lemma 3.3. Let F P B(A) and suppose that Im(F ) is closed. Then
(a) F P MKΦ+(A) if and only if PKer(F ) P F ,
(b) F P MKΦ´(A) if and only if P(Im(F ))K P F .
Proof. Since Im(F ) is closed, by [15, Theorem 2.3.3] we have that

A = (Ker(F ))K ‘ F = Im(F ) ‘ (Im(F ))K.
Then we can proceed in exactly the same way as in the proof of [10,
Lemma 3.1.21]. □

Lemma 3.4. Let F P B(A). Then F P MKΦ+(A) if and only if there
exists a complementable submodule M of A such that F |M is bounded below
and PMK P F .
Proof. If suchM exists, then by exactly the same arguments as in the proof
of [7, Lemma 3.1] we can deduce that F has the matrix

[
F1 F2

0 F4

]

with respect to the decomposition

A = M ‘ MK FÝÝÑ F (M) ‘ F (M)K = A,

where F1 is an isomorphism. Hence, by the method from the proof of [15,
Lemma 2.7.10] we can construct an isomorphism U such that F has the
matrix [

F1 0

0 F̃4

]

with respect to the decomposition

A = M ‘̃ U(MK) FÝÝÑ F (M) ‘ F (M)K = A.

Since U is an isomorphism, by [11, Lemma 2.1] it follows that PU(MK) P F .
Thus, we have obtained an MKΦ+-decomposition for F .
On the other hand, if

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

is an MKΦ+-decomposition for F , then by [11, Lemma 2.5] we have that
A = NK

1 ‘ N1 ÝÑ F (NK
1 ) ‘̃ N2 = A



10 S. Ivković

is also an MKΦ+-decomposition for F . In particular, F |NK
1
is bounded

below. □
The following auxiliary technical lemma will enable us to connect Lem-

mas 3.3 and 3.4 with the results from the previous section.

Lemma 3.5. Let F P B(A). Then F has closed image if and only if there
exist orthogonal projections P,Q P B(A) such that (I´Q)F (I´P ) = F and
F is invertible up to (P,Q). In this case, P = PKer(F ) and Q = PIm(F )K.
Consequently, if N is a closed and complementable submodule of A, then
F |NK is bounded below if and only if F is left invertible up to PN .
Proof. If P , Q are orthogonal projection such that (I ´ Q)F (I ´ P ) = F ,
then F has the matrix

[
F1 0
0 0

]
with respect to the decomposition

A = Im(I ´ P ) ‘ Im(P )
FÝÝÑ Im(I ´ Q) ‘ Im(Q) = A.

If in addition there exists some D such that DF = I ´ P , then we must
have that F |Im(I´P ) is bounded below. Indeed, for all x P Im(I ´ P ) it
holds then that

}x} = }(DF )x} ď }D}}Fx} so }Fx} ě }x}/}D}.
Hence, Ker(F ) = Im(P ). Finally, if FD = I ´Q, then Im(I ´Q) Ď Im(F ),
thus Im(F ) = Im(F1) = Im(I ´ Q), which proves the implication in one
direction.
Conversely, if Im(F ) is closed, then by [15, Theorem 2.3.3] we get that

Im(F ) and Ker(F ) are orthogonally complementable in A. Thus, F has
the matrix

[
F1 0
0 0

]
with respect to the decomposition

A = Im(I ´ P ) ‘ Im(P )
FÝÝÑ Im(I ´ Q) ‘ Im(Q) = A,

where P = PKer(F ) and Q = PIm(F )K and by the Banach open mapping
theorem it follows that F1 is an isomorphism since Im(F ) is closed. Now,
it is not hard to deduce that the operator with the matrix

[
F´1
1 0
0 0

]
with

respect to the decomposition
A = Im(I ´ Q) ‘ Im(Q) ÝÑ Im(I ´ Q) ‘ Im(P ) = A,

is the desired (P,Q)-inverse of F .
Finally, if N is a closed and complementable submodule of A and F |NK

is bounded below, then FPNK has closed image and Ker(FP )NK = N .
By previous arguments, it follows that F is left invertible up to PN . On

the other hand, if F is left invertible up to PN , then by definition there
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exists some D P B(A) such that DFPNK = PNK . By the similar arguments
as above, one can deduce then that F |NK must be bounded below in this
case. □

It follows now from Lemma 3.5 that Lemma 3.3 is equivalent to Lemma 2.7,
whereas Lemma 3.4 is equivalent to Lemma 2.8, however, we have provided
here different proofs from those given in [13].
The next proposition is motivated by [10, Lemma 3.1.13].

Proposition 3.6. Let F P B(A) and suppose that Π is a skew or an
orthogonal projection such that (I ´ Π) P F . Then F P MKΦ(A), if and
only if there exists a decomposition

Im(Π) = M ‘̃ N
ΠFÝÝÝÑ M 1 ‘̃ N 1 = Im(Π)

with respect to which the operator ΠF |Im(Π) has the matrix
[
(ΠF )1 0

0 (ΠF )4

]

where (ΠF )1 is an isomorphism and PN , PN 1 P F . Moreover, in this case
indF = [PN ] ´ [PN 1 ].

Proof. We notice first that if Im(Π) = M ‘̃ N = M 1 ‘̃ N 1, then clearly N
and N 1 are complementable in A because A = Im(Π) ‘̃ Ker(Π). Hence, by
Remark 2.16, N and N 1 are orthogonally complementable in A, so PN and
P 1
N are well-defined in this case.
Next, since Π = I´(I´Π) and (I´Π) P F , by [11, Theorem 2.12] it fol-

lows that Π P MKΦ(A). Suppose that F P MKΦ(A). By [11, Proposition
2.10] we deduce that ΠFΠ P MKΦ(A).
Let

A = M ‘̃ N
ΠFΠÝÝÝÝÑ M 1 ‘̃ N 1 = A

be an MKΦ-decomposition for ΠFΠ. Since ΠFΠ|M is an isomorphism,
it follows that Π|M must be bounded below, so Π(M) is closed. Further-
more, since M is orthogonally complementable by Remark 2.16 and Π is
adjointable by [15, Proposition 2.5.2], by the same arguments as in the
proof of [10, Lemma 3.1.13] we obtain that Π(M) ‘ Ñ = Im(Π) for some
closed submodule Ñ . Hence, following further the arguments from the proof
of [10, Lemma 3.1.13], we get that Π has the matrix

[
Π1 0
0 Π4

]
with respect

the decomposition

A = M ‘̃ U(N)
ΠÝÝÑ Π(M) ‘̃ (Ñ ‘̃ Ker(Π)) = A

where Π1 and U are isomorphisms. Since PN P F and U is an isomorphism,
by [11, Lemma 2.1] we have that PU(N) P F . From Lemma 3.2 we get that
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PÑ ‘̃ Ker(Π) P F because Π P MKΦ(A). Then we must have that PÑ P F
because PÑ ď PÑ ‘̃ Ker(Π) and F is an ideal.
Next, since M 1 is orthogonally complementable by Remark 2.16, then,

as M 1 Ď Im(Π), by [8, Lemma 2.6] we deduce that M ‘ Ñ 1 = Im(Π) for
some closed submodule Ñ 1. Thus, we get

A = M 1 ‘̃ N 1 = M 1 ‘̃ Ñ 1 ‘̃ Ker(Π),
which gives N 1 – Ñ 1 ‘̃ Ker(Π). By [11, Lemma 2.1] we have

PÑ 1 ‘̃ Ker(Π) „ PN 1 P F .

Since PÑ 1 ď PÑ 1 ‘̃ Ker(Π), we deduce that PÑ 1 P F .
By the same arguments as in the proof of [10, Lemma 3.1.13] we ob-

tain that ΠF |Im(Π) has the matrix
[
(ΠF )1 0

0 (ΠF )4

]
with respect to the

decomposition

Im(Π) = Ũ(Π(M)) ‘̃ Ũ(Ñ)
ΠFÝÝÝÑ M 1 ‘̃ Ñ 1 = Im(Π)

where Ũ and (ΠF )1 are isomorphisms. Since PÑ P F and Ũ is an isomor-
phism, by [11, Lemma 2.1] we get that PŨ(Ñ) „ PÑ P F . This proves the
implication in one direction because PÑ 1 P F , also.
Let us show now the implication in the opposite direction. If

Im(Π) = M ‘̃ N
ΠFÝÝÝÑ M 1 ‘̃ N 1 = Im(Π)

is a decomposition satisfying the conditions in the lemma, then by the same
arguments as in the proof of [10, Lemma 3.1.13] we obtain that F has the
matrix

[
F1 F2

F3 F4

]
with respect to the decomposition

A = M ‘̃ (N ‘̃ Ker(Π)) FÝÝÑ M 1 ‘̃ (N 1 ‘̃ Ker(Π)) = A,

where F1 is an isomorphism. Hence, by the method from the proof of [15,

Lemma 2.7.10], we get that F has the matrix
[
F̃1 0

0 F̃4

]
with respect to the

decomposition

A = M ‘̃ U(N ‘̃ Ker(Π)) FÝÝÑ V (M 1) ‘̃ (N 1 ‘̃ Ker(Π)) = A
where F̃1, U and V are isomorphisms. Since Π P MKΦ(A), by Lemma 3.3,
Ker(Π) must be orthogonally complementable and PKer(Π) P F . Now, since
by the assumption we have that PN , PN 1 P F , by [11, Lemma 2.4] we
get that PN ‘̃ Ker(Π), PN 1 ‘̃ Ker(Π) P F . Finally, since U is an isomorphism,
by [11, Lemma 2.1] we deduce that PU(N ‘̃ Ker(Π)) P F . This proves the
implication in the opposite direction.
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Finally, by using [11, Proposition 2.10] instead of [15, Lemma 2.7.11] and
by applying [11, Lemma 2.4] we can proceed in exactly the same way as in
the last part of the proof of [10, Lemma 3.1.13] to deduce the last statement
in the proposition regarding index. □

Motivated by [7, Definition 5.6] we introduce now the following definition.

Definition 3.7. We let MKΦ´1
+ (A) be the set of all operators F P B(A)

admitting an MKΦ+-decomposition

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

with the property that N1 ĺ N2, that is N1 is isomorphic to a closed
submodule of N2.
Similarly, we letMKΦ+1

´ (A) be the set of all operators F P B(A) having
an MKΦ´-decomposition

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

with the property that N2 ĺ N1.
Finally, we say that F P MKΦ0(A) if there exists anMKΦ-decomposition

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

for F with the property that N1 – N2.

Lemma 3.8. Let M and N be two closed, complementable submodules
of A. Then M is isomorphic to a closed submodule of N if and only if
PM ĺ PN .
Proof. Note first that M is orthogonally complementable by Remark 2.16.
Let N 1 Ď N such that M – N 1 and denote be ι the isomorphism from
M onto N 1. If J stands for the inclusion from N 1 into A, then JιPM is a
bounded, A-linear map on A, hence it is adjointable by [15, Proposition
2.5.2]. Since Im(JιPM ) = N 1, which is closed, by [15, Theorem 2.3.3], we
obtain thatN 1 is orthogonally complementable inA. By [11, Lemma 2.1] we
have that PM „ PN 1 , and, obviously, PN 1 ď PN . The opposite implication
also follows from [11, Lemma 2.1]. □

By Lemma 3.8 and [11, Lemma 2.7] it follows that

MKΦ´1
+ (A) = KΦ+́(A),

MKΦ+1
´ (A) = KΦ+´(A),

MKΦ0(A) = KΦ0(A).

Below we obtain some properties of MKΦ´1
+ and MKΦ+1

´ -operators.
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Proposition 3.9. Let F P B(A). Then F P MKΦ´1
+ (A) if and only if

there exist some D P B(A) and K P F such that F = D + K and D is
bounded below.
Proof. We prove first that the setMKΦ´1

+ (A) is invariant under perturba-
tions by finite type elements. Although it has in fact been proved in [13],
we shall provide here another argumentation. Let F P MKΦ´1

+ (A) and
suppose that

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

is an MKΦ´1
+ -decomposition for F .

In particular, it is an MKΦ+-decomposition for F , hence PN1 P F .
Therefore, ifK P F , then by exactly the same arguments as in the proof [11,
Lemma 2.11] we can find a sufficiently large α and a closed, complementable
submodule R Ď A such that

A = Im(I ´ Pα) ‘̃ (U(R) ‘̃ U(N1))
F+KÝÝÝÑ V (Im(I ´ Pα)) ‘̃ (F (R) ‘̃ N2) = A

is anMKΦ+-decomposition for the operator F +K, where R – F (R) and
U , V are isomorphisms. Now, as U(R) – R – F (R) and U(N1) – N1 ĺ N2,
it is not hard to see that U(R) ‘̃ U(N1) is isomorphic to a closed submodule
of F (R) ‘̃ N2.
Furhter, if D is bounded below, then Im(D) is closed, hence by [15,

Theorem 2.3.3] we have that Im(D) is orthogonally complementable in
A. It follows that D P MKΦ´1

+ (A). Therefore by previous arguments
D +K P MKΦ´1

+ (A), which proves the implication in one direction.
By combining the proof of Lemma 3.8 with the proof of [7, Theorem 5.10]

we can prove the implication in the opposite direction. □

It follows from Lemma 3.5 that Proposition 3.9 is equivalent to Proposi-
tion 2.11 part 1), however, we have provided here a proof which is different
from the proof given in [13].
Now we will provide another proof of Proposition 2.12, which is different

from the original proof of this proposition given in [13]. The new proof
builds further on the proof of [12, Theorem 4.2].

Proposition 3.10. The sets

MKΦ+(A) z MKΦ´1
+ (A), MKΦ´(A) z MKΦ+1

´ (A)

and MKΦ(A)zMKΦ0(A) are open.

Proof. Let F P MKΦ+(A)zMKΦ´1
+ (A). As in the proof of [12, Theo-

rem 4.2], there exists some ε ŋ 0, such that if D P B(A) and }F ´ D} ă ε,
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then we can find MKΦ+-decompositions

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A,

A = M 1
1 ‘̃ N 1

1
DÝÝÑ M 1

2 ‘̃ N 1
2 = A,

for F and D, respectively, where M1 – M 1
1, N1 – N 1

1, M2 – M 1
2 and

N2 – N 1
2. Assume that D P MKΦ+́

1
(A) and let

A = M2
1 ‘̃ N2

1
DÝÝÑ M2

2 ‘̃ N2
2 = A

be an MKΦ´1
+ -decomposition for D. By exactly the same arguments as in

the first part of the proof of [11, Theorem 2.9] we can find some α such
that
A = Im(I ´ Pα) ‘̃ (R1 ‘̃ N 1

1)
DÝÝÑ D(Im(I ´ Pα)) ‘̃ (D(R1) ‘̃ N 1

2) = A,

A = Im(I ´ Pα) ‘̃ (R2 ‘̃ N2
1 )

DÝÝÑ D(Im(I ´ Pα)) ‘̃ (D(R2) ‘̃ N2
2 ) = A,

are two MKΦ+-decompositions for D. By the construction, R1 – D(R1),
R2 – D(R2), R1, R2 are orthogonally complementable and PR1 , PR2 P F .
Then we can proceed as in the proof of [12, Theorem 4.2] to deduce that
there exists an isomorphism U on A such that F has the matrix

[
F1 0
0 F4

]

with respect to the decomposition

A = U(I´Pα) ‘̃ (U(R1) ‘̃ N1)
FÝÑ F (U(I´Pα)) ‘̃ (F (U(R1)) ‘̃ N2) = A

where F1 is an isomorphism and F (U(R1)) – R1. In addition, by the
construction from the proof of [12, Theorem 4.2], we have that

U(R1) ‘̃ N1 ĺ F (U(R1)) ‘̃ N2.

Since PR1 P F and U is an isomorphism, by [11, Lemma 2.1] we have
that PU(R1) P F . Hence, since PN1 P F , by [11, Lemma 2.4] we get that
PU(R1) ‘̃ N1

P F . Thus, we obtain that F P MKΦ´1
+ (A), which is a contra-

diction. Therefore, we must have that D P MKΦ+(A)zMKΦ´1
+ (A), which

shows that the setMKΦ+(A)zMKΦ´1
+ (A) is open since the argumentation

above holds for every D P B(A) with }F ´ D} ă ε.
The proofs of the other statements are similar. □
Next, we will also provide another proof of Lemma 2.13, which builds

further on the proof of [12, Proposition 4.4].

Lemma 3.11. Let F P MKΦ(A)XMKΦ´1
+ (A)XMKΦ+1

´ (A). Then there
exists an MKΦ-decomposition

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A
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for F with the property that N1 ĺ N2 and N2 ĺ N1.
Proof. If

A = M1 ‘̃ N1
FÝÝÑ M2 ‘̃ N2 = A

and
A = M 1

1 ‘̃ N 1
1

FÝÝÑ M 1
2 ‘̃ N 1

2 = A
are anMKΦ´1

+ and anMKΦ+1
´ decomposition for F , then, by Lemma 3.2,

both these decompositions are actually MKΦ-decompositions for F since
F P MKΦ(A) by the assumption. As in the first part of the proof of [11,
Theorem 2.9], we find some α such that

A = Im(I ´ Pα) ‘̃ (R ‘̃ N1)
FÝÝÑ F (Im(I ´ Pα)) ‘̃ (F (R) ‘̃ N1) = A

A = Im(I ´ Pα) ‘̃ (R1 ‘̃ N 1
1)

FÝÝÑ F (Im(I ´ Pα)) ‘̃ (F (R1) ‘̃ N 1
2) = A,

are two MKΦ-decompositions for F , where PR, PR1 P F and R – F (R),
R1 – F (R1). Then we can proceed similarly to the proof of [12, Proposi-
tion 4.4]. □

Again, by Lemma 3.8 and [11, Lemma 2.7] it follows that Lemma 3.11
is equivalent to Lemma 2.13.
At the end we recall the statement of [10, Proposition 5.1.3] originally

given in [9].

Proposition 3.12. Let F,D P B(A) such that F and D have closed image.
Suppose that Ker(F ) – (Im(F ))K and Ker(D) – (Im(D))K. If DF has
closed image, then Ker(DF ) – (Im(DF ))K.
From Lemma 3.5 and [11, Lemma 2.1] it follows that this proposition is

in fact equivalent to Proposition 2.14.
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