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Abstract
We compute the polynomial entropy of the induced maps on hyperspace for a homeo-
morphism f of an interval or a circle with finitely many non-wandering points. Also,
we give a generalization for the case of an interval homeomorphism with an infinite
non-wandering set.
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1 Introduction

Every continuous map on a compact metric space X induces a continuous map (called
the induced map) on the hyperspace 2X of all closed subsets. If X is connected, and so
a continuum, we consider the hyperspace C(X) of subcontinua of X (which is also a
continuum). One can also consider the hyperspace X∗k of all nonempty subsets with at
most k points (for k ∈ N). A natural question is what are the possible relations between
the given (individual) dynamics on X and the induced one (collective dynamics) on
the hyperspace. Various results in this direction were obtained in the last decades.
Without attempting to give complete references, we mention just a few: Borsuk and
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Ulam [7], Bauer and Sigmund [5], Román-Flores [23], Banks [4], Acosta, Illanes and
Méndez-Lango [1].

The topological entropy of the inducedmapwas studied by Kwietniak and Oprocha
in [14], Lampart and Raith [19], Hernández andMéndez [12], Arbieto and Bohorquez
[2], and others.

In [19] the authors showed that, if f is an interval or a circle homeomorphism, the
topological entropy of the induced map on the hyperspace of subcontinua is zero. This
is also obtained as a corollary in [2], for Morse-Smale diffeomorphisms of a circle.

One of the measures of complexity of a system with zero topological entropy is
the polynomial entropy. The very definitions of topological and polynomial entropies
differ in the fact that the former measures the overall exponential complexity of the
orbit structure, and the latter analyzes the growth rate at the polynomial scale. The
polynomial entropy is a tool for distinguishing systems with zero topological entropy.
For example, a rotation on the circle on the one hand, and a homeomorphismwith both
periodic and wandering points on the other hand, both have topological entropy equal
to zero, but it is clear that the first system is simpler than the second one. Labrousse
proved that the polynomial entropy distinguishes between these two systems (see
Theorem 1 in [17]).

The topological and the polynomial entropy have some properties in common:
they are both conjugacy invariants, they do not depend on a metric but only on the
induced topology, they both have the finite union property and fulfill the product
formula. However, there are some properties that differ: the power formula, the σ -
union property, the variational principle (see [20, 21]). In addition, the topological
entropy of a system is equal to the topological entropy of the same map, restricted to
the non-wandering set, which is a closed and invariant subset; this does not hold for
the polynomial entropy.

The notion of the polynomial entropy was first introduced by Marco in [20] and
[21] in the context of Hamiltonian integrable systems. It was further investigated in
different contexts by Labrousse [15–17], Labrousse and Marco [18], Bernard and
Labrousse [6], Artigue, Carrasco–Olivera and Monteverde [3], Haseaux and Le Roux
[11], Roth, Roth and Snoha [24], Correa and de Paula [8], etc.

As opposed to the topological entropy, which depends only on the dynamics
restricted to the non-wandering set, the wandering set is visible to the polynomial
entropy. In the case when non-wandering set is finite (for example, Morse-Smale sys-
tems), there is a technique for computing the polynomial entropy developed in [11]
by Hauseux and Le Roux. Originally, they invented a simple coding procedure for
homeomorphisms with only one non-wandering point, where the polynomial entropy
is particularly well adapted, since the growth of the number of wandering orbits is
always at least linear and at most polynomial. Hauseux and Le Roux also proved
that the polynomial entropy localizes near a certain finite set (singular set), in order
to compute the polynomial entropy of Brouwer homeomorphisms. This method was
slightly generalized in [13], to the case of a map which is only continuous and the non-
wandering set is finite. The coding procedure was also used in [8] for the computation
of the polynomial entropy of Morse-Smale systems on surfaces.

In this paper we compute the polynomial entropy of the induced maps C( f ), f ∗k
and 2 f for a homeomorphism f of a circle or an interval with a finite non-wandering
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set. The polynomial entropy of such a homeomorphism of an interval is known to be
1 (this easily follows from Lemma 3.1 in [17] and the finite union property of the
polynomial entropy), and of a circle is either 0 or 1 (see Theorem 1 in [17]). The
hyperspace of subcontinua of a one-dimensional space is quite simple and can be
identified with a two-dimensional object. Our computation uses the coding method
and reduction to the singular sets.

Denote by h pol(·) the polynomial entropy of a map and by C( f ), f ∗k and 2 f the
induced maps on C(X), X∗k and 2X , respectively. These are the statements of our
results.

Theorem A Let f : [0, 1] → [0, 1] be a homeomorphism with a finite non-wandering
set. Then h pol(C( f )) = 2, h pol( f ∗k) = k and h pol(2 f ) = ∞. ��
Theorem B Let f : S1 → S1 be a homeomorphism with a finite non-wandering set.
Then h pol(C( f )) = 2, h pol( f ∗k) = k and h pol(2 f ) = ∞. ��

The fact that h pol(2 f ) = ∞ in Theorem A and Theorem B follows from already
known results. Namely, the topological entropy of 2 f is strictly positive in this case
(see Theorem 20 in [14]); it is actually also infinite (see Theorem 3.1 in [9]). Here we
derive it in a different way, as a consequence of the fact that h pol( f ∗k) = k.

In the proofs, we use the coding techniques adapted to a subset with only one non-
wandering (hence fixed) point. If the non-wandering set is finite, then because of its
invariance, it must be equal to the set of periodic points. Therefore, the non-wandering
set of f k , for some k, consists of finitely many fixed points. At this point, our proofs
heavily rely on the finite union property of the polynomial entropy (that does not hold
for an infinite union), see the third property on page5. Our result is indeed false if the
set of non-wandering points of a homeomorphism of the circle is infinite. For example,
consider any rotation of the circle. The non-wandering set is the whole circle. Since the
rotation is an isometry, so is every induced map, and the polynomial entropy is equal
to zero. However, A can be easily generalized to the case of an infinite non-wandering
set, that is not equal to the whole interval (see Remark 7).

2 Preliminaries

2.1 Hyperspaces and InducedMaps

For a compact metric space (X , d), the hyperspace 2X is the set of all nonempty closed
subsets of X . The topology on 2X is induced by the Hausdorff metric

dH (A, B) := inf{ε > 0 | A ⊂ U (B, ε), B ⊂ U (A, ε)},

where

U (A, ε) := {x ∈ X | d(x, A) < ε}.

The space 2X is compact and the topology induced by dH is the Vietoris topology.
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We will also consider two closed subspaces of 2X , with the induced metric. The
first one is X∗k , the space of all finite subsets of cardinality at most k, with the same
topology. The set X∗k is called k-fold symmetric product of X .

If X is also connected (and so a continuum), then the set C(X) of all connected
and closed nonempty subsets of X is also a continuum. The set C(X) is called the
hyperspace of subcontinua of X .

If f : X → X is continuous, then it induces continuous maps

2 f : 2X → 2X , 2 f (A) := { f (x) | x ∈ A}
C( f ) : C(X) → C(X), C( f )(A) := { f (x) | x ∈ A}
f ∗k : X∗k → X∗k, f ∗k(A) := { f (x) | x ∈ A}.

If f is a homeomorphism, so are 2X , C( f ) and f ∗k .

Example 1 Let f : [0, 1] → [0, 1] be a homeomorphism.
The set C([0, 1]) consists of all compact and connected subsets, which are pre-

cisely segments [a, b], for 0 ≤ a ≤ b ≤ 1. Then C( f )([a, b]) = [ f (a), f (b)] or
C( f )([a, b]) = [ f (b), f (a)] and, when a = b, C( f )({a}) = { f (a)}.

The set X∗k consists of all subsets {x1, . . . , xl}, where 1 ≤ l ≤ k and xi ∈ [0, 1],
for i = 1, . . . l. Then f ∗k({x1, . . . , xl}) = { f (x1), . . . , f (xl)}. Note that, if f is a
homeomorphism, then the cardinality of the set { f (x1), . . . , f (xl)} is l. If f is only
continuous, then the cardinality of the set { f (x1), . . . , f (xl)} is at most l.

2.2 Polynomial Entropy and Coding

Suppose that X is a compact metric space, and f : X → X is continuous. Denote by
d f
n (x, y) the dynamic metric (induced by f and d):

d f
n (x, y) = max

0≤k≤n−1
d( f k(x), f k(y)).

Fix Y ⊆ X . For ε > 0, we say that a finite set E ⊂ X is (n, ε)-separated if for every
x, y ∈ E it holds d f

n (x, y) ≥ ε. Let S(n, ε; Y ) denote the maximal cardinality of an
(n, ε)-separated set E , contained in Y .

The polynomial entropy of the map f on the set Y is defined by

h pol( f ; Y ) = lim
ε→0

lim sup
n→∞

log S(n, ε; Y )

log n
.

If X = Y we abbreviate h pol( f ) := h pol( f ; X). The polynomial entropy, as well as
the topological entropy, can also be defined via coverings with sets of dnf -diameters

less than ε, or via coverings by balls of d f
n -radius less than ε, see p. 626 in [21]. We

list some properties of the polynomial entropy that are important for our computations
(for proofs see Propositions 1 − 4 in [21]):

• h pol( f k) = h pol( f ), for any k ≥ 1
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• if Y ⊂ X is a closed, f -invariant set, then h pol( f ; Y ) = h pol( f |Y )

• if Y = ⋃m
j=1 Y j where Y j are f -invariant, then h pol( f ; Y ) = max{h pol( f ; Y j ) |

j = 1, . . . ,m}
• If f : X → X , g : Y → Y and f × g : X × Y → X × Y is defined as

f × g(x, y) := ( f (x), g(y)), then h pol( f × g) = h pol( f ) + h pol(g)
• h pol( f ) does not depend on a metric but only on the induced topology
• h pol(·) is a conjugacy invariant (meaning if f : X → X , g : X ′ → X ′, ϕ :

X → X ′ is a homeomorphism of compact spaces and g ◦ ϕ = ϕ ◦ f , then
h pol( f ) = h pol(g)).

• If f : X → X and g : X ′ → X ′ are semi-conjugated, meaning that ϕ : X → X ′ is
a continuous surjective map of compact spaces and g ◦ϕ = ϕ ◦ f , then h pol( f ) ≥
h pol(g).

A set A ⊂ X is wandering if f n(A) ∩ A = ∅, for all n ≥ 1. A point p ∈ X is
wandering if there exists a wandering neighbourhood U � p.

A point that is not wandering is said to be non-wandering. We denote the set of all
non-wandering points by NW ( f ). The set NW ( f ) is closed and f -invariant. Also,
we denote the set of all fixed points by Fix( f ).

We now give a brief description of the computation of the polynomial entropy for
maps with a finite non-wandering set, by means of a coding and a local polynomial
entropy. This construction was first done in [11] for homeomorphisms with only one
non-wandering (hence fixed) point, and then modified in [13] for continuous maps
with finitely many non-wandering points. Let Y be any f -invariant subset of X .

We first define a coding relative to a family of sets F . Let

F = {Y1,Y2, . . . ,YL}

where Y j ⊆ X\NW( f ) and

Y∞ := Y \
L⋃

j=1

Y j .

Let x = (x0, . . . , xn−1) be a finite sequence of elements in Y . We say that a finite
sequence w = (w0, . . . , wn−1) of elements in F ∪ {Y∞} is a coding of x relative to
F if x j ∈ w j , for every j = 0, . . . , n − 1. We will refer to w as a word and to w j as
a letter.

Let An(F; Y ) be the set of all codings of all orbits

(x, f (x), . . . , f n−1(x))

of length n relative to F , for all x ∈ Y . If �An(F; Y ) denotes the cardinality of
An(F; Y ), we define the polynomial entropy of f , on the set Y , relative to the family
F as the number:

h pol( f ,F; Y ) := lim sup
n→∞

log �An(F; Y )

log n
.
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Weabbreviate h pol(F; Y ) := h pol( f ,F; Y )whenever there is no risk of confusion.

Example 2 Let f : [0, 1] → [0, 1] be an increasing homeomorphism such that f (x) <

x , for x ∈ (0, 1) (hence f (0) = 0 and f (1) = 1). LetY be the interval [0, 1).We define
Y1 = [ 12 −ε, 1

2 +ε] ⊂ [0, 1]\NW ( f ), for ε > 0 small enough so that f (Y1)∩Y1 = ∅.
Let F = {Y1}. The elements of the setAn(F; Y ) are exactly all the words of the form
(Y∞, . . . ,Y∞,Y1,Y∞, . . . ,Y∞), as well as the word (Y∞,Y∞, . . . ,Y∞). Namely, for
all n ∈ N, we can choose x ∈ (0, 1) so that f n(x) ∈ Y1. It follows that An(F; Y )

contains words of length n in which Y1 takes any position i , 1 ≤ i ≤ n. Also, the
letter Y1 can appear in a word at most once, because f (Y1) ∩ Y1 = ∅. Now we have
that �An(F; Y ) = n + 1 and h pol(F; Y ) = 1. Note that Y1 ⊂ [0, 1]\NW ( f ) could
be any interval that satisfies f (Y1) ∩ Y1 = ∅.

For Z ⊆ X \ NW( f ), set

M(Z) := sup
x∈X

�{n | f n(x) ∈ Z}.

If Z ⊆ X \NW( f ) is compact, the number M(Z) is finite, since Z can be covered by
a finite number of open wandering sets, and every orbit can intersect a wandering set
at most once (as in [11]).

We will use the following property of h pol(F; Y ) in order to localize our
computation to a singular set.

Proposition 1 [Proposition 3.1 in [13]] Let F and F ′ be two families of subsets of
X \ NW( f ) with M(∪F) < +∞. Let Y ⊂ X be an f -invariant subset with exactly
one non-wandering point. If for every Y ′

j ∈ F ′ there exists Y j ∈ F such that Y ′
j ⊆ Y j ,

then h pol(F ′; Y ) ≤ h pol(F; Y ). ��
Next we define the local polynomial entropy for a finite set

S = {x1, x2, . . . , xl} ⊂ X \ NW ( f ).

We choose a decreasing sequence of neighbourhoods {Uj,n}n∈N of x j ∈ S which form
a basis of neighbourhoods of x j . It follows from Proposition 1 that the sequence

{
h pol

({U1,n,U2,n, . . . ,Ul,n}; Y
)}

n≥1

is decreasing and converges, as well as that its limit does not depend on the choice of
neighbourhoods. Define:

hlocpol(S; Y ) := lim
n→∞ h pol

({U1,n,U2,n, . . . ,Ul,n}; Y
)
.

Finally, we relate the polynomial entropy to a singular set.
We say that the subsets U1, . . . ,UL of X \ NW( f ) are mutually singular if for

every M > 0, there exist x and positive integers n1, . . . , nL such that

f n j (x) ∈ Uj , |ni − n j | > M, for every i �= j .
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The points x1, . . . , xL ∈ X\NW( f ) aremutually singular if every family of respective
neighbourhoods U1, . . . ,UL , Uj � x j , satisfying Uj ⊂ X\NW( f ), is mutually
singular. We say that a finite set is singular if it consists of mutually singular points.
Also note that a singleton (which consists of one wandering point) is always singular.

Proposition 2 [Propositions 3.2 and 3.3 in [13]] Let Y ⊆ X be an f -invariant set
containing exactly one non-wandering point. Then it holds:

(a) h pol( f ; Y ) = sup{h pol({K }; Y ) | K ⊆ X \ NW( f ), K compact}
(b) h pol( f ; Y ) = sup{h pol({K ∩ Y }; Y ) | K ⊆ X \ NW( f ), K compact}
(c) h pol( f ; Y ) = sup

{
hlocpol(S; Y ) | S ⊂ Y , S singular

}
. ��

The following corollary is of importance for our result, so we will prove it.

Corollary 3 [Corollary 3.3.1 in [13]] Let Y ⊆ X be an f -invariant set containing
exactly one non-wandering point. The polynomial entropy h pol( f ; Y ) is bounded
from above by the maximal cardinality of a singular set contained in Y .

Proof The local polynomial entropy of a finite set {x1, . . . , xl} ⊂ X \ NW( f ) is
bounded from above by its cardinality. Indeed, one can choose wandering neigh-
bourhoods Y j � x j , such that every letter Y j appears in the coding of any orbit
(x, f (x), . . . , f n−1(x)) at most once. Therefore there are at most n(n − 1) · · · (n −
l + 1) ≤ nl possible codings. We obtain

hlocpol({x1, . . . , xl}; Y ) ≤ h pol({Y1, . . . , Yl}; Y ) = lim sup
n→∞

log � An({Y1, . . . , Yl}; Y )

log n
≤ l.

By taking the supremum over all sets of mutually singular points and using the
statement (c) in Proposition 2, we conclude that h pol( f ; Y ) ≤ l. ��
In particular, if the maximal cardinality of a singular set is two, we have a more precise
statement.

Proposition 4 Let Y ⊆ X be an f -invariant set containing exactly one non-wandering
point. Suppose that the maximal cardinality of a singular set contained in Y equals 2.
If for every singular set S = {x1, x2} ⊂ Y and every open Y j � x j , Y j ⊂ X\NW ( f ),
there exists a positive integer L such that for all k ≥ L it holds f k(Y1)∩Y2 �= ∅, then
h pol( f ; Y ) = 2.

Proof It follows from Corollary 3 that h pol( f ; Y ) ≤ 2. To prove the other inequality,
note that the assumed condition on Y1 and Y2 implies that for all positive integer m
and for all k ≥ L , there exists x with f m(x) ∈ Y1, f m+k(x) ∈ Y2. Therefore, for
every k ≥ L there exists a coding of a form

(Y∞, . . . ,Y∞︸ ︷︷ ︸
m

,Y1,Y∞, . . . ,Y∞︸ ︷︷ ︸
k

,Y2,Y∞, . . . ,Y∞)

where m is any number and k ≥ L . We get

� An({Y1,Y2}; Y ) ≥
n−L−1∑

m=0

(n − L − m) ∼ 1

2
n2,
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so h pol({Y1,Y2}; Y ) ≥ 2. Since this holds for all Y j with x j ∈ Y j ⊂ X\NW ( f ),
j = 1, 2, the same is true for h pol({x1, x2}; Y ). ��
We will use the following notations:

O(x) := { f n(x) | n ∈ Z}

for the orbit of a point x and

Ws(p) := {x ∈ X | f n(x) → p, n → ∞}

for the stable set of a (fixed) point p.

3 Proofs

In order to use the methods described in Sect. 2.2 we need to establish that the sets
NW (C( f )) and NW

(
f ∗k) are finite. Since h pol( f m) = h pol( f ), we can assume that

NW ( f ) = Fix( f ).

Proposition 5 Let f : [0, 1] → [0, 1] or f : S1 → S1 be a homeomorphism such that
the set NW ( f ) = Fix( f ) is finite. Then NW (C( f )) = Fix(C( f ))and NW

(
f ∗k) =

Fix
(
f ∗k) are also finite for every k ≥ 1.

Proof Let us prove the proposition forC( f ), f : I → I . The other case can be proved
analogously. The set Fix(C( f )) is finite as it consists of all intervals [a, b] ⊆ I ,
where a, b ∈ Fix( f ). Note that the condition NW ( f ) = Fix( f ) implies that f
is increasing. Suppose that there exists [x, y] ∈ NW (C( f )) \ Fix(C( f )) and that
x /∈ Fix( f ). Since NW ( f ) = Fix( f ), there exist a, b ∈ Fix( f ) (possibly equal)
with

f n(x) → a, f n(y) → b, n → ∞.

Let ε < d(x, a)/2. For n ≥ n0, where n0 is big enough, it holds d( f n(x), a) < ε,
d( f n(y), b) < ε so we have

dH (C( f )n([x, y]), [x, y]) ≥ dH ([a, b], [x, y]) − dH
(
C( f )n([x, y]), [a, b])

≥ d(a, x) − ε > ε.

��

3.1 Proof of Theorem A

Let I := [0, 1]. We can assume that f is increasing, since if not, f 2 is. We will first
compute the polynomial entropy of C( f ). We can identify the space C(I ) with the
set

{(x, y) ∈ [0, 1]2 | 0 ≤ x ≤ y ≤ 1},
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which is the upper triangle A in the square [0, 1] × [0, 1]. The homeomorphism
ϕ : C(I ) → A is given byϕ : [x, y] → (x, y). ThemapC( f ) is conjugated to f × f |A
via ϕ (where f × f : [0, 1]×[0, 1] → [0, 1]×[0, 1], ( f × f )(x, y) = ( f (x), f (y))).

Denote the lower triangle in [0, 1] × [0, 1] by B. Since both A and B are closed
and f × f -invariant, we have

h pol( f × f ) = max{h pol( f × f |A), h pol( f × f |B)}.

On the other hand

h pol( f × f ) = 2h pol( f ).

Since f × f |A and f × f |B are topologically equivalent systems (the map (x, y) �→
(y, x) realizes a conjugacy), we have

h pol(C( f )) = 2h pol( f ) (1)

It is not hard to see that h pol(C( f )) = 2, because h pol( f ) = 1. Let 0 =
p0 < p1 < . . . < pk = 1 denote the fixed points. We apply again h pol( f ) =
max j h pol

(
f |[p j−1,p j ]

)
.

As in 2, h pol( f |[p j−1,p j ]) ≥ 1 (this also follows from the fact that f |[p j−1,p j ] pos-
sesses awandering point, see Proposition 2.1 in [17] for amore general statement). The
set Y = (p j−1, p j ] is f |[p j−1,p j ]-invariant and contains exactly one non-wandering
point. So, by Corollary 3 and the fact that f has only one singular point in (p j−1, p j ]
we obtain

h pol
(
f |[p j−1,p j ]

) = max
{
h pol

(
f |[p j−1,p j ]; (p j−1, p j ]

)
, h pol

(
f |{p j−1}

)} ≤ 1.

(For a different, more explicit proof of h pol( f |[p j−1,p j ]) = 1 see [17].)
Let us prove that h pol

(
f ∗k) = k. Since f ×k := f × . . . × f and f ∗k are semi-

conjugated via

π : I k → I ∗k, π : (x1, . . . , xk) �→ {x1, . . . , xk},

we have

h pol

(
f ∗k) ≤ h pol

(
f ×k

)
= k. (2)

We want to prove the other inequality. For a permutation σ of {1, . . . , k}, define

Aσ := {(x1, . . . , xk) ∈ I k | xσ(1) ≤ . . . ≤ xσ(k)}.

As before, we see that I k = ⋃
σ Aσ , Aσ ’s are f ×k-invariant, so

h pol

(
f ×k

)
= max

σ

{
h pol

(
f ×k |Aσ

)}
.
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Since all f ×k |Aσ are mutually conjugated we have

h pol

(
f ×k |Aσ

)
= h pol

(
f ×k |Aρ

)

for every two permutations σ and ρ and therefore

h pol

(
f ×k |Aσ

)
= max

σ

{
h pol

(
f ×k |Aσ

)}
= h pol

(
f ×k

)
= k

for every σ .
Define:

A(k) := {(x1, . . . , xk) ∈ I k | x1 ≤ . . . ≤ xk}
Â(k, I ) :=

{
{x1, . . . , xk} ∈ I ∗k | x1 < . . . < xk

}
.

Whenever there is no risk of confusion we will abbreviate Â(k) = Â(k, I ). If k = 2
we are done, since π |A(2) : A(2) → I ∗2 is a homeomorphism of compact sets, so
h pol

(
f ∗2) = h pol

(
f ×2|A(2)

) = 2.
For k > 2 we need the following auxiliary fact.

Lemma 6 Suppose that Fix( f ) = {0, 1}. Then h pol

(
f ∗k; Â(k)

)
= k.

The rest of the proof follows easily from Lemma 6. Indeed, if Fix( f ) = {0, 1}
then we have:

h pol

(
f ∗k) ≥ h pol

(
f ∗k; Â(k))

)
=k

(2)⇒ h pol

(
f ∗k) = k.

If Fix( f ) = {0, p1, . . . , pk−1, 1} with 0 < p1 < . . . < pk−1 < 1, define

T := {{x1, . . . , x j } | j ∈ {1, . . . , k}, xi ∈ [0, p1]
} ⊂ I ∗k

and apply Lemma 6 to f |[0,p1]. Since T is f ∗k-invariant, we conclude

h pol

(
f ∗k) ≥ h pol

(
f ∗k |T

)
= h pol

((
f |[0,p1]

)∗k)

≥ h pol

((
f |[0,p1]

)∗k ; Â(k, [0, p1])
)

= k.

From here and (2) we obtain h pol
(
f ∗k) = k. ��

Proof of Lemma 6 Consider the following covering of A(k):

• Ã(k) := {(x1, . . . , xk) ∈ I k | x1 < . . . < xk}
• A j (k) := {(x1, . . . , xk) ∈ I k | x1 ≤ . . . ≤ x j = x j+1 ≤ . . . ≤ xk}, for

j = 1, . . . , k − 1.
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It is obvious that Ã(k) and A j (k) are f ×k-invariant. Therefore

h pol

(
f ×k

)
= h pol

(
f ×k |A(k)

)
= max

{
h pol

(
f ×k; Ã(k)

)
, h pol

(
f ×k |A j (k)

)}
.

Notice that f ×k |A j (k) is conjugated to f ×(k−1)|A(k−1), so

h pol

(
f ×k |A j (k)

)
= h pol

(
f ×(k−1)|A(k−1)

)
= k − 1.

Since h pol
(
f ×k

) = k and h pol
(
f ×k |A j (k)

) = k − 1, we conclude that

h pol

(
f ×k; Ã(k)

)
= k.

Notice that

π | Ã(k) : Ã(k) → Â(k)

is a homeomorphism that establishes a conjugacy between f ×k | Ã(k) and f ∗k | Â(k).
Although polynomial entropy is a conjugacy invariant only when the domain is
compact (while the sets Â(k) and Ã(k) are not), we can indirectly prove that

h pol

(
f ∗k; Â(k)

)
= h pol

(
f ×k; Ã(k)

)
= k.

We wish to apply the coding method from Proposition 2. Note that for k > 2 the
sets Ã(k) and Â(k) do not contain any non-wandering points. We can add the point
(0, . . . , 0) to the set Ã(k) and {0} to Â(k), keeping the same notations: this will not
change the entropy and π will still be a homeomorphism between the two. In this way
we achieve that the assumptions from Proposition 2 are fulfilled.

Note that π induces a bijection between the sets

{
K ∩ Ã(k) | K ⊂ I k \ NW

(
f ×k

)
, K compact

}

and

{
L ∩ Â(k) | L ⊂ I ∗k \ NW

(
f ∗k) , L compact

}
.

Ifw = (w0, . . . , wn−1) is a coding of an orbit
(
x, f ×k(x). . . . , ( f ×k)n−1(x)

)
in Ã(k)

(consisting of letters K ∩ Ã(k) and Y∞ := Ã(k) \ K ), then (π(w0), . . . , π(wn−1)) is
the coding of an orbit

(
π(x), f ∗k(π(x)), . . . , ( f ∗k)n−1(π(x))

)
in Â(k) (consisting of

letters π(K ∩ Ã(k)) and Y∞ := Â(k) \ π(K ∩ Ã(k))), and vice versa. Therefore, for

a fixed compact K , the setsAn

(
{K ∩ Ã(k)}; Ã(k)

)
andAn

(
{π(K ∩ Ã(k))}; Â(k)

)

have the same cardinality. Applying (b) from Proposition 2 we finish the proof of
Lemma 6.
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Finally, to prove that h pol
(
2 f

) = ∞, we notice that X∗k is a closed and 2 f -invariant
subset of 2X and moreover f ∗k = 2 f |X∗k so

h pol

(
2 f

)
≥ h pol

(
f ∗k) = k

for every k ∈ N. ��
Remark 7 A can be generalized to the case of a homeomorphism f of an interval
with an infinite, but not equal to the whole interval, non-wandering set. We thank the
anonymous referee for raising this issue. Let us briefly explain this generalization.

1. The polynomial entropy of f is still equal to one. It is clear, as before, that
h pol( f ) ≥ 1. For the other inequality see Corollary 3.5 in [10].

2. The result concerning the polynomial entropy of C( f ) follows directly from (1).
3. Since h pol

(
f ∗k) ≤ h pol

(
f ×k

)
, we have h pol

(
f ∗k) ≤ k. The other inequal-

ity follows from Lemma 6 applied to f |[p1,q1]. Indeed, as before, set T :={{x1, . . . , x j } | j ∈ {1, . . . , k}, xi ∈ [p1, q1]
} ⊂ I ∗k , T is f ∗k-invariant. We

have

h pol

(
f ∗k) ≥ h pol

(
f ∗k |T

)
= h pol

((
f |[p1,q1]

)∗k)

≥ h pol

((
f |[p1,q1]

)∗k ; Â(k, [p1, q1])
)

= k.

3.2 Proof of Theorem B

Let us first compute the polynomial entropy of C( f ). For that reason, we will
distinguish between the following possibilities:

(1) the set Fix( f ) consists of only one point
(2) the set Fix( f ) has at least three different points
(3) the set Fix( f ) has exactly two points.

Case (1). Since f has only one fixed point, f preserves the orientation of the circle.
If Fix( f ) = {a}, the continuum map C( f ) has only two non-wandering points - {a}
and S1. We will divide the set C(S1) into two closed invariant subsets:

• P is the set of all [x, y] such that the point x is between points a and y counter-
clockwise, including degenerate cases when the two or all three points are equal
(meaning that [x, a], {x}, [a, y] and S1 are in P); notice that [x, y] does not contain
a as an interior point, for x �= y. See the circle on the left in Fig. 1.

• Q is the set of all [x, y] such that the point y is between points a and x counter-
clockwise, including degenerate cases when the two or all three points are equal
(meaning that [x, a], {a}, [a, y] and S1 are in Q); notice that [x, y] contains a. See
the circle in the middle in Fig. 1.

In this way we know that, for [x, y], [z, w] ∈ P or [x, y], [z, w] ∈ Q, the following
is true:

d(x, z) < r and d(y, w) < r ⇒ dH ([x, y], [z, w]) < r .
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Fig. 1 Elements of set P (on the left) and Q (center); arcs [x, y] and [z, w] (right)

Fig. 2 Direction of f (on the left) and dynamics of C( f )|P (on the right)

(In general, this does not have to hold, since the endpoints of the arcs [x, y] ∈ P and
[z, w] ∈ Q may be close, but not the corresponding intervals, see the circle on the
right in Fig. 1.)

Suppose that f moves the points in S1 in the positive direction, as in Fig. 2. The
other case is treated in the same way.

We will first consider the map C( f )|P . Its dynamics is depicted in Fig. 2. We have
the following possibilities:

• x �= a and y �= a ⇒ C( f )n([x, y]) n→±∞−→ {a}
• x �= a and y = a ⇒ C( f )n([x, y]) n→∞−→ {a} and C( f )n([x, y]) n→−∞−→ S1

• [x, y] = {x} ⇒ C( f )n([x, y]) n→±∞−→ {a}
• x = a and y �= a ⇒ C( f )n([x, y]) n→∞−→ S1, C( f )n([x, y]) n→−∞−→ {a}
• [x, y] = S1 ⇒ C( f )n([x, y]) n→±∞−→ S1.

We can divide P into the sets {S1} and Y := P\{S1} and compute

h pol(C( f )|P ) = max
{
h pol(C( f )|P ; Y ), h pol

(
C( f )|P ; {S1}

)}
= h pol(C( f )|P ; Y )

since h pol(C( f )|P ; {S1}) = h pol(C( f )|{S1}) = 0.
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We claim that the arcs [a, p], for p �= a and [q, a] for q �= a are two mutually
singular points x1 and x2 satisfying the conditions stated in Proposition 4.

Let us first prove that [a, p] and [q, a] are mutually singular. Fix an ε > 0, ε <

min{d(a, p), d(a, q)} and M > 0. Choose y ∈ B(p, ε) ⊂ S1 arbitrarily. Since
f n(y) → a, when n → ∞, there exists a non-negative integer n1 > M such that
for n ≥ n1 it holds d( f n(y), a) < ε. Let α ∈ B(q, ε) ⊂ S1 be any point. Since
f −n(α) → a, when n → ∞, there exists n2 ≥ n1 with d( f −n2(α), a) < ε. We
can increase n2 if necessary to obtain that the point f −n2(α) is between a and y, and
f −n2(α) �= y. Choose x := f −n2(α). Set I := [x, y]. We claim that the orbit of I
intersects the ε-balls around [a, p] and [q, a] in the times with difference greater than
M . Indeed, we have:

dH (I , [a, p]) ≤ max{d(x, a), d(y, p)} < ε,

so I ∈ B([a, p], ε) and

d( f n2 (I ), [q, a]) ≤ max{d( f n2 (x), q), d( f n2 (y), a)} = max{d(α, q), d( f n2 (y), a)} < ε.

Therefore, f n2(I ) ∈ B([q, a], ε).
The next step is to show that any two arcs except the ones of the form [a, p]

and [q, a] cannot be mutually singular. Suppose that [p1, q1] and [p2, q2] are two
different arcs such that p j �= a and q j �= a. We distinguish between the following
two possibilities

(a) If [p1, q1] and [p2, q2] are not in the same orbit of C( f ), it is enough to show that
there exist neighbourhoods U � [p1, q1] and V � [p2, q2] such that

C( f )n(U ) ∩ V = ∅, for all n ∈ Z.

Let ε be a positive real number with the following properties:

• ε < dH ([p2, q2],O([p1, q1])), where dH ([p2, q2],O([p1, q1])) is the dis-
tance from [p2, q2] to the orbit O([p1, q1]), which is strictly positive, as
C( f )n([p1, q1]) converges to {a}, when n → ±∞

• the balls (in C(S1)) of radius ε around [p2, q2] and {a} are disjoint.
Since C( f )n([p1, q1]) converges to {a}, when n → ±∞, and the same holds for
any [p, q] close enough to [p1, q1], we can find δ > 0 and n0 such that:

[p, q] ∈ B ([p1, q1], δ) , |n| ≥ n0 ⇒ C( f )n ([p, q]) ∈ B ({a}, ε) .

We can decrease δ if necessary to obtain:

[p, q] ∈ B ([p1, q1], δ) , |n| ≤ n0 ⇒ C( f )n ([p, q]) /∈ B ([p2, q2], ε) .

We conclude that the sets

U := B ([p1, q1], δ) , V := B ([p2, q2], ε)
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have the desired properties, hence [p1, q1] and [p2, q2] are not mutually singular.
(b) If [p1, q1] and [p2, q2] are in the same orbit ofC( f ), it is enough to show that there

exist neighbourhoodsU � [p1, q1] and V � [p2, q2],U , V ⊂ Y\NW (C( f )) and
M > 0, such that:

C( f )n(U ) ∩ V �= ∅ ⇒ |n| < M, for all n ∈ Z. (3)

Indeed, it follows from (3) that U and V are not mutually singular, so neither are
[p1, q1] and [p2, q2]. So take U ⊂ Ws({a}) ∩ Y , V and U ′ to be any three balls
centered at [p1, q1], [p2, q2] and {a} respectively, such that V ∩ U ′ = ∅. There
exists a non-negative integer n0 such that, for all n ∈ Z, |n| ≥ n0,C( f )n(U ) ⊂ U ′.
We see that for |n| ≥ n0 it holds C( f )n(U ) ∩ V = ∅.

To show that [a, p], for p �= a, and [q, a], for q �= a, are the only two possible
mutually singular points, we should consider the following four possibilities (recall
that singular points are, by definition, necessarily wandering points):

(i) [a, p] and [p1, q1], for p �= a, p1 �= a and q1 �= a, but possibly p1 = q1
(ii) [q, a] and [p1, q1], for q �= a, p1 �= a and q1 �= a, but possibly p1 = q1
(iii) [a, p1] and [a, p2], for pi �= a and p1 �= p2
(iv) [q1, a] and [q2, a], for qi �= a and q1 �= q2.

The cases (i) and (ii) can be treated the same way as the case (a) above; the cases
(iii) and (iv) are the same as the case (b).

It remains to prove that for every twomutually singular points of the form [a, p] and
[q, a], where p, q �= a and every open Y1 � [a, p], Y2 � [q, a], Y j ⊂ P\NW (C( f )),
there exists a positive integer L such that for all n ≥ L it holds C( f )n(Y1) ∩ Y2 �= ∅.
Then we are able to apply Proposition 4 and finish the proof.

Fix ε > 0 and set Y1 := B([a, p], ε) ⊂ P\NW (C( f )) and Y2 := B([q, a], ε) ⊂
P\NW (C( f )). Consider the line

l := {[x, p] | d(x, a) < ε} ⊂ Y1.

Notice that

C( f )n(l) = {[ f n(x), f n(p)] | x ∈ B(a, ε)}.

Since f n(p) → a and f n(B(a, ε)) → S1, when n → ∞, there exists n0 such that for
all n ≥ n0 both d( f n(p), a) < ε and f n(B(a, ε)) � q hold. Denote by x1 ∈ B(a, ε)

such that f n(x1) = q. We conclude that dH ([ f n(p), f n(x1)], [q, a]) < ε, therefore
C( f )n(Y1) ∩ Y2 �= ∅.

The dynamics of C( f )|Q is the following:

• x �= a and y �= a ⇒ C( f )n([x, y]) n→±∞−→ S1

• x = a and y �= a ⇒ C( f )n([a, y]) n→∞−→ S1 and C( f )n([a, y]) n→−∞−→ {a}
• [x, y] = {a} ⇒ C( f )n([x, y]) n→±∞−→ {a}
• y = a and x �= a ⇒ C( f )n([x, y]) n→∞−→ {a} and C( f )n([x, y]) n→−∞−→ S1



  103 Page 16 of 18 M. Ðorić, J. Katić

• [x, y] = S1 ⇒ C( f )n([x, y]) n→±∞−→ S1.

The same reasoning applies to C( f )|Q , so the proof of Case (1) is done.
Case (2). Suppose Fix( f ) = {a1, . . . , am}, and there are no fixed points between the
points a j and a j+1. Denote by C j := [a j , a j+1]. It is obvious that the sets C j are
f -invariant, therefore the sets

Di j := {[x, y] | x ∈ Ci , y ∈ C j }

are C( f )-invariant. It is also easy to see that all Di j are closed as well as C(S1) =⋃
i, j Di, j . The proof of B is completed if we prove that h pol(C( f )|Di j ) = 2 for all

i, j .
We see that Di, j can be identifiedwith [ai , ai+1]×[a j , a j+1] and since f ([x, y]) =

[ f (x), f (y)], C( f ) is conjugated to f × f . Therefore we reduce the problem to the
of

f × f : [ai , ai+1] × [a j , a j+1] → [ai , ai+1] × [a j , a j+1],
f × f (x, y) = ( f (x), f (y)).

Since h pol( f ×g) = h pol( f )+h pol(g), we have h pol(C( f )|Di j ) = h pol( f |ai ,ai+1])+
h pol( f |[a j ,a j+1]). Similarly as in the proof of A, we have h pol( f |[ai ,ai+1]) =
h pol( f |[a j ,a j+1]) = 1.

Case (3). Suppose a1 and a2 are the only two fixed points. Then either f maps both
[a1, a2] and [a2, a1] to themselves, or one to another. If the latter is the case, then
f 2 maps both arcs to itself, so we can assume that this is true (since h pol(C( f 2)) =
h pol(C( f )2) = h pol(C( f ))), and apply the same argument as in Case (2). Namely,
C1 = [a1, a2] and C2 = [a2, a1] are f -invariant, therefore the sets D12 and D21
are C( f )-invariant. Following the calculations in Case (2), we obtain once again that
h pol(C( f )) = 2.

Now we prove the statement for f ∗k . Recall first that h pol( f ) = 1. This can be
proved using the coding methods (it is easy to see that f possesses no two mutually
singular points), or, alternatively, by refering to Theorem 2 in [17], which states that
the polynomial entropy of a circle homeomorphism f is 1 if and only if f is not
conjugated to a rotation.

Define a relation ≤ on S1 by identifying S1 with [0, 1). We can again assume that
f is orientation preserving, since if not, f 2 is and

h pol

((
f 2)∗k

))
= h pol

((
f ∗k)2

)

= h pol

(
f ∗k) .

So we can consider f as an increasing homeomorphism of [0, 1] with f (0) = 0 and
f (1) = 1 (we can assume that 0 is a fixed point of f ). As before, by considering a

semi-conjugacy π : (
S1

)k → (
S1

)∗k
, we derive h pol

(
f ∗k) ≤ k. For k = 2, because

the aforemention identification of S1 with [0, 1), we can apply the same reasoning as
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in the proof of A and conclude that h pol
(
f ∗2) = h pol

(
f ×2|A(2)

) = 2 (see page 10
for more details).

If f possesses at least two fixed points, a and b, we can define B as a subset of
(
S1

)∗k
consisting of sets of points from the interval [a, b] and identify the map f ∗k |B

with
(
f |[a,b]

)∗k . Therefore we have

h pol

(
f ∗k) ≥ h pol

(
f ∗k |B

)
= h pol

((
f |[a,b]

)∗k) = k

(the last equality follows from the proof of A), so the proof is finished.
If f has only one fixed point, 0, we can define the sets Ã(k) and Â(k) as in the proof

of A, conclude that h pol

(
f ×k; Ã(k)

)
= k, and then prove that h pol

(
f ∗k; Â(k)

)
= k,

as in the proof of Lemma 6.
The last statement, h pol

(
2 f

) = ∞, follows in the same way as in the case of an
interval. ��
Remark 8 If (X , f ) and (Y , g) are two dynamical systems and there exists a semi-
conjugacy π : X → Y that is uniformly finite-to-one (meaning that there exists C
such for any y ∈ Y it holds �

(
π−1(y)

) ≤ C), then the topological entropy htop( f )
and htop(g) coincide (see, for example, Theorem 1.8 on p. 340 in [22]). It easily
follows from this that htop( f ∗k) = htop( f ×k) (see Lemma 5 in [14]). An analogous
formula for the polynomial entropy is still not proved or disproved, so we had to use
the inequality relation, as a particularity of one-dimensional sets.
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