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Abstract
Let V be a finite-dimensional vector space over Fp. We say that a multilinear form α : Vk →Fp in k vari-
ables is d-approximately symmetric if the partition rank of difference α(x1, . . . , xk)− α(xπ(1), . . . , xπ(k)) is at
most d for every permutation π ∈ Symk. In a work concerning the inverse theorem for the Gowers unifor-
mity ‖·‖U4 norm in the case of low characteristic, Tidor conjectured that any d-approximately symmetric
multilinear form α : Vk →Fp differs from a symmetric multilinear form by a multilinear form of partition
rank at mostOp,k,d(1) and proved this conjecture in the case of trilinear forms. In this paper, somewhat sur-
prisingly, we show that this conjecture is false. In fact, we show that approximately symmetric forms can
be quite far from the symmetric ones, by constructing a multilinear form α : Fn

2 ×Fn
2 ×Fn

2 ×Fn
2 →F2

which is 3-approximately symmetric, while the difference between α and any symmetric multilinear form
is of partition rank at least�( 3

√
n).
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1. Introduction
For a function f : G→C on a finite abelian group G, the Gowers uniformity norms ‖·‖Uk ,
introduced by Gowers in [6] are given by the formula

‖f ‖2kUk = E
a1,...,ak,x∈G

�. a1 . . . �. ak f (x),

where �. a stands for the discrete multiplicative derivative operator defined by �. af (x)= f (x+ a)
f (x). Gowers introduced these norms in order to obtain a quantitative proof of Szemerédi’s
theorem on arithmetic progressions, and they serve as a measure of the higher order quasiran-
domness of functions defined on finite abelian groups. A basic illustration of this phenomenon is
given by the following fact: whenever A⊂Z/NZ is a set of size δN such that ‖1A − δ‖Uk = o(1),
then A has (1+ o(1))δk+1N2 arithmetic progressions of length k+ 1. This motivates the study
of functions which have large uniformity norms. The results which describe such functions
f : G→D= {z ∈C : |z| ≤ 1} are referred to as the inverse theorems for uniformity norms and
typically have the following form: given the group G and order k, there is some algebraically
structured family of functions Q, depending on G and k, such that whenever f : G→D is a
function with the norm bound ‖f ‖Uk ≥ c, then one may find an obstruction function q ∈Q such
that

∣∣∣Ex∈Gf (x)q(x)
∣∣∣ ≥�c,k(1). One also requires that Q is roughly minimal in the sense that
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an approximate version of a converse holds; namely whenever
∣∣∣Ex∈Gf (x)q(x)

∣∣∣ ≥ c holds for a
function f : G→D and obstruction q ∈Q, then we also have the norm bound ‖f ‖Uk ≥�c,k(1).

The family of obstruction functions can be taken to be nilsequences (which we will not define
here) when G=Z/NZ, as shown by Green, Tao and Ziegler [5], and phases of non-classical poly-
nomials (which we shall define later) when G=Fn

p , which follows from results of Bergelson,
Tao and Ziegler [1] and Tao and Zielger [20]. Another approach to these questions is via the-
ory of nilspaces developed in papers by Szegedy [19], Camarena and Szegedy [2], and Candela,
González-Sánchez and Szegedy [3]. (See also detailed treatments of this theory in [9, 10, 11].)

The inverse theorems mentioned above are either ineffective or give poor bounds and, given
the applications, it is of interest to make the proofs quantitative. For general k, this was achieved
by Manners [14] for the case when G=Z/NZ and by Gowers and the author in [8] for the case
when G=Fn

p , provided p≥ k, which is known as the high-characteristic case, when the family of
obstruction functions reduces to polynomials in the usual sense. Previously, quantitative bounds
were obtained in the inverse question for ‖·‖U3 norm by Green and Tao [4] for abelian groups of
odd order and by Samorodnitsky when G=Fn

2 in [18] (see also a very recent work of Jamneshan
and Tao [12]).

On the other hand, in the so-called low characteristic case, where p< k, the bounds are still
ineffective. However, even in that case [8] gives a strong partial result. In the theorem below ω=
exp (2π i/p).

Theorem1. (Gowers andMilićević [8]). Suppose that f : Fn
p →D is a function such that ‖f ‖Uk ≥ c.

Then there exists a multilinear form α : Fn
p ×Fn

p × . . .×Fn
p︸ ︷︷ ︸

k−1

→Fp such that

∣∣∣ E
x,a1,...,ak−1

�. a1 . . . �. ak−1 f (x)ω
α(a1,...,ak−1)

∣∣∣ ≥
(
exp(Ok(1)) (Ok,p(c−1))

)−1
. (1)

From now on, we focus on G=Fn
p in the rest of the introduction. Before proceeding with the

discussion, we need to recall the notion of the partition rank of a multilinear form introduced by
Naslund in [17]. It is defined to be the least number m such that a multilinear form α : Gd →Fp
can be expressed as

α(x1, . . . , xd)=
∑
i∈[m]

βi(xj : j ∈ Ii)γi(xj : j ∈ [d] \ Ii),

where βi : GIi →Fp and γi : G[d]\Ii →Fp aremultilinearmaps for i ∈ [m].We denote the quantity
m by prank(α). We may think of partition rank as a measure of distance between two multilinear
forms; the smaller the partition rank of their difference is, the closer they are. As an illustration of
this principle in the context of Theorem 1, we have the following lemma.

Lemma 2. Suppose that a function f : G→D and a multilinear form α : Gk−1 →Fp satisfy∣∣∣ E
x,a1,...,ak−1

�. a1 . . . �. ak−1 f (x)ω
α(a1,...,ak−1)

∣∣∣ ≥ c.

Let β : Gk−1 →Fp be another multilinear form such that prank(α− β)≤ r. Then
∣∣∣ E
x,a1,...,ak−1

�. a1 . . . �. ak−1 f (x)ω
β(a1,...,ak−1)

∣∣∣ ≥ cp−2r .

Returning to the discussion of the inverse theorems for uniformity norms in finite vector
spaces, the deduction of the inverse theorem when p≥ k proceeds by studying the multilinear
form α provided by the Theorem 1. The symmetry argument of Green and Tao [4] and the good
bounds for the analytic versus partition rank problem [13, 15] show that α is r-approximately
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symmetric for some r = exp(Ok(1)) (Ok,p(c−1)), by which we mean that the partition rank of the
multilinear form (x1, . . . , xk−1) 
→ α(x1, . . . , xk−1)− α(xπ(1), . . . , xπ(k−1)) is at most r for all
π ∈ Symk−1. To finish the proof of the inverse theorem, at the very last step we invoke the
assumption p≥ k, which allows us to define the symmetric multilinear map σ : Gk−1 →Fp by

σ (a1, . . . , ak−1)= 1
(k− 1)!

∑
π∈Symk−1

α(aπ(1), . . . , aπ(k−1)),

which satisfies prank(σ − α)≤ (k− 1)!r since α is r-approximately symmetric. Lemma 2 allows
us to replace α by σ . As it turns out, when p≥ k the polarization identity shows that all symmetric
forms are iterated discrete additive derivatives of polynomials (see the definition of non-classical
polynomials below for the definition of discrete additive derivatives), showing that the function
x 
→ f (x)ωα(x,...,x) has large ‖·‖Uk−1 norm, which completes the proof (we assume the inverse
theorem for the ‖·‖Uk−1 norm as inductive hypothesis).

Low characteristic obstacles. Let us now define non-classical polynomials which are the relevant
obstructions in the low characteristic case. Similarly to discrete multiplicative derivative, for a ∈G
we define discrete additive derivative operator �a by expression �af (x)= f (x+ a)− f (x) for a
function f : G→H from G to another abelian group H. A function f : Fn

p →T=R/Z is a non-
classical polynomial of degree at most d if�a1 . . . �ad+1 f (x)= 0 for all a1, . . . , ad+1, x ∈Fn

p . (See
[20] for further details, including alternative description of non-classical polynomials.)

The first obvious question is, given that the family of obstruction functions is richer when p< k
due to emergence of non-classical polynomials, how could we get from multilinear forms in (1)
to a non-classical polynomial? It turns out that, as in the case of classical polynomials, the iterated
discrete additive derivative of a non-classical polynomial (applied the right number of times) is
a symmetric multilinear form and it is possible to give characterizations of the forms that arise
in this way. The following lemma of Tidor [21], building upon earlier work of Tao and Ziegler,
achieves this goal.

Lemma 3. (Tidor [21]). Let α : Gk−1 →Fp be a multilinear form. Then α is the discrete additive
derivative of order k− 1 of a non-classical polynomial of degree k− 1 if and only if α is symmetric
and

α( x, . . . , x︸ ︷︷ ︸
p

, y, ap+2, . . . , ak−1)= α(x, y, . . . , y︸ ︷︷ ︸
p

, ap+2, . . . , ak−1) (2)

holds for all x, y, ap+2, . . . ak−1 ∈G.

We say that a multilinear form is strongly symmetric if it is symmetric and obeys the additional
condition (2), as in the lemma above. Therefore, we may again pass from a multilinear form α to
the desired obstruction, provided we can show some additional properties of α.

In fact, in his work on the inverse question for ‖·‖U4 norm in the case of low characteristic
[21], Tidor first showed that one may assume that α is symmetric and then used that information
to prove strong symmetry. Given all this, Tidor formulated the following conjecture, which he
proved for the case of trilinear maps.

Conjecture 4. (Tidor [21]). Let α : Gk →Fp be an r-approximately symmetric multilinear form.
Then there exists a symmetric multilinear form σ : Gk →Fp such that prank(σ − α)≤O(rO(1))
(where the implicit constants may depend on p and k).

Themain result of this paper is that, despite its formulation being rather natural, the conjecture
above is false.

https://doi.org/10.1017/S0963548322000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000244


302 L. Milićević

Theorem 5. Given a sufficiently large positive integer n there exists a multilinear form α : Fn
2 ×

Fn
2 ×Fn

2 ×Fn
2 →F2 which is 3-approximately symmetric and prank(σ − α)≥�( 3√n) for all

symmetric multilinear forms σ .

Regarding the approach to a quantitative inverse theorem for uniformity norms in the case of
low characteristic, this means that one needs to work more closely with the assumption (1). In
fact, it is possible to overcome the additional difficulties identified in this paper, and to prove a
quantitative inverse theorem for uniformity norms U5 and U6 in the case of low characteristic.

Theorem 6. (Quantitative inverse theorem for U5 and U6 norms, Corollary 6 in [16]). Let k ∈
{5, 6}. Suppose that f : Fn

2 →D is a function such that ‖f ‖Uk ≥ c. Then there exists a non-classical
polynomial q : Fn

2 →T of degree at most k− 1 such that
∣∣∣E
x
f (x) exp

(
2π iq(x)

)∣∣∣ ≥
(
exp(Ok(1)) (Ok,p(c−1))

)−1
.

Counterexample overview. Themultilinear form α : Fn
2 ×Fn

2 ×Fn
2 ×Fn

2 →F2 that will serve us
as a counterexample will have the crucial properties that it is symmetric in the first three variables,
while satisfying the identity

α(x, y, z,w)+ α(w, y, z, x)= ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w)
for some bilinear map ρ of high rank.1 It is easy to see that such a form α is necessarily 3-
approximately symmetric. On the other hand, to prove that α is far from symmetric multilinear
forms we use bilinear regularity method, used in [7], which consists of passing to subspaces where
the rank of bilinear maps is large and then relying on the high-rank property to obtain equidistri-
bution of values of the relevant bilinear maps. Using the usual graph-theoretic regularity method2
would give much worse bounds in Theorem 5.

2. Preliminaries
For the rest of the paper, fix a positive integer n and set G=Fn

2. In this preliminary section we
setup the notation for an action of the symmetry group Sym4 on G4, we recall the notion and
properties of the rank of bilinear maps and we discuss the bilinear regularity method needed for
the proof of Theorem 5.

Action of Sym4. We define a natural action of Sym4 on G4 given by permuting the coordinates,
which is similar to the left regular representation of the group Sym4. For a permutation π ∈ Sym4
we misuse the notation and write π : G4 →G4 for the map defined by π(x1, x2, x3, x4)= (xπ−1(1),
xπ−1(2), xπ−1(3), xπ−1(4)). It is easy to see that this defines an action on G4. Hence, given a multilin-
ear form α : G4 →F2 and a permutation π inducing the map π : G4 →G4, we may compose the
twomaps and the composition α ◦ π would also be a multilinear form. For example if π = (1 2 3)
in the cycle notation, then α ◦ π(x1, x2, x3, x4)= α(x3, x1, x2, x4). With this notation, our main
result can be expressed as follows: there exists a multilinear form α : G4 →F2 such that α + α ◦ π
is of low partition rank for all π ∈ Sym4 and α differs from any symmetric multilinear form by a
multilinear form of large partition rank.
Rank of bilinear maps. LetU,V be finite-dimensional vector spaces overF2. Let β : U ×V →F2
be a bilinear form. Fix a scalar product on V and let B : U →V be the map such that β(x, y)=

1In the case of bilinear forms, the partition rank becomes just the usual notion of rank from linear algebra.
2For a given bilinear map β : U ×V →Fr

2 and a value λ ∈Fr
2, whereU andV are finite-dimensional vector spaces overF2,

we may consider the bipartite graph with vertex classes U and V and edges uv for all pairs of vertices that satisfy β(u, v)= λ.
To understand the regularity properties of this graphwemay use Szemerédi’s regularity lemma and the graph counting lemma
which would roughly have the roles of Lemmas 10 and 11 respectively. This would require applying Szemerédi’s regularity
lemma with the error parameter ε roughly p−r .
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B(x) · y for all x ∈U and y ∈V . We define the rank of β to be the rank of B. The following lemma
gives a few other characterizations of the rank and shows that the rank is well-defined (this follows
from part (i)).

Lemma 7. (Alternative characterizations of rank). Let β : U ×V →F2 be a bilinear form.

i. We haveEx∈U,y∈V (−1)β(x,y) = 2−rankβ .
ii. Whenever β(x, y)= ∑

i∈[s] ui(x)vi(y) for linear forms u1, . . . , us : U →F2 and
v1, . . . , vs : V →F2 such that u1, . . . , us are linearly independent and v1, . . . , vs are
linearly independent, then s= rankβ.

iii. The rank of β is the least number s such that β(x, y)= ∑
i∈[s] ui(x)vi(y) for linear forms

u1, . . . , us : U →F2 and v1, . . . , vs : V →F2.

Proof. Proof of (i). If β(x, y)= B(x) · y for all x ∈U, y ∈V , then

E
x∈U,y∈V (−1)β(x,y) = E

x∈U,y∈V (−1)B(x)·y = E
x∈U 1(B(x)= 0)= E

x∈U 1(x ∈ ker B)= | ker B|/|U|.

By the rank-nullity theorem | ker B|/|U| = 1/|ImB|. The rank of β is defined as the dimension
of the image space ImB, hence

E
x∈U,y∈V (−1)β(x,y) = 2−rankβ ,

as desired.

Proof of (ii). Let us define linear map u : U →Fs
2 by concatenating forms ui, namely u=

(u1, . . . , us). We claim that u is surjective. If it was not surjective, the subspace Imu≤Fs
2 would be

proper and there would exist a non-zero vector λ ∈ (Imu)⊥. But then λ1u1 + . . .+ λsus would be
identically zero, which would be in contradiction with the assumption that u1, . . . , us are inde-
pendent. In particular, the linear map u : U →Fs

2 takes all values in Fs
2 an equal number of

times (namely | ker u| = 2−s|U| times). Using the same property for v1, . . . , vs and claim (i) of
the lemma we conclude that

2−rankβ = E
x∈U,y∈V (−1)β(x,y) = E

x∈U,y∈V (−1)
∑

i∈[s] ui(x)vi(y) = E
a,b∈Fs

2
(−1)a·b = E

a∈Fs
2
1(a= 0)= 2−s,

proving that s= rankβ .

Proof of (iii). Let d = dimU. Clearly, such a decomposition exists, as we may simply take a basis
e1, . . . , ed of U, giving coordinates x1, . . . , xd of vectors x ∈U, and consider

β(x, y)=
∑
i∈[d]

xiβ(ei, y).

On the other hand, if we have a decomposition with smallest possible s then u1, . . . , us need
to be linearly independent. To see that, note that if have linear dependence, then (after a possible
reordering of the forms) we have u1 = ∑

j∈[2,s] μjuj, so

β(x, y)=
∑
j∈[2,s]

uj(x)(vj(y)+μjv1(y)),

which has s− 1 terms in the sum, which is a contradiction. Hence u1, . . . , us are linearly
independent, and analogously, so are v1, . . . , vs. The claim follows from the part (ii). �

Let us also record two very simple but useful facts about bilinear forms of low rank.
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Lemma 8. Let β : U ×V →F2 be a bilinear form of rank r. Then there exists a subspace U ′ ≤U of
codimension at most r in U such that β|U′×V = 0.

Proof. By the definition of rank, r is the rank of the linear map B : U →V that satisfies β(x, y)=
B(x) · y for all x ∈U, y ∈V for a given scalar product onV . By the rank-nullity theorem, the kernel
U ′ = kerB≤U has codimension r. Hence, when x ∈U ′, y ∈V we have β(x, y)= B(x) · y= 0, as
desired. �
Lemma 9. Let β : U ×V →F2 be a bilinear form of rank r. Let U ′ ≤U be a subspace of
codimension d inside U. Then β|U′×V has rank at least r − d.

Proof. Let s be the rank of β|U′×V . By part (iii) of Lemma 7 we have linear forms
u1, . . . , us : U ′ →F2 and v1, . . . , vs : V →F2 such that β(x, y)= ∑

i∈[s] ui(x)vi(y) holds for all
x ∈U ′ and y ∈V . We may extend each ui to a linear form ũi : U →F2. Let β ′(x, y)= β(x, y)+∑

i∈[s] ũi(x)vi(y). The map β ′ is a bilinear form on U ×V which vanishes on U ′ ×V . We claim
that β ′ has rank at most d. Since we also have that β(x, y)= β ′(x, y)+ ∑

i∈[s] ũi(x)vi(y), it follows
that β can be written as a sum of at most s+ d terms of the form u′(x)v′(y) for suitable linear
forms u′ : U →F2 and v′ : V →F2 and so by part (iii) of Lemma 7 we have r ≤ s+ d as desired.
We now return to showing that rankβ ′ ≤ d.

Since U ′ has codimension d inside U, we may find linearly independent elements e1, . . . , ed ∈
U such that U = 〈e1, . . . , ed〉 ⊕U ′. We thus obtain linear forms ϕ1, . . . , ϕd : U →F2 and a lin-
ear map π : U →U ′ such that for each x ∈U we have x= ∑

i∈[d] ϕi(x)ei + π(x). Using this
decomposition, for arbitrary x ∈U, y ∈V we see that

β ′(x, y)= β ′
( ∑
i∈[d]

ϕi(x)ei + π(x), y
)

=
∑
i∈[d]

ϕi(x)β ′(ei, y)+ β ′(π(x), y)=
∑
i∈[d]

ϕi(x)β ′(ei, y).

Part (iii) of Lemma 7 implies that rankβ ′ ≤ d. �

Bilinear regularity method. In the proof that our example has the desired properties we need the
algebraic regularity method for bilinear maps. This method was used in [7]. The following lemma,
in the spirit of Corollary 5.2 of [7], essentially shows that for a given bilinear map we may pass to a
subspace on which it behaves quasirandomly (which in the bilinear setting simply means that the
restriction of the bilinear map has high rank).

Lemma 10. (Bilinear regularity lemma). Let m≥ 1 be a positive integer. Let U be a finite-
dimensional vector space over F2 and let ρ, β1, . . . , βr : U ×U →F2 be bilinear forms such that
rankρ ≥ (4r + 1)m. Then there exist a subspace U ′ ≤U of codimension at most 2rm and bilin-
ear forms α1, . . . , αs : U ′ ×U ′ →F2, where s≤ r, such that every non-zero linear combination of
α1, . . . , αs and ρ|U′×U′ has rank at least m, while every bilinear map among β1, . . . , βr equals a
linear combination of α1, . . . , αs and ρ on U ′ ×U ′.
Proof. Let us first set s= r, U ′ =U and αi = βi. We shall modify the number s, subspace U ′
and maps α1, . . . , αs throughout the proof. At each step of the proof the number of forms s will
decrease by 1, while the codimension of U ′ will increase by at most 2m. Note that every bilinear
map among β1, . . . , βr equals some αi on U ′ ×U ′ so we just need to make sure that ranks of all
non-zero linear combinations of αi and ρ are sufficiently large. Suppose on the contrary that there
is a linear combination of maps α1, . . . , αs and ρ|U′×U′ such that

rank
(
λ1α1 + . . .+ λsαs +μρ|U′×U′

)
<m.

Since by Lemma 9 we have rankρ|U′×U′ ≥ rankρ − 2( dimU − dimU ′)≥m, there exists a
non-zero λj. Reordering αi if necessary, we may assume that λs = 1. Thus, by Lemma 7(iii) there
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exist linear forms v1, . . . , vm, v′
1, . . . , v′m : U ′ →F2 such that

αs(x, y)= λ1α1(x, y)+ . . .+ λs−1αs−1(x, y)+μρ(x, y)+ v1(x)v′
1(y)+ . . .+ vm(x)v′m(y).

Wemay replaceU ′ byU ′ ∩ {x ∈U ′ : (∀i ∈ [m])vi(x)= v′i(x)= 0} and remove the form αs from
the sequence. The property that every bilinear map among β1, . . . , βr equals a suitable linear
combination on U ′ ×U ′ is preserved and the procedure must terminate after at most r steps. �

The next lemma is an algebraic counting lemma, similar to Lemma 5.3 of [7].

Lemma 11. (Bilinear counting lemma). Suppose that α : Fn
2 ×Fn

2 →Fr
2 is a bilinear map with

the property that the form λ · α has rank at least m for all non-zero vectors λ ∈Fr
2. Let C be a

coset of a subspace ofFn
2 of codimension d. Let ε > 0. If m> 4r + 8d + 4 log2 ε−1 then α|C×C takes

every value in Fr
2 at least (1− ε)2−r|C|2 times. In particular, if m> 4r + 8d + 4 then α|C×C is

surjective.

The reason for calling this lemma an algebraic counting lemma is that it is closely related to the
more traditional counting results. For example, we can easily deduce that for any ν1, ν2, ν3 ∈Fr

2
the number of triples x, y, z ∈Fn

2 such that α(x, y)= ν1, α(y, z)= ν2 and α(z, x)= ν3 is approx-
imately 2−3r · 23n as long as α is sufficiently quasirandom. In the graph-theoretic language, this
corresponds to counting triangles. Similarly, Lemma 10 is related to Szemerédi’s regularity lemma.

Proof. Suppose that the restriction α|C×C takes the value u ∈Fr
2 at most (1− ε)2−r|C|2 times.

Then we have

(1− ε)2−r−2d ≥ E
x,y∈Fn

2
1C(x)1C(y)1(α(x, y)= u)= E

x,y∈Fn
2
1C(x)1C(y) E

λ∈Fr
2
(−1)λ·(α(x,y)−u)

= 2−r E
x,y∈Fn

2
1C(x)1C(y)+ 2−r

∑
λ∈Fr

2\{0}
E

x,y∈Fn
2
1C(x)1C(y)(−1)λ·(α(x,y)−u)

= 2−r−2d + 2−r
∑

λ∈Fr
2\{0}

(−1)−λ·u E
x,y∈Fn

2
1C(x)1C(y)(−1)λ·α(x,y).

Using the triangle inequality, we see that

2−r
∑

λ∈Fr
2\{0}

∣∣∣∣ E
x,y∈Fn

2
1C(x)1C(y)(−1)λ·α(x,y)

∣∣∣∣ ≥ ε2−r−2d,

so by averaging we obtain a non-zero λ such that
∣∣∣∣ E
x,y∈Fn

2
1C(x)1C(y)(−1)λ·α(x,y)

∣∣∣∣ ≥ ε2−r−2d.

Applying Cauchy-Schwarz inequality3 we obtain

ε22−2r−4d ≤
∣∣∣∣ E
x∈Fn

2
1C(x)

(
E

y∈Fn
2
1C(y)(−1)λ·α(x,y)

)∣∣∣∣
2
≤ E

x∈Fn
2

∣∣∣ E
y∈Fn

2
1C(y)(−1)λ·α(x,y)

∣∣∣2

= E
x∈Fn

2
E

y,y′∈Fn
2

1C(y)1C(y′)(−1)λ·α(x,y+y′).

3This and the next step can be replaced with a single application of the two-dimensional Gowers-Cauchy-Schwarz
inequality.
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Another application of Cauchy-Schwarz inequality gives

ε42−4r−8d ≤
∣∣∣ E
y,y′∈Fn

2

1C(y)1C(y′)
(
E

x∈Fn
2
(−1)λ·α(x,y+y′))∣∣∣2 ≤ E

y,y′∈Fn
2

∣∣∣ E
x∈Fn

2
(−1)λ·α(x,y+y′)

∣∣∣2

= E
x,x′∈Fn

2

E
y,y′∈Fn

2

(−1)λ·α(x+x′,y+y′) = E
x,y∈Fn

2
(−1)λ·α(x,y)

which equals 2−rank(λ·α) by Lemma 7(i). Hence ε42−4r−8d ≤ 2−m so m≤ 4r + 8d + 4 log2 ε−1,
which is a contradiction. �

3. Example
Recall that n is a fixed positive integer, which we think of as large, and that G=Fn

2 . Let e1, . . . , en
be the standard basis of G. Our example will be the multilinear form φ : G4 →F2 defined as

φ(x, y, z,w)=
∑

1≤i<j≤n

(
xiyjzjwi + xjyizjwi + xjyjziwi

)
,

where the coordinates of vectors are taken with the respect to the fixed basis e1, . . . , en. We first
show that φ is approximately symmetric.

Lemma 12. The multilinear form φ satisfies φ = φ ◦ (1 2), φ = φ ◦ (1 3) and

φ(x, y, z,w)= φ ◦ (1 4)(x, y, z,w)+ ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w)

where

ρ(x, y)=
∑
i∈[n]

xiyi.

Proof. For each i and j the expression xiyjzjwi + xjyizjwi + xjyjziwi is symmetric in x, y and z
and hence the equalities φ = φ ◦ (1 2) and φ = φ ◦ (1 3) follow immediately. For the remaining
transposition (1 4) we perform some algebraic manipulation

φ(x, y, z,w)+ φ(w, y, z, x)

=
∑

1≤i<j≤n

(
(xiyjzjwi + xjyizjwi + xjyjziwi)+ (wiyjzjxi +wjyizjxi +wjyjzixi)

)

=
∑

1≤i<j≤n

(
xjyizjwi + xjyjziwi + xiyizjwj + xiyjziwj

)

=
∑

1≤i<j≤n

(
xjyizjwi + xiyjziwj

)
+

∑
1≤i<j≤n

(
xjyjziwi + xiyizjwj

)

=
( ∑
i,j∈[n] : i�=j

xjyizjwi
)

+
( ∑
i,j∈[n] : i�=j

xjyjziwi
)

=
( ∑
i,j∈[n] : i�=j

xjyizjwi
)

+
( ∑
i,j∈[n] : i�=j

xjyjziwi
)

+ 2 ·
( ∑
i∈[n]

xiyiziwi
)

=
( ∑
i,j∈[n]

xjyizjwi
)

+
( ∑
i,j∈[n]

xjyjziwi
)
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=
( ∑
j∈[n]

xjzj
)( ∑

i∈[n]
yiwi

)
+

( ∑
j∈[n]

xjyj
)( ∑

i∈[n]
ziwi

)

= ρ(x, z)ρ(y,w)+ ρ(x, y)ρ(z,w),

as desired. �
Since the transpositions (1 2), (1 3) and (1 4) generate the whole symmetric group Sym4 we

immediately deduce that φ is 3-approximately symmetric.

Corollary 13. For any permutation π ∈ Sym4 we have prank
(
φ + φ ◦ π

)
≤ 3.

Proof. Let V be the vector space consisting of the multilinear forms on G4 of the shape
λ1ρ(x, y)ρ(z,w)+ λ2ρ(x, z)ρ(y,w)+ λ3ρ(x,w)ρ(y, z) for some scalars λ1, λ2, λ3 ∈F2. Since ρ is
a symmetric bilinear form it follows thatV is invariant under the action of Sym4. The lemma above
shows in particular that φ + φ ◦ π ∈V whenever π is one of the transpositions (1 2), (1 3) and
(1 4). Let π ∈ Sym4 now be an arbitrary permutation. The transpositions (1 2), (1 3) and (1 4)
generate Sym4 so we can write π = τ1 ◦ τ2 ◦ . . . ◦ τr for some τ1, . . . , τr ∈ {(1 2), (1 3), (1 4)}.
Then we have

φ ◦ π + φ =
∑
i∈[r]

(
φ ◦ τi ◦ τi+1 ◦ . . . ◦ τr + φ ◦ τi+1 ◦ τi+2 ◦ . . . ◦ τr

)

=
∑
i∈[r]

(
φ ◦ τi + φ

)
◦ τi+1 ◦ . . . ◦ τr

which is a sum of r forms, each of which is a member of V . Hence φ + φ ◦ π ∈V for all π ∈ Sym4.
Since the partition rank of forms in V is at most 3, the proof is complete. �

In the rest of this section, we show that the map φ is necessarily far from any symmetric
multilinear form.

Theorem 14. Let r ≥ 1 be a positive integer. Assume that n≥ (1000r)3. For any symmetric
multilinear form σ : G4 →F2 we have prank(φ + σ )> r.

Proof. Let σ : G4 →F2 be a symmetric multilinear form. Suppose on the contrary that prank(φ +
σ )≤ r. Then we may find linear forms u11, . . . , u1r , . . . , u

4
1, . . . , u4r , bilinear forms γ 1

1 , . . . , γ
1
r , . . . ,

γ 3
1 , . . . , γ

3
r and γ̃ 1

1 , . . . , γ̃
1
r , . . . , γ̃ 3

1 , . . . , γ̃
3
r , and trilinear forms θ11 , . . . , θ

1
r , . . . , θ41 , . . . , θ

4
r (we

set some of the forms to be 0 to have a single parameter r instead of a separate count for each
sequence of forms) on the space G such that

φ(x, y, z,w)= σ (x, y, z,w)+
∑
i∈[r]

u1i (x)θ
1
i (y, z,w)+

∑
i∈[r]

u2i (y)θ
2
i (x, z,w)

+
∑
i∈[r]

u3i (z)θ
3
i (x, y,w)+

∑
i∈[r]

u4i (w)θ
4
i (x, y, z)

+
∑
i∈[r]

γ 1
i (x, y)γ̃

1
i (z,w)+

∑
i∈[r]

γ 2
i (x, z)γ̃

2
i (y,w)+

∑
i∈[r]

γ 3
i (x,w)γ̃

3
i (y, z)

holds for all x, y, z,w ∈G. Let us pass to the subspace U = {x ∈G : (∀d ∈ [4])(∀i ∈ [r])udi (x)= 0}
which has codimension at most 4r. When x, y, z,w ∈U then

φ(x, y, z,w)= σ (x, y, z,w)+
∑
i∈[r]

γ 1
i (x, y)γ̃

1
i (z,w)+

∑
i∈[r]

γ 2
i (x, z)γ̃

2
i (y,w)+

∑
i∈[r]

γ 3
i (x,w)γ̃

3
i (y, z).
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In the rest of proof we deal with bilinear forms primarily so we simply use the word rank instead
of partition rank as the usual notion of rank is equivalent to the partition rank, as remarked earlier.
We now gather all 6r bilinear forms γ 1

1 , . . . , γ̃
3
r above into a single sequence and apply the bilinear

regularity lemma. Letm≥ 1 be an integer to be chosen later. Provided that

n≥ 24rm+ 8r +m (3)

is satisfied, wemay assume that rankρ|U×U ≥ 24rm+m (recall that rankρ = n). Lemma 10 allows
us to find a subspace U ′ ≤U of codimension at most 12rm inside U, a positive integer s≤ 6r,
bilinear forms α1, . . . , αs : U ′ ×U ′ →F2 such that every map among γ 1

1 , . . . , γ̃
3
r equals a lin-

ear combination of α1, . . . , αs and ρ|U′×U′ on U ′ ×U ′ and all non-zero linear combinations of
α1, . . . , αs and ρ|U′×U′ have rank at leastm.

Expressing maps γ 1
1 , . . . , γ̃

3
r in terms of these bilinear forms, we conclude that whenever

x, y, z,w ∈U ′

φ(x, y, z,w)= σ (x, y, z,w)+
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λ′ijαi(x, z)αj(y,w)

+
∑
i,j∈[s]

λ′′ijαi(x,w)αj(y, z)+ ρ(x, y)β1(z,w)+ ρ(x, z)β2(y,w)+ ρ(x,w)β3(y, z)

+ ρ(y, z)β4(x,w)+ ρ(y,w)β5(x, z)+ ρ(z,w)β6(x, y) (4)

where λij, λ′ij, λ′′ij ∈F2 are suitable coefficients and β1, . . . , β6 : U ′ ×U ′ →F2 are suitable
bilinear forms.

We now use the approximate symmetry properties of φ in order to deduce that the coefficients
λij, λ′ij, λ′′ij are symmetric in i and j and that forms αi are essentially symmetric. This will eventu-
ally allow us to simplify the expression in (4). The identity φ + φ ◦ (1 2)= 0 will be used to prove
the following claim.

Claim 15. Assume m≥ 40(s+ 1).

i. There exists a subspace V1 ≤U ′ such that dimV1 ≥ dimU ′ − 2s2 − 4s and for each j ∈ [s]
the bilinear form

∑
i∈[s] λijαi is symmetric on V1 ×V1.

ii. For all i, j ∈ [s], λ′ij = λ′′ji.

Proof. Using the fact that φ + φ ◦ (1 2)= 0 and (4) we get

0=
∑
j∈[s]

( ∑
i∈[s]

λij(αi(x, y)+ αi(y, x))
)
αj(z,w)+

∑
i,j∈[s]

(λ′ij + λ′′ji)αi(x, z)αj(y,w)

+
∑
i∈[s]

αi(x,w)
( ∑
j∈[s]

(λ′′ij + λ′ji)αj(y, z)
)

+ ρ(x, z)(β2(y,w)+ β4(y,w))+ ρ(x,w)(β3(y, z)+ β5(y, z))+ ρ(y, z)(β4(x,w)+ β2(x,w))

+ ρ(y,w)(β5(x, z)+ β3(x, z))+ ρ(z,w)(β6(x, y)+ β6(y, x)) (5)

for all x, y, z,w ∈U ′.

Proof of (i). Let j ∈ [s] be given. Since any non-zero linear combination of ρ|U′×U′ , α1, . . . , αs has
rank at least m> 4(s+ 2) by Lemma 11 we can find z,w ∈U ′ such that ρ(z,w)= 0, αi(z,w)= 0
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for all i �= j and αj(z,w)= 1. Using this choice of z,w in (5) we obtain
∑
i∈[s]

λij(αi(x, y)+ αi(y, x))=
∑
i∈[s]

αi(x, z)
( ∑
�∈[s]

(λ′i� + λ′′
�i)α�(y,w)

)

+
∑
i∈[s]

αi(x,w)
( ∑
�∈[s]

(λ′′i� + λ′
�i)α�(y, z)

)
+ ρ(x, z)(β2(y,w)

+ β4(y,w))+ ρ(x,w)(β3(y, z)+ β5(y, z))+ ρ(y, z)(β4(x,w)

+ β2(x,w))+ ρ(y,w)(β5(x, z)+ β3(x, z))

for all x, y ∈U ′. By Lemma 7(iii) we conclude that
∑

i∈[s] λij(αi(x, y)+ αi(y, x)) has rank at most
2s+ 4, so by Lemma 8 we may find a subspaceU ′j ≤U ′ with dimU ′j ≥ dimU ′ − 2s− 4 such that∑

i∈[s] λij(αi(x, y)+ αi(y, x))= 0 when x, y ∈U ′j. We may take V1 = ∩j∈[s]U ′j.

Proof of (ii). Let i, j ∈ [s] be given. This time we find elements x, y, z,w ∈U ′ such that α1, . . . , αs
and ρ are equal to 0 at all 6 points in the set {(x, y), (x, z), (x,w), (y, z), (y,w), (z,w)}, with the two
exceptions being αi(x, z)= αj(y,w)= 1. Once we have such elements x, y, z,w we use them in (5)
which reduces to just λ′ij + λ′′ji = 0, proving that λ′ij = λ′′ji, which is what we are after. To obtain
such a quadruple of elements x, y, z,w, providedm> 4(s+ 2), we first apply Lemma 11 to obtain
(x, z) ∈U ′ ×U ′ such that ρ(x, z)= 0, α�(x, z)= 0 when � �= i and αi(x, z)= 1. Then we define a
subspace

Ũ = {u ∈U ′ : ρ(x, u)= ρ(z, u)= 0∧ (∀� ∈ [s])α�(x, u)= α�(u, x)= α�(z, u)= α�(u, z)= 0}.
Provided m> 4(s+ 2)+ 8(4s+ 2), we may use Lemma 11 one more time to find (y,w) ∈ Ũ ×

Ũ such that ρ(y,w)= 0, α�(y,w)= 0 when � �= j and αj(y,w)= 1, completing the proof. �
Next, we use the second symmetry condition φ + φ ◦ (1 3)= 0 in a similar manner to prove

the following claim. We remark that we make use of Claim 15 in the proof.

Claim 16. Assume m≥ 100(s2 + s+ 1).

i. There exists a subspace V2 ≤V1 such that dimV2 ≥ dimV1 − 2s2 − 4s and
∑

i∈[s] λ′ijαi is
symmetric for all j ∈ [s] on V2 ×V2.

ii. For all i, j ∈ [s], λij = λ′′ji.

Proof. The identity φ + φ ◦ (1 3)= 0 coupled with (4) gives

0=
∑
i,j∈[s]

(λijαi(x, y)αj(z,w)+ λ′′jiαi(y, x)αj(z,w))+
∑
i,j∈[s]

λ′ij(αi(x, z)+ αi(z, x))αj(y,w)

+
∑
i,j∈[s]

(λ′′ijαi(x,w)αj(y, z)+ λjiαi(x,w)αj(z, y))

+ ρ(x, y)(β1(z,w)+ β4(z,w))+ ρ(x,w)(β3(y, z)+ β6(z, y))+ ρ(y, z)(β4(x,w)+ β1(x,w))

+ ρ(y,w)(β5(x, z)+ β5(z, x))+ ρ(z,w)(β6(x, y)+ β3(y, x)) (6)

for all x, y, z,w ∈U ′.

Proof of (i). Let j ∈ [s] be given. Similarly to the previous claim, we apply Lemma 11 to find
y,w ∈V1 such that ρ(y,w)= 0, αi(y,w)= 0 for i �= j and αj(y,w)= 1. Identity (6) for this choice
of y,w and Lemma 7(iii) show that the rank of the bilinear map

( ∑
i∈[s] λ′ij(αi|V1×V1 (x, z)+

https://doi.org/10.1017/S0963548322000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000244


310 L. Milićević

αi|V1×V1 (z, x))
)
is at most 2s+ 4. Lemma 8 provides us with a subspace V2

j ≤V1 with dimV2
j ≥

V1 − 2s− 4 on which
∑

i∈[s] λ′ijαi is symmetric.4 To finish the proof, take V2 = ∩j∈[s]V2
j .

Proof of (ii). Using the part (i) of Claim 15 we see that whenever x, y, z,w ∈V1

∑
i,j∈[s]

(λijαi(x, y)αj(z,w)+ λ′′jiαi(y, x)αj(z,w))

=
∑
j∈[s]

( ∑
i∈[s]

λijαi(x, y)
)
αj(z,w)+

∑
i,j∈[s]

λ′′jiαi(y, x)αj(z,w)

=
∑
j∈[s]

( ∑
i∈[s]

λijαi(y, x)
)
αj(z,w)+

∑
i,j∈[s]

λ′′jiαi(y, x)αj(z,w)

=
∑
i,j∈[s]

(λij + λ′′ji)αi(y, x)αj(z,w).

From (6) we obtain

0=
∑
i,j∈[s]

(λij + λ′′ji)αi(y, x)αj(z,w)+
∑
i,j∈[s]

λ′ij(αi(x, z)+ αi(z, x))αj(y,w)

+
∑
i,j∈[s]

(λ′′ijαi(x,w)αj(y, z)+ λjiαi(x,w)αj(z, y))

+ ρ(x, y)(β1(z,w)+ β4(z,w))+ ρ(x,w)(β3(y, z)+ β6(z, y))+ ρ(y, z)(β4(x,w)+ β1(x,w))

+ ρ(y,w)(β5(x, z)+ β5(z, x))+ ρ(z,w)(β6(x, y)+ β3(y, x)) (7)

for all x, y, z,w ∈V1. We now proceed as in the proof of Claim 15(ii). Let i, j ∈ [s] be given. Since
m≥ 100(s2 + s+ 1), we may find elements x, y, z,w ∈V1 such that α1, . . . , αs and ρ are equal to
0 at all 6 points in the set {(y, x), (x, z), (x,w), (y, z), (y,w), (z,w)}, with the two exceptions being
αi(y, x)= αj(z,w)= 1. (Note that this time we use the point (y, x) instead of (x, y).) Evaluating (7)
at (x, y, z,w) gives λij = λ′′ji. �

It remains to use the third symmetry condition φ(x, y, z,w)+ φ(w, y, z, x)= ρ(x, y)ρ(z,w)+
ρ(x, z)ρ(y,w).

Claim 17. Assume m≥ 200(s2 + s+ 1). Then λij = λ′ji for all i, j ∈ [s].

Proof. The identity φ(x, y, z,w)+ φ(w, y, z, x)= ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w) implies that

0=
∑
i,j∈[s]

(λijαi(x, y)αj(z,w)+ λ′jiαi(y, x)αj(w, z))+
∑
i,j∈[s]

(λ′ijαi(x, z)αj(y,w)+ λjiαi(z, x)αj(w, y))

+
∑
i,j∈[s]

λ′′ij(αi(x,w)+ αi(w, x))αj(y, z)

+ ρ(x, y)(ρ(z,w)+ β1(z,w)+ β5(w, z))+ ρ(x, z)(ρ(y,w)+ β2(y,w)+ β6(w, y))

+ ρ(y, z)(β4(x,w)+ β4(w, x))+ ρ(y,w)(β5(x, z)+ β1(z, x))+ ρ(z,w)(β6(x, y)+ β2(y, x))
(8)

4The same argument could have been carried out inside the subspaceU ′ instead of V1, but we opted to pass immediately to
V1 so that V2 becomes a subspace of V1. This simplifies the notation slightly later in the proof.
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for all x, y, z,w ∈U ′. Using Claims 15(i) and 16(i) we see that whenever x, y, z,w ∈V2

∑
i,j∈[s]

(λijαi(x, y)αj(z,w)+λ′jiαi(y, x)αj(w, z))

=
∑
j∈[s]

( ∑
i∈[s]

λijαi(x, y)
)
αj(z,w)+

∑
i∈[s]

αi(y, x)
( ∑
j∈[s]

λ′jiαj(w, z)
)

=
∑
j∈[s]

( ∑
i∈[s]

λijαi(y, x)
)
αj(z,w)+

∑
i∈[s]

αi(y, x)
( ∑
j∈[s]

λ′jiαj(z,w)
)

=
∑
i,j∈[s]

(λij + λ′ji)αi(y, x)αj(z,w).

Using this identity twice, once with the same choice of variables and once with y, z swapped,
the expression in (8) becomes

0=
∑
i,j∈[s]

(λij + λ′ji)αi(y, x)αj(z,w)+
∑
i,j∈[s]

(λ′ij + λji)αi(z, x)αj(y,w)

+
∑
i,j∈[s]

λ′′ij(αi(x,w)+ αi(w, x))αj(y, z)

+ ρ(x, y)(ρ(z,w)+ β1(z,w)+ β5(w, z))+ ρ(x, z)(ρ(y,w)+ β2(y,w)+ β6(w, y))

+ ρ(y, z)(β4(x,w)+ β4(w, x))+ ρ(y,w)(β5(x, z)+ β1(z, x))+ ρ(z,w)(β6(x, y)+ β2(y, x))

for all x, y, z,w ∈V2. Let i, j ∈ [s] be fixed now. We complete the argument as in the proofs
of the previous two claims. Since m is sufficiently large, using Lemma 11 we may find ele-
ments x, y, z,w ∈V2 such that α1, . . . , αs and ρ are equal to 0 at all 6 points in the set
{(y, x), (z, x), (w, x), (y, z), (y,w), (z,w)}, with the two exceptions being αi(y, x)= αj(z,w)= 1. It
follows that λij = λ′ji, as required. �

It follows from Claims 15(ii), 16(ii) and 17 that

λij = λ′ji = λ′′ij = λji

so λij = λ′ij = λ′′ij and λ is symmetric. Thus, returning to equality (4) we see that whenever
x, y, z,w ∈U ′ then

φ(x, y, z,w)= σ (x, y, z,w)+ψ(x, y, z,w)+ ρ(x, y)β1(z,w)+ ρ(x, z)β2(y,w)+ ρ(x,w)β3(y, z)

+ ρ(y, z)β4(x,w)+ ρ(y,w)β5(x, z)+ ρ(z,w)β6(x, y)

where ψ : U ′ ×U ′ ×U ′ ×U ′ →F2 is the multilinear form defined as

ψ(x, y, z,w)=
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z).

Claim 18. Multilinear form ψ |V1×V1×V1×V1 is symmetric.

Proof. Before we proceed with the proof, we observe a few useful identities that hold for any
a, b, c, d ∈V1. Using Claim 15(ii) and the fact that λ is symmetric we have
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∑
i,j∈[s]λijαi(a, b)αj(c, d)=

∑
j∈[s]

(∑
i∈[s]λijαi(a, b)

)
αj(c, d) =

∑
j∈[s]

⎛
⎝∑

i∈[s]
λijαi(b, a)

⎞
⎠ αj(c, d)

=
∑

i,j∈[s]λijαi(b, a)αj(c, d) (9)

and
∑
i,j∈[s]

λijαi(a, b)αj(c, d)=
∑
j,i∈[s]

λjiαj(a, b)αi(c, d)=
∑
i,j∈[s]

λijαi(c, d)αj(a, b). (10)

Additionally, from these two identities we deduce
∑
i,j∈[s]

λijαi(a, b)αj(c, d) =
∑
i,j∈[s]

λijαi(c, d)αj(a, b)=
∑
i,j∈[s]

λijαi(d, c)αj(a, b)

=
∑
i,j∈[s]

λijαi(a, b)αj(d, c). (11)

Returning to the claim, it suffices to prove ψ =ψ ◦ (1 2)=ψ ◦ (1 3)=ψ ◦ (1 4) on V1 ×
V1 ×V1 ×V1. Fix x, y, z,w ∈V1. Using the identities (9), (10) and (11) above we obtain

ψ(y, x, z,w)=
∑
i,j∈[s]

λijαi(y, x)αj(z,w)+
∑
i,j∈[s]

λijαi(y, z)αj(x,w)+
∑
i,j∈[s]

λijαi(y,w)αj(x, z)

=
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)

=
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z)

=ψ(x, y, z,w).

Next, we have

ψ(z, y, x,w)=
∑
i,j∈[s]

λijαi(z, y)αj(x,w)+
∑
i,j∈[s]

λijαi(z, x)αj(y,w)+
∑
i,j∈[s]

λijαi(z,w)αj(y, x)

=
∑
i,j∈[s]

λijαi(y, z)αj(x,w)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(z,w)αj(x, y)

=
∑
i,j∈[s]

λijαi(x,w)αj(y, z)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(x, y)αj(z,w)

=
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z)

=ψ(x, y, z,w).
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Finally, we have

ψ(w, y, z, x)=
∑
i,j∈[s]

λijαi(w, y)αj(z, x)+
∑
i,j∈[s]

λijαi(w, z)αj(y, x)+
∑
i,j∈[s]

λijαi(w, x)αj(y, z)

=
∑
i,j∈[s]

λijαi(y,w)αj(x, z)+
∑
i,j∈[s]

λijαi(z,w)αj(x, y)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z)

=
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z)

=
∑
i,j∈[s]

λijαi(x, y)αj(z,w)+
∑
i,j∈[s]

λijαi(x, z)αj(y,w)+
∑
i,j∈[s]

λijαi(x,w)αj(y, z)

=ψ(x, y, z,w).
Thus, we may consume ψ into σ and without loss of generality φ takes the shape

φ(x, y, z,w)= σ (x, y, z,w) + ρ(x, y)β1(z,w)+ ρ(x, z)β2(y,w)+ ρ(x,w)β3(y, z)

+ ρ(y, z)β4(x,w)+ ρ(y,w)β5(x, z)+ ρ(z,w)β6(x, y) (12)
for x, y, z,w ∈V1.

We use the symmetry properties of φ for the second time in order to elucidate the structure of
forms β1, . . . , β6. Equality φ = φ ◦ (1 2) implies that

0= φ(x, y, z,w)+ φ(y, x, z,w)

= ρ(x, z)(β2(y,w)+ β4(y,w))+ ρ(x,w)(β3(y, z)+ β5(y, z))+ ρ(y, z)(β4(x,w)+ β2(x,w))

+ ρ(y,w)(β5(x, z)+ β3(x, z))+ ρ(z,w)(β6(x, y)+ β6(y, x))

for x, y, z,w ∈V1. If we fix (z,w) ∈V1 ×V1 such that ρ(z,w)= 1 (such a point exists by
Lemma 11 if m≥ 100(s2 + s+ 1)), we see that the rank of the map (x, y) 
→ β6(x, y)+ β6(y, x)
on V1 ×V1 is at most 4. Similarly, if we fix (x, z) ∈V1 ×V1 such that ρ(x, z)= 1 (respec-
tively (x,w) ∈V1 ×V1 such that ρ(x,w)= 1), we obtain that the rank of β2 + β4 +μρ for scalar
μ= β3(x, z)+ β5(x, z) (respectively β3 + β5 +μ′ρ for scalar μ′ = β2(x,w)+ β4(x,w)) is at most
3 on V1 ×V1. Using Lemma 8 we find a suitable subspace W1 ≤V1 of dimW1 ≥ dimV1 − 10
such that β6|W1×W1 is symmetric and

β2|W1×W1 + β4|W1×W1 , β3|W1×W1 + β5|W1×W1 ∈ 〈ρ|W1×W1〉. (13)
Proceeding further, equality φ = φ ◦ (1 3) and the fact that β6|W1×W1 is symmetric imply that

for x, y, z,w ∈W1 we have
0= φ(x, y, z,w)+ φ(z, y, x,w)

= ρ(x, y)(β1(z,w)+ β4(z,w))+ ρ(x,w)(β3(y, z)+ β6(z, y))+ ρ(y, z)(β4(x,w)+ β1(x,w))

+ ρ(y,w)(β5(x, z)+ β5(z, x))+ ρ(z,w)(β6(x, y)+ β3(y, x))

= ρ(x, y)(β1(z,w)+ β4(z,w))+ ρ(x,w)(β3(y, z)+ β6(y, z))+ ρ(y, z)(β4(x,w)+ β1(x,w))

+ ρ(y,w)(β5(x, z)+ β5(z, x))+ ρ(z,w)(β6(x, y)+ β3(y, x)).

Again, fixing suitable pairs of x, y, z,w ∈W1 with ρ = 1 (using Lemma 11, assuming m≥
200(s2 + s+ 1)), we see that the ranks of (x, z) 
→ β5(x, z)+ β5(z, x), β1 + β4 +μρ and β3 + β6 +
μ′ρ for suitable scalars μ,μ′ ∈F2 are at most 4,3 and 3 respectively. After passing to a suit-
able subspace W2 ≤W1 of dimW2 ≥ dimW1 − 10 using Lemma 8, we obtain that β5|W2×W2
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is symmetric and
β1|W2×W2 + β4|W2×W2 , β3|W2×W2 + β6|W2×W2 ∈ 〈ρ|W2×W2〉. (14)

Finally, equality φ(x, y, z,w)= φ(w, y, z, x)+ ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w) and symmetry of
maps β6|W2×W2 and β5|W2×W2 give
ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w)= φ(x, y, z,w)+ φ(w, y, z, x)

= ρ(x, y)(β1(z,w)+ β5(w, z))+ ρ(x, z)(β2(y,w)+ β6(w, y))+ ρ(y, z)(β4(x,w)+ β4(w, x))

+ ρ(y,w)(β5(x, z)+ β1(z, x))+ ρ(z,w)(β6(x, y)+ β2(y, x))

= ρ(x, y)(β1(z,w)+ β5(z,w))+ ρ(x, z)(β2(y,w)+ β6(y,w))+ ρ(y, z)(β4(x,w)+ β4(w, x))

+ ρ(y,w)(β5(z, x)+ β1(z, x))+ ρ(z,w)(β6(y, x)+ β2(y, x))

for all x, y, z,w ∈W2. Applying the same argument for the third time, after fixing suitable pairs of
x, y, z,w ∈W1 with ρ = 1 (using Lemma 11, this time assuming m≥ 300(s2 + s+ 1)) we see that
the ranks of (x,w) 
→ β4(x,w)+ β4(w, x), β1 + β5 +μρ and β2 + β6 +μ′ρ for suitable scalars
μ,μ′ ∈F2 are at most 6,4 and 4 respectively. We thus find a subspace W3 ≤W2 of dimW3 ≥
dimW2 − 14 using Lemma 8, such that β4|W3×W3 is symmetric and

β1|W3×W3 + β5|W3×W3 , β2|W3×W3 + β6|W3×W3 ∈ 〈ρ|W3×W3〉. (15)

Using facts (13), (14) and (15), writing β = β6 and restricting all maps to the productW3 ×W3,
we obtain β2, β3 ∈ β + 〈ρ〉, from which we further get β4 ∈ β2 + 〈ρ〉 = β + 〈ρ〉 and β5 ∈ β3 +
〈ρ〉 = β + 〈ρ〉, which finally implies β1 ∈ β4 + 〈ρ〉 = β + 〈ρ〉. Hence, all βi belong to β + 〈ρ〉. In
conclusion, we obtain scalars λ1, λ2, λ3 ∈F2 such that

φ(x, y, z,w)= σ (x, y, z,w)+ρ(x, y)β(z,w)+ ρ(x, z)β(y,w)+ ρ(x,w)β(y, z)

+ρ(y, z)β(x,w)+ ρ(y,w)β(x, z)+ ρ(z,w)β(x, y)

+λ1ρ(x, y)ρ(z,w)+ λ2ρ(x, z)ρ(y,w)+ λ3ρ(x,w)ρ(y, z)

holds for all x, y, z,w ∈W3.
Since ρ and β are symmetric onW3 ×W3, the multilinear form

ρ(x, y)β(z,w)+ ρ(x, z)β(y,w)+ ρ(x,w)β(y, z)+ ρ(y, z)β(x,w)+ ρ(y,w)β(x, z)+ ρ(z,w)β(x, y)
is readily seen to be symmetric, so it can be consumed into σ , and on W3 ×W3 ×W3 ×W3 we
may assume that

φ(x, y, z,w)= σ (x, y, z,w)+ λ1ρ(x, y)ρ(z,w)+ λ2ρ(x, z)ρ(y,w)+ λ3ρ(x,w)ρ(y, z). (16)
Let us use the symmetry conditions for φ for the final time in order to understand the relation-

ship between scalars λ1, λ2 and λ3. Note that the codimension of the subspaceW3 inside U ′ is at
most 2s2 + 5s+ 30, so by Lemma 9 we have rankρ|W3×W3 ≥ 2 (assuming m≥ 100(s2 + s+ 1)).
The equality φ = φ ◦ (1 2) gives

(λ2 + λ3)(ρ(x, z)ρ(y,w)+ ρ(x,w)ρ(y, z))= 0
for all x, y, z,w ∈W3. Since rankρ|W3×W3 ≥ 2, the map ρ|W3×W3 is non-zero, so we can find
(y,w) ∈W3 ×W3 such that ρ(y,w)= 1. The equality above then shows that (λ2 + λ3)ρ|W3×W3

has rank at most 1. However, using the fact that the rank of ρ|W3×W3 is at least 2 again, we deduce
λ2 = λ3.

Similarly, the condition φ = φ ◦ (1 3) implies
(λ1 + λ3)(ρ(x, y)ρ(z,w)+ ρ(x,w)ρ(y, z))= 0

for all x, y, z,w ∈W3. Using the same rank bound rankρ|W3×W3 ≥ 2 allows us to deduce λ1 = λ3.
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Putting these equalities together we see that λ1 = λ2 = λ3 and equality (16) then becomes

φ(x, y, z,w)= σ (x, y, z,w)+ λ1
(
ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w)+ ρ(x,w)ρ(y, z)

)

so φ = φ ◦ (1 4) onW3 ×W3. The third symmetry condition tells us that
ρ(x, y)ρ(z,w)+ ρ(x, z)ρ(y,w)= 0

for all x, y, z,w ∈W3, which is a contradiction as the rank of ρ|W3×W3 is at least 2. To complete
the proof of the theorem it remains to choose m= 20, 000(r2 + r + 1) (recall that s≤ 6r) so that
all conditions on m are satisfied. The assumption n≥ (1000r)3 in the statement of the theorem
then implies the condition (3). �
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