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On new approach to semi-Fredholm
theory in unital C*-algebras

Stefan Ivkovié

Abstract. Axiomatic Fredholm theory in unital C*-algebras was estab-
lished in [D. Kecki¢, Z. Lazovi¢, Acta Sci. Math., 83(3-4):629-655, 2017].
Following the pure algebraic approach by Keckic and Lazovic, in the author’s
paper [S. Ivkovic, Banach J. Math. Anal., 17:51, 2023] we extended further
this theory to axiomatic semi-Fredholm and semi-Weyl theory in unital C*-
algebras. However, recently, in [S. Ivkovi¢, arXiv:2306.01133] we developed
another approach to axiomatic Fredholm theory in unital C*-algebras which
is based on the theory of Hilbert modules and is equivalent to the algebraic
approach by Kecki¢ and Lazovié. In this paper, we extend further that new
Hilbert-module approach from Fredholm theory to semi-Fredholm and semi-
Weyl theory in unital C*-algebras. Hence, we provide new proofs to the
results in [S. Ivkovic, Banach J. Math. Anal., 17:51, 2023].

AwnoTarnis. Axciomarnuna Teopis ®penrombMa B yHiTampHEIX C*-anrebpax
po3pobitena B poboti [D. Kecki¢, Z. Lazovié, Acta Sci. Math., 83(3-4):629-
655, 2017]. Ix cyro anreGpaiummii minxix 6ys masi ysarajbHeHmi aBTOPOM B
[S. Ivkovic, Banach J. Math. Anal., 17:51, 2023| mo akciomaTuaHOI Teopil Jyist
namis-DperobMoBol Ta Hamib-Beitresoi Teopii B yriTamsrux C*-anrebpax.
Opnnak, HemogaeHo, B [S. Ivkovié, arXiv:2306.01133] 3anpononoBaso iHrmmii
migxin mo axciomarmamoi Toepii ®pearonpma B ymiTamprux C*-anrebpax,
AKWM 6a3yeThcsd Ha Teopil Tijap0epTOBUX MOJYJIIB 1 € €KBiBAJEHTHUM JI0 aJl-
rebpalanoro migxomy Keckié ta Lazovié. B maniit poborti meit miaxin y3araib-
HEHO | TAKOK OTPMMAHO HOBI JOBeNeHHA Jeakux pe3ynbraris 3 [S. Ivkovic,

Banach J. Math. Anal., 17:51, 2023].

1. INTRODUCTION

The Fredholm and semi-Fredholm theory on Hilbert and Banach spaces
started by studying the integral equations introduced in the pioneering work
by Fredholm in 1903 in [6]. After that, the abstract theory of Fredholm
and semi-Fredholm operators on Hilbert and Banach spaces was further
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developed in numerous papers and books such as [1,2]. In addition to
classical semi-Fredholm theory on Hilbert and Banach spaces, several gen-
eralizations of this theory have been considered. Breuer for example started
the development of Fredholm theory in von-Neumann algebras as a gene-
ralization of the classical Fredholm theory for operators on Hilbert spaces.
In [3] and [4] he introduced the notion of a Fredholm operator in a von
Neumann algebra and established its main properties. On the other hand,
Fredholm theory on Hilbert C*-modules as another generalization of the
classical Fredholm theory on Hilbert spaces was started by Mishchenko and
Fomenko. In [16] they introduced the notion of a Fredholm operator on the
standard Hilbert C*-module and proved a generalization in this setting of
some of the main results from the classical Fredholm theory. The interest
for considering these generalizations comes from the theory of pseudo diffe-
rential operators acting on manifolds. The classical theory can be applied
in the case of compact manifolds, but not in the case of non-compact ones.
Even operators on Euclidian spaces are hard to study, for example Lapla-
cian is not Fredholm. Kernels and cokernels of many operators are infinite
dimensional Banach spaces, however, they may also at the same time be
finitely generated Hilbert modules over some appropriate C*-algebra. Sim-
ilarly, orthogonal projections onto kernels and cokernels of many bounded
linear operators on Hilbert spaces are not finite rank projections in the
classical sense, but they are still finite projections in an appropriate von
Neumann algebra. Therefore, many operators that are not semi-Fredholm
in the classical sense may become semi-Fredholm in a more general sense
if we consider them as operators on Hilbert C*-modules or as elements of
an appropriate von Neumann algebra. Hence, by studying these genera-
lized semi-Fredholm operators, we get a proper extension of the classical
semi-Fredholm theory to new classes of operators.

Now, Kecki¢ and Lazovié¢ in [14] established an axiomatic approach to
Fredholm theory. They introduced the notion of a finite type element in
a unital C*-algebra which generalizes the notion of the compact operator
on the standard Hilbert C*-module and the notion of a finite operator in
a properly infinite von Neumann algebra. They also introduced the no-
tion of a Fredholm type element with respect to the ideal of these finite
type elements. This notion is at a same time a generalization of the clas-
sical Fredholm operator on a Hilbert space, Fredholm C*-operator on the
standard Hilbert C*-module defined by Mishchenko and Fomenko and the
Fredholm operator on a properly infinite von Neumann algebra defined by
Breuer. Index of this Fredholm type element takes values in the K-group.
They showed that the set of Fredholm type elements in a unital C*-algebra
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is open in the norm topology and they proved a generalization of the Atkin-
son theorem. Moreover, they proved the multiplicativity of the index in the
K-group and that the index is invariant under perturbations of Fredholm
type elements by finite type elements. In [13] we went further in this direc-
tion and defined semi-Fredholm and semi-Weyl type elements in a unital
C*-algebra. We investigated and proved several properties of these ele-
ments as a generalization of the results from the classical semi-Fredholm
and semi-Weyl theory on Hilbert and Banach spaces.

Recently, in [11], we introduced a new approach to axiomatic Fredholm
theory in unital C*-algebras and we proved that this approach is in fact
equivalent to the above mentioned approach developed by Kecki¢ and La-
zovié. In this new approach we use the fact that a unital C*-algebra A is
isometrically isomorphic to the algebra of all A-linear operators on .4 when
A is considered as a Hilbert module over itself. This enables us to apply
some known results from operator theory on Hilbert C*-modules, such as
the result concerning the complementability of the kernel and the image of
a closed range C*-operator (for more details, see [15, Theorem 2.3.3]) and
in that way we bypass several technical lemmas from the paper by Keckié¢
and Lazovié¢ [14] which require long proofs.

The aim of this paper is to obtain an axiomatic semi-Fredholm and semi-
Weyl theory in unital C*-algebras based on the approach introduced in [11].
While [11] deals with axiomatic Fredholm theory based on the above men-
tioned Hilbert module approach, in this paper we establish semi-Fredholm
and semi-Weyl theory in unital C*-algebras following the same approach.
Our motivation was to provide new and shorter proofs of the results given
in [13], and it is therefore the main topic and the purpose of this paper.

2. PRELIMINARIES

Throughout this paper 4 always stands for a unital C*-algebra and B(.A)
denotes the set of all A-linear bounded operators on .4 when A is considered
as a right Hilbert module over itself. Since A is self-dual Hilbert module
over itself, by [15, Proposition 2.5.2] all operators that belong to B(.A)
are adjointable. Hence, by [15, Corollary 2.5.3] the set B(.A) is a unital
C*-algebra.

Let V' be the map from A into B(A) given by V(a) = L, for all a € A
where L, is the corresponding left multiplier by a. Then V is an isometric
x-homomorphism, and, since A is unital, it follows that V' is in fact an
isomorphism. Thus, B(A) can be identified with A by considering the left
multipliers.

We recall now the following definition.
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Definition 2.1 (|14, Definition 1.1]). Let A be an unital C*-algebra, and
F < A be a subalgebra which satisfies the following conditions:

(i) F is a selfadjoint ideal in A, i.e. for all a € A, b € F there holds
ab,ba € F, and a € F implies a* € F;
(ii) there is an approximate unit p, € F consisting of projections;
(iii) if p,q € F are projections, then there exists v € A, such that vv* = ¢
and v*v L p, i.e. v*v + p is a projection as well.

We shall call the elements of such an ideal finite type elements. Hencefor-
ward we shall denote this ideal by F.

Let V' be the isometric #-isomorphism given above. If F is an ideal of
finite type elements in A, then it is not hard to see that V(F) is an ideal
of finite type elements in B(.A), so we may identify F with V(F).

We let Proj(.A) denote the set of all orthogonal projections in .4, and,
similarly, Proj(F) denotes the set of all orthogonal projections in F. Now
we recall the notion of Murray-von Neumann equivalence between ortho-
gonal projections in C*-algebras.

Definition 2.2 ([14, Definition 1.2]). Let A be a unital C*-algebra, and
let F < A be an ideal of finite type elements. In the set Proj(A) we define
the equivalence relation:

p~q — Jve A: w*=p, v*v=yq,

i.e. Murray-von Neumann equivalence. The set S(F) = Proj(F)/ ~ is a
commutative semigroup with respect to addition and K(F) = G(S(F)),
where G denotes the Grothendic functor, is a commutative group.

Definition 2.3 ([13, Definition 6]). Let p, ¢ be orthogonal projections in
A. We will denote p < ¢ if there exists an orthogonal projection p’ in A
such that p’ < g and p ~ p'.

The following concept will be of crucial importance in this paper.

Definition 2.4 ([14, Definition 2.1]|). Let a € A and p, ¢ be projections in
A. We say that a is invertible up to a pair (p,q) if there exists some b € A
such that

(1-q@a(l-pb=1-gq, b(1—qa(l —p)=1-p.
We refer to such b as almost inverse of a, or (p, q)-inverse of a.

We recall also the following useful technical lemma.

Lemma 2.5 ([13, Lemma 2|). Let a € A and p,q,p’,q be projections in
A. Suppose that p,q,p’ € F. If a is invertible up to a pair (p,q) and also
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invertible up to a pair (p',q'), then ¢' € F. Similarly, if instead of p,q,p’
we have that p,q,q € F, then we must have that p' € F as well.

Finally, we recall the definition of semi-Fredholm elements in a unital
C*-algebra.

Definition 2.6 (|14, Definition 2.2|, [13, Definition 5|). Let F be the ideal
of finite type elements in A and a € A. We say that a is an upper semi-
Fredholm element with respect to the ideal F if a is invertible up to a pair
of projections (p, q) where p € F. Similarly, we say that a is a lower semi-
Fredholm element with respect to the ideal F, if a is invertible up to a pair
of projections (p, q) where q € F.

Finally, we say that a € A is of Fredholm type (or abstract Fredholm
element) with respect to the ideal F if there are projections p,q € F such
that a is invertible up to (p,q). The index of the element a (or abstract
index) is the element of the group K (F) defined by

ind(a) = ([p]; [q]) € K(F),
or less formally
ind(a) = [p] — lq].

Below are some characterizations of semi-Fredholm type elements.

Lemma 2.7 (|13, Lemma 9]). Let a € A. Then the following holds.

(i) If a is an upper semi-Fredholm element and p,q are projections in A
such that a is invertible up to (p,q) and (1 —q)a(l —p) = a, then a is
an upper semi-Fredholm element if and only if p € F.

(ii) If a is a lower semi-Fredholm element and p,q are projections in A
such that a is invertible up to (p,q) and (1 —q)a(l —p) = a, then a is
a lower semi-Fredholm element if and only if g € F.

Lemma 2.8 ([13, Lemma 10|). Let a € A. Then a is an upper semi-
Fredholm element if and only if a is left invertible up to some projection
p € F. Similarly, a is a lower semi-Fredholm element if and only if a is
right invertible up to some projection q € F.

Next we recall the notion of a semi-Weyl type element in A as a genera-
lization of a semi-Weyl operator on a Hilbert space.

Definition 2.9 ([13, Definition 7]). Let a € A. We say that a is an upper
semi- Weyl type element with respect to the ideal F if there exist projections
p,q in A such that p € F, p < ¢ and a is invertible up to a pair (p, q).
Similarly, we say that a is a lower semi- Weyl type element with respect
to the ideal F, if a is invertible up to a pair of projections (p, q) where g € F
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and ¢ < p. Finally, we say that a is a Weyl type element with respect to
the ideal F if a is invertible up to a pair (p, q) where p, ¢ are projections in
F and p ~ q.

Remark 2.10 (|13, Remark 2]). Notice that every Weyl type element has

index zero. The converse is true if K (F) satisfies the cancellation property.

Set

K®¢(A) ={ae A|ais a Weyl type element}.

It is understood that we consider a fixed ideal F of finite type elements.
Notice that by definition we have

KoL (A) S KO (A), K@T(A) S KP_(A), KPo(A) < KP(A).

We recall also some properties of semi-Weyl type elements.

Proposition 2.11 ([13, Proposition 17]). Let a € A. Then the following
statements hold:
(i) a € KO (A) if and only if there exist a left invertible element b € A

and some f € F such that a =b+ f;

(i) a € KO (A) if and only if there exist a right invertible element b e A
and some f € F such that a =b+ f;

(iii) a € K®o(A) if and only if there exist an invertible element b € A and
some f € F such that a = b+ f.

Proposition 2.12 ([13, Proposition 13|). The sets

Ko (A)\KPL(A), KD (A)\KPL(A),  KD(A)\KPo(A)
are open in the norm topology of A.
Lemma 2.13 ([13, Lemma 19]). Let a € K& (A) n KT (A) n KP(A).
Then there exist projections p,q in F such that a is invertible up to (p,q),
qga(l—p)=0,p<q and ¢ < p.

In [5] Pordevi¢ introduced the notion of a generalized Weyl operator on
a Hilbert space, which is a closed range operator whose kernel is isomorphic
to the orthogonal complement of its image. He proved in [5, Theorem 1]
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that a composition of two generalized Weyl operator is also a generalized
Weyl operator if this composition has closed image. The next proposition
is an algebraic generalization of this result in the case of unital C*-algebras.

Proposition 2.14 ([13, Proposition 20|). Let, a,b € A and suppose that
there exist projections p,q,p’,q',p,q in A such that (1 — q)a(l — p) = a,
(1—=¢")(1—p')=0b, (1 —4q)ba(l —p) =ba and a,b,ba are invertible up to
(p.q); (P, q') and (p,q) respectively. If p ~ q and p’ ~ ¢, then p ~ q.

At the end, we recall the following definition regarding Hilbert modules.

Definition 2.15 ([15, Definition 2.3.1]). A closed submodule A in a Hilbert
C*-module M is called (topologically) complementable if there exists a
closed submodule £ in M such tha N+ L =M and N n L = 0.

By the symbol @ we denote the direct sum of modules as given in [15].

Thus, if M is a Hilbert C*-module and M;, Ms are two closed submod-
ules of M, we write M = My @ My if My n My = {0} and M; + My = M.
If M7 and M5 are mutually orthogonal, then we write M = M; @ Mo.

Remark 2.16 ([11, Remark 1.5]). If m € B(A) is a (skew) projection,
then, since Im(m) is closed, by [15, Theorem 2.3.3] we get that Im(r)
is complementable. Hence, every closed and complementable submodule
M of A is orthogonally complementable. The corresponding orthogonal
projection onto M will be denoted by Pjy.

3. MAIN RESULTS

Throughout this section we let F be an ideal of finite type elements in A
and {P,} be an approximate unit for F consisting of orthogonal projections.
As observed in the previous section, A can be identified with B(.A) by
considering the left multipliers on A. We start with the following definition,
which is an extended version of [11, Definition 2.8|.

Definition 3.1. Let F' € B(A). We say that F' € MK®_ (A) if there exists
a decomposition

A=M &N 5 My®Ny= A
with respect to which F' has the matrix
o0
0 Fy
where F) is an isomorphism and Py, € F. Analogously, we say that F is
in MK®_(.A) if all the above conditions hold except that in this case we
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assume that Py, € F. Finally, we say that F € MK®(A) if the above
conditions hold and both Py, Py, € F. In this case, we put then

indF' = [Py,| — [Pn,]
in K(F).
By [11, Lemma 2.7| it follows that

MED(A) = Kq)Jr(A)
MED_(A) = K_(A),
MED(A) = KD(A).

Here we again identify B(A) with A. We have the following lemma.
Lemma 3.2. Let F'e MK®, (A) and suppose that

A=M &N —— My &N, = 4,

A=M &N T My Ny = A,
are two MK® -decompositions for F'. If Py, € F, then PNé e F.

Proof. By exactly the same arguments as in the first part of the proof
of [11, Theorem 2.9] we can find a sufficiently large o and closed submodules
R and R’ of A such that,

Im(I — P,) ®R = M, Im(I — P,) ®R = M]
and
A=Im(I—P) & (R®N) - F(Im(I — Py)) & (F(R) & N2) = A,
A=Tm(I = Pa) & (R' & Nj) = F(Im(I — P.)) & (F(R) & N3) = A

are two MK ®_-decompositions for F, where R =~ F(R), R’ ~ F(R'), and
Pr, Pr: € F. Indeed, we are in the position to apply the same arguments
as in the first part of the proof of [11, Theorem 2.9| because Py, Pn; € F.
It follows that
F(R)® N, = F(R') & Ny

and from [11, Lemma 2.3] we also have that Pp(g), Pr(ry € F. Hence,
if Py, € F, from [11, Lemma 2.4] we deduce that Ppg gy, € F. Since
F(R)® Ny ~ F(R') @ N}, from |11, Lemma 2.3] we obtain that

Therefore, Py, € F since Py; < Ppgiy g ny and F is an ideal. O
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Again, by [11, Lemma 2.7 it follows that Lemma 3.2 is equivalent to
Lemma 2.5, however, we have provided here a different proof which is
motivated by the proof of [7, Lemma 2.16]. Next, we provide some charac-
terizations of MK®- and MK ®P_-operators.

Lemma 3.3. Let F' € B(A) and suppose that Im(F) is closed. Then
(a) F'e MK®, (A) if and only if Pie(r) € F,
(b) F'e MK®_(A) if and only if Pyy(py)L € F.

Proof. Since Im(F) is closed, by [15, Theorem 2.3.3] we have that
A= (Ker(F))* ® F = Im(F) @ (Im(F))*.

Then we can proceed in exactly the same way as in the proof of [10,
Lemma 3.1.21]. O

Lemma 3.4. Let F' € B(A). Then F € MK®,(A) if and only if there
exists a complementable submodule M of A such that F|pr is bounded below
and Py e F.

Proof. If such M exists, then by exactly the same arguments as in the proof
of |7, Lemma 3.1] we can deduce that F' has the matrix

P R
0 Fy
with respect to the decomposition

A=Meo M+ L F(M) e F(M)* = A,

where Fj is an isomorphism. Hence, by the method from the proof of [15,
Lemma 2.7.10] we can construct an isomorphism U such that F' has the

matrix
Fy Q
0 Fy

with respect to the decomposition
A=Mé&uUMY) LS F(M)@ F(M)*: = A.

Since U is an isomorphism, by [11, Lemma 2.1] it follows that ;1) € F.

Thus, we have obtained an MK®_-decomposition for F'.
On the other hand, if

A=M &N, 5 M &N, = A
is an MK®_-decomposition for F', then by [11, Lemma 2.5] we have that
A=N{@®N, — F(NH) &Ny = A
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is also an MK ®_-decomposition for F. In particular, F| ni is bounded
below. 0

The following auxiliary technical lemma will enable us to connect Lem-
mas 3.3 and 3.4 with the results from the previous section.

Lemma 3.5. Let F'€ B(A). Then F has closed image if and only if there
exist orthogonal projections P,Q € B(A) such that (I —Q)F(I—P) = F and
F'is invertible up to (P,Q). In this case, P = Pxa(r) and Q = Pyypyr.
Consequently, if N is a closed and complementable submodule of A, then
F|n1 is bounded below if and only if F' is left invertible up to Py .

Proof. If P, @ are orthogonal projection such that (I — Q)F(I — P) = F,
then F' has the matrix {131 8} with respect to the decomposition

A=Im(I — P)®Im(P) - Im(I — Q) ®Im(Q) = A.

If in addition there exists some D such that DF = I — P, then we must
have that F|y,;—p) is bounded below. Indeed, for all z € Im(I — P) it
holds then that

|z = |(DF)z| < | Dl Fa| so  |Fz| = [«]/]D].

Hence, Ker(F) = Im(P). Finally, if FD = I —@Q, then Im(/ — Q) < Im(F),
thus Im(F) = Im(F;) = Im(I — @), which proves the implication in one
direction.

Conversely, if Im(F) is closed, then by [15, Theorem 2.3.3] we get that
Im(F) and Ker(F') are orthogonally complementable in A. Thus, F' has

the matrix [}31 8] with respect to the decomposition
A=Im(I — P)®Im(P) 25 Im(I — Q) ® Im(Q) = A,

where P = Pye(p) and @ = Pp,p)r and by the Banach open mapping
theorem it follows that F is an isomorphism since Im(F’) is closed. Now,

-1
it is not hard to deduce that the operator with the matrix [Fb 8] with

respect to the decomposition
A=Im(I - Q)P Im(Q) — Im(I — Q) ®Im(P) = A,

is the desired (P, @)-inverse of F'.

Finally, if NV is a closed and complementable submodule of A and F|y.
is bounded below, then F'Py. has closed image and Ker(FP)y1 = N.

By previous arguments, it follows that F'is left invertible up to Py. On
the other hand, if F' is left invertible up to Py, then by definition there
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exists some D € B(A) such that DF Py1 = Py1. By the similar arguments
as above, one can deduce then that F|y1 must be bounded below in this
case. ]

It follows now from Lemma 3.5 that Lemma 3.3 is equivalent to Lemma 2.7,
whereas Lemma 3.4 is equivalent to Lemma 2.8, however, we have provided
here different proofs from those given in [13].

The next proposition is motivated by [10, Lemma 3.1.13|.

Proposition 3.6. Let F € B(A) and suppose that 11 is a skew or an
orthogonal projection such that (I —1II) € F. Then F' € MK®(A), if and
only if there exists a decomposition

Im(I) = M & N £ M’ & N’ = Im(II)

(I1F), 0
0 (ILF)4
where (ILF)1 is an isomorphism and Py, Py: € F. Moreover, in this case

indF = [Py] — [Py].

Proof. We notice first that if Im(II) = M & N = M’ ® N’, then clearly N
and N’ are complementable in A because A = Im(IT) @ Ker(II). Hence, by
Remark 2.16, N and N’ are orthogonally complementable in A, so Py and
Py}, are well-defined in this case.

Next, since Il = [ — (I —1II) and (I —1II) € F, by [11, Theorem 2.12] it fol-
lows that IT € MK®(A). Suppose that F' € MK®(A). By [11, Proposition
2.10] we deduce that IIFII € MKP(A).

Let

with respect to which the operator ILF |y, my has the matrix [

IIFII

A=M®N M®N =A
be an MK®-decomposition for IIFIL. Since IIFII), is an isomorphism,
it follows that II}, must be bounded below, so II(M) is closed. Further-
more, since M is orthogonally complementable by Remark 2.16 and II is
adjointable by [15, Proposition 2.5.2], by the same arguments as in the
proof of [10, Lemma 3.1.13] we obtain that II(M) @ N = Im(II) for some
closed submodule N. Hence, following further the arguments from the proof

of [10, Lemma 3.1.13|, we get that IT has the matrix [1_([)1 1? ] with respect
4
the decomposition
A=M&UN) L TI(M) & (N & Ker(Il)) = A

where II; and U are isomorphisms. Since Py € F and U is an isomorphism,
by [11, Lemma 2.1] we have that Py € F. From Lemma 3.2 we get that
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P & ker(ry € F because 11 € ME®(A). Then we must have that Py € F
because Py < Py 4 Ker(IT) and F is an ideal.

Next, since M’ is orthogonally complementable by Remark 2.16, then,
as M’ < Im(II), by [8, Lemma 2.6] we deduce that M @ N’ = Im(II) for
some closed submodule N’. Thus, we get

A=M &N =M & N & Ker(Il),
which gives N’ = N’ & Ker(I). By [11, Lemma 2.1] we have
PN’@KGI"(H) ~ PN/ E./_".

Since Py, < Py & Ker(11)> W€ deduce that Py, € F.
By the same arguments as in the proof of [10, Lemma 3.1.13] we ob-
IF);, 0

tain that TIF|p, ) has the matrix [( 0 (TIF)4

} with respect to the

decomposition

Im(IT) = U(IL(M)) ®UN) L5 M & N/ = Im(TD)
where U and (ITF); are isomorphisms. Since Py € F and U is an isomor-
phism, by [11, Lemma 2.1] we get that PI/?(N) ~ Py € F. This proves the

implication in one direction because Py, € F, also.
Let us show now the implication in the opposite direction. If

Im(I) = M & N -5 M’ @ N’ = Im(I])
is a decomposition satisfying the conditions in the lemma, then by the same
arguments as in the proof of [10, Lemma 3.1.13| we obtain that F' has the

. [F Fy
matrix

! with respect to the decomposition
F3 Fy

A=M& (N & Ker(I)) 2 M’ & (N’ @ Ker(Il)) = A,

where Fj is an isomorphism. Hence, by the method from the proof of 15,

Lemma 2.7.10], we get that F* has the matrix [}Sl Ig } with respect to the
4
decomposition

A=M@UN & Ker(Il)) - V(M) & (N’ & Ker(I)) = A

where I, U and V are isomorphisms. Since II € ME®(A), by Lemma 3.3,
Ker(IT) must be orthogonally complementable and P,y € F. Now, since
by the assumption we have that Py, Pys € F, by [11, Lemma 2.4] we
get that Py @ ger(rry, Pa7 @ ker(my € F- Finally, since U is an isomorphism,
by [11, Lemma 2.1] we deduce that Py g xer(m)) € F- This proves the
implication in the opposite direction.
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Finally, by using [11, Proposition 2.10| instead of |15, Lemma 2.7.11] and
by applying [11, Lemma 2.4] we can proceed in exactly the same way as in
the last part of the proof of [10, Lemma 3.1.13] to deduce the last statement
in the proposition regarding index. ]

Motivated by [7, Definition 5.6] we introduce now the following definition.

Definition 3.7. We let MIC(IDI/(A) be the set of all operators F' € B(A)
admitting an MK ®,-decomposition

A=M16~9N1~F—>M2@N2=A

with the property that N; < Ns, that is IV is isomorphic to a closed
submodule of Ns.

Similarly, we let MA®* (A) be the set of all operators F € B(A) having
an MK ®_-decomposition

A=Mi &N T M &Ny = A
with the property that No < Nj.
Finally, we say that F' € MK ®,(.A) if there exists an MK P-decomposition
A=M &N T M &Ny = A
for F' with the property that N; =~ Ns.
Lemma 3.8. Let M and N be two closed, complementable submodules

of A. Then M is isomorphic to a closed submodule of N if and only if
Py < Py

Proof. Note first that M is orthogonally complementable by Remark 2.16.
Let N’ < N such that M =~ N’ and denote be ¢ the isomorphism from
M onto N’. If J stands for the inclusion from N’ into A, then JiPy; is a
bounded, A-linear map on A, hence it is adjointable by [15, Proposition
2.5.2|. Since Im(JuPys) = N’, which is closed, by [15, Theorem 2.3.3], we
obtain that N’ is orthogonally complementable in A. By [11, Lemma 2.1] we
have that Py; ~ Py, and, obviously, Py < Py. The opposite implication
also follows from [11, Lemma 2.1]. O

By Lemma 3.8 and [11, Lemma 2.7] it follows that
MEK®T (A) = K7 (A),
MEDT (A) = Kot (A),
MED)(A) = KPo(A).

Below we obtain some properties of M/Cq)jr/ and MIC@f,—operators.
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Proposition 3.9. Let F € B(A). Then F € MIOI):(A) if and only if
there exist some D € B(A) and K € F such that F = D + K and D is
bounded below.

Proof. We prove first that the set M/C@;/(A) is invariant under perturba-
tions by finite type elements. Although it has in fact been proved in [13],
we shall provide here another argumentation. Let F' € MIC@;/(A) and
suppose that

AZMl(:DNl—F—’MzéBNz:A

is an MIC@:—decomposition for F.

In particular, it is an MK®,-decomposition for F', hence Py, € F.
Therefore, if K € F, then by exactly the same arguments as in the proof [11,
Lemma 2.11| we can find a sufficiently large o and a closed, complementable
submodule R < A such that

A=TIm(I - P,) & UR) ®UDN)) T v(Im(I — P) & (F(R) & Ny) = A
is an MK ®_-decomposition for the operator F' + K, where R =~ F(R) and
U,V are isomorphisms. Now, asid(R) = R =~ F(R) andU(N1) = N1 < No,
it is not hard to see that U(R) @ U(N1) is isomorphic to a closed submodule
of F(R) & No.

Furhter, if D is bounded below, then Im(D) is closed, hence by [15,
Theorem 2.3.3] we have that Im(D) is orthogonally complementable in
A. Tt follows that D € ./\/lleI)jr,(.A). Therefore by previous arguments

D+ Ke MIC@;I(A), which proves the implication in one direction.
By combining the proof of Lemma 3.8 with the proof of [7, Theorem 5.10]
we can prove the implication in the opposite direction. [l

It follows from Lemma 3.5 that Proposition 3.9 is equivalent to Proposi-
tion 2.11 part 1), however, we have provided here a proof which is different
from the proof given in [13].

Now we will provide another proof of Proposition 2.12, which is different
from the original proof of this proposition given in [13]. The new proof
builds further on the proof of |12, Theorem 4.2].

Proposition 3.10. The sets
MED, (A) \ MEDT (A), MED_(A) \ MEDT (A)
and MIK®(A)\MKPq(A) are open.

Proof. Let F € MIC<I>+(A)\MIC<I>:L/(A). As in the proof of [12, Theo-
rem 4.2|, there exists some € > 0, such that if D € B(A) and |F — D| <,
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then we can find MK®_-decompositions
A=M1®N1LM2®N2=«4,
A= M &N, 25 M, & N, = A,
for F' and D, respectively, where M; =~ Mj, Ny =~ Nj, My =~ M} and
Ny = Nj. Assume that D € MK®'(A) and let
A=M{ &N 2 My &N = A

be an MK@;l—decomposition for D. By exactly the same arguments as in
the first part of the proof of [11, Theorem 2.9] we can find some « such
that

A=Im(I - P) & (R' & N)) 25 DIm(I — P,)) & (D(R) & N}) = A,
A=Im(I—P,) & (R" & N}) 2 D(Im(I — P.)) & (D(R") & NI) = A,

are two MK®_-decompositions for D. By the construction, R’ =~ D(R’),
R" =~ D(R"), R, R" are orthogonally complementable and Pg/, Pr» € F.
Then we can proceed as in the proof of [12, Theorem 4.2] to deduce that

there exists an isomorphism U on A such that F' has the matrix [181 FO ]
4

with respect to the decomposition

A=U(I-Po) & UR) & Ni) = FUI-Pa)) & (FUR)) & N) = A
where F} is an isomorphism and F(U(R')) = R'. In addition, by the
construction from the proof of [12, Theorem 4.2|, we have that

UR)D Ny < FUR')) & Na.

Since Prs € F and U is an isomorphism, by [11, Lemma 2.1] we have
that Py € F. Hence, since Py, € F, by [11, Lemma 2.4] we get that
Pyrye N, € F- Thus, we obtain that F' e MICq)J_r’ (A), which is a contra-
diction. Therefore, we must have that D € MK® (A)\MIC‘ID:(.A), which

shows that the set M/CCDJF(A)\MIC(I): (A) is open since the argumentation
above holds for every D € B(A) with |F — D| < e.
The proofs of the other statements are similar. O

Next, we will also provide another proof of Lemma 2.13, which builds
further on the proof of [12, Proposition 4.4].
Lemma 3.11. Let F e MK®(A) mM/Cq):(A) AMK® (A). Then there

exists an MK P-decomposition

A=M &N My ® Ny = A
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for F' with the property that Ny < No and Ny < Nj.

Proof. If
A=Mi &N, L M &Ny = A
and
A=M &N L5 M, &N, = A
are an M/Cq);l and an MK®* decomposition for F', then, by Lemma 3.2,
both these decompositions are actually MK ®-decompositions for F' since

F e MK®(A) by the assumption. As in the first part of the proof of [11,
Theorem 2.9]|, we find some a such that

A=Im(I-P) & (R& M) -5 F(Im(I — Py)) & (F(R) & N) = A
A=Im(I - P,) & (R & N|) L5 FIm(I — P,)) & (F(R)) & N}) = A,

are two MK ®-decompositions for F', where Pr, Prr € F and R =~ F(R),
R’ =~ F(R’). Then we can proceed similarly to the proof of [12, Proposi-
tion 4.4]. O

Again, by Lemma 3.8 and [11, Lemma 2.7] it follows that Lemma 3.11
is equivalent to Lemma 2.13.

At the end we recall the statement of [10, Proposition 5.1.3| originally
given in [9].

Proposition 3.12. Let F, D € B(A) such that F' and D have closed image.
Suppose that Ker(F) = (Im(F))* and Ker(D) = (Im(D))*. If DF has
closed image, then Ker(DF) = (Im(DF))*.

From Lemma 3.5 and [11, Lemma 2.1] it follows that this proposition is
in fact equivalent to Proposition 2.14.
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