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1. Introduction and Overview of Related Results

Our research area is the large-scale multivariable un-
constrained optimization problem.

Copyright © 2023 Branislav Ivanov et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We introduce and investigate proper accelerations of the Dai-Liao (DL) conjugate gradient (CG) family of iterations for solving
large-scale unconstrained optimization problems. The improvements are based on appropriate modifications of the CG update
parameter in DL conjugate gradient methods. The leading idea is to combine search directions in accelerated gradient descent
methods, defined based on the Hessian approximation by an appropriate diagonal matrix in quasi-Newton methods, with search
directions in DL-type CG methods. The global convergence of the modified Dai-Liao conjugate gradient method has been proved
on the set of uniformly convex functions. The efficiency and robustness of the newly presented methods are confirmed in
comparison with similar methods, analyzing numerical results concerning the CPU time, a number of function evaluations, and
the number of iterative steps. The proposed method is successfully applied to deal with an optimization problem arising in 2D
robotic motion control.

Various and numerous modifications of Dai-Liao (DL)
conjugate gradient (CG) methods [1] with acceleration
parameters arise from the natural demand for solving large-
scale problems (1). The motivation of this research is based
(1) on the wide applications of unconstrained optimization
problems and the efficiency of conjugate gradient methods
for solving them [2-11]. The main result obtained in this

x e R",

min f (x),

in which the function f: R” — R is uniformly convex and
twice continuously differentiable. Quasi-Newton (QN)
methods and conjugate gradient (CG) methods are the two
most popular approaches in solving nonlinear optimization
problems.

study is the verification and investigation of the correlation
between QN and CG approaches. More specifically, in this
research, we study the possibilities of applying QN methods
in improving CG-type algorithms [12-16].
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The generic iterative scheme that aimed to solve (1) is as
follows:

Xps1 = X + gy, (2)

where x; is the previous iterative point, x,, is a new it-
erative point, g, = V f (x;) is the gradient vector in x, dj is
a search direction defined upon the descent condition
grd, <0, and a; >0 is a step length. The basic descent di-
rection is the direction opposite to the gradient d; = —g;,
which leads to the template of gradient descent (GD) iter-
ations [17, 18].

X1 = X — 0 G (3)

in which a is defined by the backtracking line search.
Algorithm 1 from [19] is selected as a framework for
implementing the inexact line search which determines the
step length a.
The starting point of our investigation is iterations of the
Newton method with line search.

-1
X1 = X — %G Gro (4)

where G;! is the inverse of the Hessian G, = V2 (x;). The
quasi-Newton type iterations

-1
X1 = Xk — By gro (5)

are based on the assumption that B, (resp., H;) is an ap-
propriate symmetric positive definite estimation of G, (resp.,
G;') [18]. The update from By to By,; is specified on the
quasi-Newton property (secant equation)

BiiSk = Yo wheresg = X — Xjo Vi = Giar — Gk (6)

The quasi-Newton methods based on matrix approxi-
mations of B; show some shortcomings in solving large-
scale problems due to the requirement to compute and store
matrices during iterations. Because of that, we choose the
simplest scalar approximation of G, according to the clas-
sification presented in [20]. Therefore,

Bk = )/kI, Vi > 0. (7)

This defines the simplest and numerically efficient ap-
proximation of G, by the identity matrix I and approximate
scalar ;. > 0. Such reduction results in the iterative flow as
follows:

Xl = Xk — ockyzilgk~ (8)

One efficient definition of y, was proposed in [19] based
on the Taylor expansion of the objective function f,
resulting in

SM _ SMYiM [f (xpar) = f ()] + “k"gk"2
Yk+l - yk 2 2 .
ol i

Initiated SM iterations of the form (8) and (9)

(9)
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-1
Xie1 = X — “k(Y2M) 9> (10)

were defined in [19].

Furthermore, the next modified SM (MSM) scheme was
proposed in [21], using the output «; of the backtracking
Algorithm 1 and the gain parameter 3, := 1+ a; —ai >1in
the form of iterates.

N

M)’lgk, (11)

where pM*M was defined in [21] by the rule

_ —a M
X1 = X — O\ Vi

MSM _ o MSMVkMSM [f (xk+1) - f(xk)] + “k3k||9k||2
Yirr = Yk 2 7 .
(e 3) "] 9

(12)

Since oy, € (0, 1], the main idea used in the MSM iterates
is to accelerate the SM iterations by the parameter 1, :=
1+og —ai>1. More details about accelerated gradient
methods can be found in [19, 22, 23]. Since 3, (a;) = 0 for
o, = (1/2) and ;. (0) = 3, (1) = 1, mathematical analysis of
the function J; () in the interval a; € (0,1] reveals
max]y (o) = 3, (1/2) = (5/4) and 1<, < (5/4). Figure 1
presents the graph of 3, («;) for oy € (0,1].

We observe that the choice a; : = 1 reduces iterations (8)
to a kind of the GD iterative rule.

Xer = X = Vi Gk (13)

in which y, can be determined in various approaches.
Barzilai and Borwein in [29] suggested two mutually dual
variations of the GD method, known as BB iterations, de-
fined by the step length y£%: = y;! in (13) equal to

T

BB Sk-1Vk-

Yo = e (14)
Yi-1Vk-1
ST S

BB2 —1°k—

yi = el (15)
Sk-1Vk-1

Suitable adaptive strategies for choosing among the first
and the second BB step length enhance greatly the perfor-
mance of the BB method [30]. The BB method has been
improved in numerous articles, such as [31, 32].

In this research, the acceleration parameters 1, and
YVM, used in the iterative process (11), will be exploited
to improve the efficiency of the DL conjugate gradient
method which is based on the rule (2) with the search
direction

_g > k = 0;
dj :‘[ ’ DL (16)
9k +ﬁk dk*l’ k>1.

Determined by the real parameter
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(1) Initialize a: = 1.
(2) While f (x; + ady) > f (x;) + oagldy, update a: =
(3) Return o = a.

Require: Objective f (x), the search direction d, at the point x, and real numbers 8 € (0,1) and 0<0<0.5.

ALGorIiTHM 1: The backtracking line search.

12+

1.1t

0 0.2 0.4

2
— 1+ -

Ficure 1: The graph of the function 1(a;) = 1 + oy — of for o € (0, 1].

t>0. (17)

T T
DL _ Y Vik-1 ¢ I Sk-1
ﬁk _dT - dT >
k-1Yk-1 k-1Yk-1

The parameter ﬂf L is known as the CG update pa-
rameter. Table 6 in appendix shows the abbreviations and
full names of the methods considered in this paper.

The conjugation condition

di s = ~tgi s> >0, (18)

was introduced in [1] by Dai and Liao. The condition (18)
has been an inspiration for many researchers, of which the
most important are Hager and Zhang [24, 25], Dai and Kou
[26], Babaie-Kafaki and Ghanbari [27], Ivanov et al. [28],
Lotfi and Hosseini [15], and Zheng and Zheng [33] to create
new DL-type CG methods.

Some of the most significant rules to determine t are
collected in Table 1. The diversity in definitions of the DL
parameter ¢ is confirmed in Table 1. The parameter ¢ in the
MDL method proposed in [15] is based on the improvement
of the Dai-Liao CG class by a modified BFGS method.

But not all possibilities are exhausted. Since the line
search used in this research gives the output «; € (0, 1), it
follows J; > 1 and consequently J; in common with y}*M are
useful in the proposal of a novel rule which determines the
CG parameter t. Our main idea is to find the DL parameter ¢
in (17) after the unification of descent directions in the MSM
method (11) and in the DL iterations (17). In the present
manuscript, we use an original approach which is developed
on the unification of two search directions included in the

MSM method or in the BB method (which belongs to the
class of quasi-Newton methods) and the DL method (from
the CG class). The unification of the MSM and DL methods
leads to an equation with respect to the unknown parameter
t whose solution gives a new DL parameter and corre-
sponding DL-type method of the CG class, termed as the
MSMDL method. On the other hand, the hybridization of
the BB1 method with the DL class leads to the BBIDL
method.

Main contributions achieved in this article are high-
lighted as follows:

(1) A novel approach to finding the DL parameter ¢ is
proposed, based on the equalization of search di-
rections included in a diagonal matrix approxima-
tion of quasi-Newton methods with the search
direction from the CG class;

(2) Convergence analysis of the proposed MSMDL
method is conducted under standard assumptions;

(3) Numerical examples on standard test examples are
presented with the aim to show the effectiveness of
the proposed MSMDL and BB1DL methods.

The global contents of the remaining sections are as
follows: in Section 2, we present an algorithm for the
MSMDL method for solving unconstrained optimization
problems with a new CG parameter £"®P! which contains
an acceleration parameter from the MSM quasi-Newton
method. Section 3 explores the convergence properties of
the presented MSMDL method. Some numerical results are
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TaBLE 1: Some of the most significant rules to determine ¢.

Parameters t;, Methods Reference

tie =2y 1P/ 9E seet) CG-DESCENT [24, 25]

te = T+ (e IP/Viisie) = D Sec/Msee 1) DK (26]

te = (st Va5 1P + Uy sy 1D Ml [27]

ti = max{tf, Oy /s,y

te=(1- hkngk 1 )Sk 19k + (gliyk 1/J’k oy L ey (g 1" /gksk 1t

(gksk I/Sk kDl g s 17) MDL [15]

h=C+ max{—(5k71)’k71/||5k71|| ),0}"9161”4

0>1/4,C>0,r>0

ti = (lgel*/max{1,d}_,g.} + (max{O, d{flgk/llgkllz} + Dlgel® EDL [28]
MSM :

proposed and discussed in Section 4 as well as a comparison
of the suggested methods against some similar existing
methods. The application of the suggested MSMDL method
on 2D robotic motion control is discussed in Section 5. Some
final conclusions and discussion are stated in Section 6.

2. New Dai-Liao CG Method with the
Acceleration Parameter

The first basis of the proposed iterations is the MSM scheme
(11) for solving unconstrained optimization (1). In order to
tulfill the Second-Order Necessary Condition and Second-
Order Sufficient Condition, inappropriate values yMSM <0
which appear in (12) will be replaced by yMSM = 1. To avoid
such situations, in accordance with [19, 21], the following
acceleration parameter will be used:

MSM MSM

MSM Yit1 > Yin >0,
Yee1 = { MSM (19)
1’ Vi1 <0.

The resulting iterations are termed as MSM iterative
scheme and defined by

MsM\~ 1
Xer1 = X — ‘xkjk(yk ) 9k (20)

MSM
=Xt akdk

Therefore, the search direction underlying in the MSM
method is determined by the vector

dMSM Jk(ykMSM) g (21)

where the parameter y}

expansion as in [21].
On the other hand, the CG update parameter ¢ from (17)

can be determined by putting (17) into (16), which leads to

is defined in (12) using the Taylor

A= = g+ B iy
G, Gk =
= —gk + <d k -1 thk -1 )dk—l'
k-1Vk-1 k-1Vk-1
After equalization of d¥SM: = -3, (yMM)~'g, from (21)

with dP% from (22), the following equation with respect to
the unknown t is obtained:

T T
9i Vi i Sk

_Jk(VlleSM) G = G+ d —
A1 Yk k-1Yk-1

(23)

Our idea is to find the Dai-Liao parameter ¢ as a solution
to equation (23). Application of the scalar product by g; on
the left- and right-hand side in the equation (23) gives the
following equation with respect to t:

gk)’k 1

¢ gksk 1 gkdk = ”gk" +]k( MSM) ”g “ + gk)’k 1 gkdk ,

dklkl

(e -

—Jk(YkMSM) 9k Gk = ~G Gk + " gidy
dk—ly k-1

(24)

-t Zk = :dk—l

i1 Vi
Thus, on the basis of (24), it further follows
dk 1YVk-1

(25)

Ol +-2251 g7,
dk 1Vk- 1



Journal of Mathematics

Now, the parameter ¢ is expressed from the equation (25)
as follows:

(Jk(YQASM)_l - 1)||gk||2 +(91€)’k-1/d£1)’k-1)9£dk-1
‘= - (26)

(ﬁskq/df_lym )ﬁqu

t =

Since  §p =X = Xy = Xy + O Ay~ X = Xy
d;_; and ay_; > 0, after the substitution of d;_; = (s;_;/0_;)
in (26), the following solution is obtained after some
simplifications:

(%(YkMSM)il - 1>“gk"2 + (95)%1/(1/“k71)5£-1)/k71)gz(1/0‘k71)5k71

(gzskq/(1/“k71)sz—1)’k71)92 (Vaey)Sis

<]k<)’kMSM)71 - I)Hgkll2 + (G Vi1 /Ser Vi1 ) ISk

<(g£5k71)2/5£—1)’k—1> (27)

(Jk(ﬁ“M)f1 - 1>||gk||255_1yk_1 + Gk Y19k Sk

(gzskfl)z

It is known that the DL parameter is calculated to
generate the direction of maximum enhancement, utilizing
the search direction matrix to be orthogonal to the gradient
vector [34]. To make sure that the new DL method satisfies
the descent condition, the definition of ¢ in (27) is altered
using concepts from [15, 34] in the final form:

2
MSMDL _ max{ TkMSM’QHTyk—IH}, o521 (28)
Sk-1Vk-1 4

Considering t:=t}SMPL in (17), the following im-

provement of the Dai-Liao CG parameter " is proposed:

T T
s
MSMDL _ 9k Vk-1 MSMDL Ii Sk—1 _ (29)

k - T Yk T
A1 Yk A1 Vi

The MSMDL method is based on (2), (6), (28), and (29).
The algorithmic procedure of the MSMDL method is
established in Algorithm 2.

The previous strategy for combining MSM and DL
approaches can be applied to any quasi-Newton direction. If
we replace MM by yPB! from (14), we get a new BBIDL
method. An analogous calculation gives

<(Y£Bl)_1 - 1>||gk||255_1yk_1 + G Vi1 Ik Sk
(gzskq)z

BB1
= ‘['k 5

tPPr = max{ o, 67"31(_ ! “2 }, 0> l
Sk-1Yk-1 4
(30)

Furthermore, the replacement ¢ : = t7°'P! in (17) initiates
the following improvement of the Dai-Liao CG parameter

ﬁDL'
Pl
T T
s
ﬁIICBBlDL _ ngyk—l _t]ljBlDL Zk k-1 (31)
di 1Yk A 1Yk

If we apply the mentioned changes, we arrive at another
variant of Algorithm 2, where the following steps are used
instead of steps 6, 7, 8, and 9 in the MSMDL method:

Step 6*: We compute yP?! using (14).

Step 7*: We compute tF5/PL

Step 8*: We compute Spr1>"

using (30).
using (31).
Step 9*: We compute dy,; = —gp,1 + et dy

The variant of Algorithm 2 based on steps 1-5, 6*, 7%, 8%,
9%, 10, and 11: will be called the BB1IDL method. More
precisely, the BBIDL method is based on (2), (16), (30),
and (31).

The numerical results in Section 4 show the effectiveness
of the BB1DL method.

Based on all the previous discussion, we can conclude

that the general framework presented in Algorithm 2 is
applicable to other quasi-Newton methods.

3. Convergence Analysis
The global convergence of the proposed variant of CG

methods is derived upon the standard assumptions.

Assumption 1

(1) The level set & = {x € R"|f (x) < f (x,)}, defined by
the initial guess x, and (2), is bounded.
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Require: Goal function f (x), initial approximation x, € dom( f), and parameters 0 <e <1, 0<d < 1.
(1) We set k=0, y, =1 and calculate f(x;), go = Vf (%), dy = —go-
(2) If test criteria ||g;ll <eand (| f (xp.1) — f (x)l/1 + | f (x5)]) <8 are fulfilled then go to step 11: and stop; else, go to the step 3.

(3) We compute a;, customizing Algorithm 1.
(4) We compute x;,; = x; + ady.
(5) We compute f(xy,,) and gi,; = Vf (xp,1)-

MSM

(6) We compute ;5" using (19).

(7) We compute #MSMPL

(8) We compute fpiSMPE

using (28).

using (29).
(9) We compute dy,; = —gi,, +ﬁkM+SIMDLdk'

(10) We set k: =k +1 and go to step 2.
(11) We return x4, and f (xp,,).

ALGORITHM 2: MSMDL method.

(2) The objective f is continuous and differentiable in
a neighborhood % of M with the Lipschitz con-
tinuous gradient g. As a consequence, there exists
a positive constant L >0 such that

(Vu,v € P) llg(u) — g <Llu-vl. (32)

Assumption 1 ensures the existence of positive values D
and y which fulfill

Vu,ve P) |u-v|<D, (33)

(Vu,ve P) gl <y. (34)

Another main element in proving the convergence of
a CG method is the property
T 2
Skt Vi 2 |seca| (35)

of uniformly convex functions, where # > 0. The verification
of this property can be found in Theorem 1.3.16 of [18]. By
(32), it follows ||y,_; | < LlIsi_;ll, which in conjunction with
(35) initiates
2 T 2
s I <<y < Lse - (36)

Clearly, the inequality (36) implies # < L. Furthermore,
(36) initiates

T T
Sk1 V-1 = O1dg_ Vi1 > 0. (37)
Taking into account a;_; >0 and (37), we conclude
d{_yi1>0. (38)
The statement of Lemma 1 will be useful in the verifi-

cation of main statements. It can be verified on the basis of
the results obtained in Lemma 2.2 in [50] and [35].

Lemma 1. Let the Assumption 1 be satisfied and the sequence
{xi} be generated by the MSMDL method (2), (16), and (29).
Then, it holds

y "g"”2 < +00. (39)

Lemma 2. Let Assumption 1 hold, f be uniformly convex,
and the CG parameter (29) fulfils t/SMPL>@(|ly,_,I°/
St Y1), for all k>0 and for some constant 0> (1/4).

Then, MSMDL satisfies the sufficient descent condition
T 2
i < - C“gk" > (40)

with ¢ = 1 — (1/46).

Proof. Assumption 1 guarantees (38) for search directions
(16) in the proposed MSMDL method. The inequality (40)
will be confirmed by the induction. For k = 0, it follows that
gOTdO = —IIgOII2 < - cllgollz. So, (40) is fulfilled for k = 0. We
assume that (52) is satisfied for k. Multiplying the identity
(16) in the case k+ 1 and corresponding to the MSMDL
method by g7, it can be derived

g£+ldk+1 == “gk+1 ”2 + ﬁkM+SlMDLg£+ldk

T T
2 [ Grn) SMDLYk+15k \ T
g+ (L2 - g s,
di Yk di Yk

T T
2 Gre) k1S
= gkl + g di - 123 gy dy
di vk A Vi
T 2
_ 2 9{+1)’k T 4 MSMDL“k(gkudk)
= —|gral” + HEEE g di -t —
di yx d i
(41)

Now, from the equality (41), it follows
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T tNiSMDL T+ d 2
9Z+1dk+1 == ||9k+1||2 +g§%1ykgf+1dk Bl al;(gk . k)
k Yk dy Vi
(42)
_lgeal ()" +(gay ) (i) (ghad) 8" aul(gkad) (dire)
(dlyk)z (dz)/kf
1 or
Use the inequality U= V20 (dk yk)gkﬂ’ ()
v (ll? +1P), (43) = ()
with We get
e |9 P (dbyi)” + 1/2(”1/\@(d£yk)gk+1 " ||@(gf+1dk)yk||2> Sy (ghad) (diye)
k+ 1=
o (d{3)’ (afn)’
- e (dre)” + 1/2<1/20(d£yk)2”gk+1“2 + 29(gf+1dk)zllykllz> Ml (g )
(d{yk)z diyk
__ ”gkﬂnz(dzyk)z + 1/49(d£yk)2”gk+1"2 * e(gzﬂdk)znyk”z 3 tMSMDL"‘k(gZHdk)2
(dzyk)Z k+1 di‘yk
(45)
1y 8aid) Il Dl e(gad)’
T
1 0(gr..d) |yl 2 T d)
-l + g 2 L Dl (o)
(de i) aediye Ay
1
=- ”9k+1||2 + E"gkﬂnz
1
= (1= 5)lgea
0<m<1<M. (46)

Because 8> (1/4), the inequality (40) is fulfilled for ¢ =
1 - (1/46) in (45), and arbitrary k> 0.

Global convergence of the MSMDL iterations is verified
in Theorem 1. Assumption 2 and the proofs of Lemma 3 can
be found in [36-38]. O

Assumption 2. The function f: R” — R is twice contin-
uously differentiable and uniformly convex on R".

If the conditions in Assumption 2 hold, then Assump-
tion 1 is satisfied.

Lemma 3 (see [36-38]). Under the conditions in Assumption
2, there exist real numbers m, M satisfying

It is such that f (x;) has a unique minimizer x* and

mlyl* <y'V? f (x)y < Mlyl®, Vx,. y € R,
(47)

*

P<f () - f(x7)

< Ml <, v €,

1
Em“xk - X (48)

m|x, - x"|| < || g < M|xx - x7|, Vi € R (49)



Theorem 1. Let restrictions in Assumption 1 hold. If f is
uniformly convex, then the series {x,} generated inside the
MSMDL iterations satisfies

llinligof“gk" =0. (50)

Proof. We suppose the opposite, i.e., that (50) is not true.
This initiates the existence of a positive constant (> 0 such
that for all k,

lgi] = C. (51)
Then, from (32) and (35), we obtain

el = =g + B e

<[lgel + |8 i

Journal of Mathematics

Further calculations and approximations on the basis of
(32) are given as follows:

Joeh(Lhseca |+l

Jac] < gl + 5 s
k-1)k-1
el 2+ hsical
R s
k-1k-1 (53)
el 2+ lsica
< "gk“ * 11"5 "2 "Sk*l"
k-1
L+ tiASMDL
(2

T T
= |lgil + %— NSMDLM I To complete the theorem, it is necessary to prove that
1kt 17kt tMSMDL i bounded. Two cases should be distinguished based
T T on the definition of tkMSMDL in (28). O
_ IkVi-1  MSMDL Yk Sk-1
o ¢ | IS N g
k=141 k-1 k-1%k-1V k-1 Case 1. If t]lz/ISMDL — 9||)’k—1||2/5£_1)’k—1’ one concludes
9iVk1  MSMDL Gk Skt " n2| 12 " s "2 o>
=gl + Sriftk S s | 'tMSMDL| _ gl | _ g2 MSeall _ 05 (54)
k-1Vk-1 Sk-1Vk-1 k T = 2
sevia| sl
< gl + <||5k|||lyk—l|| + |t£/ISMDL‘ o] “Sk—lu)usk |
< T T -
ke1Vk-1 Ske1Vk-1 Case 2. In the case MPL = 7, it follows
lael(Lyial + ™ sl
= gl + i sl
Sk-1Yk-1
(52)
-1
MSMDL l(Jk(VkMSM) - 1>||9k||25z_1)’k—1 + Gk Vi1 9k Sk
'tk ' - T 2
(gk 5k71)
MsM~ 1 2 2
3 ™)™ = 1lall Ll + laulllyicllgndlsal
= p p
lgel -1 (55)

(™) = 1lgel i [ + gl Ll
< 2 2
lgel i1

_ L':k(ykMSM)’l - 1| +L.

Based on Algorithm 1 and the initial value for o = 1, it
follows that «; € (0,1]. Now, the fact a; € (0,1] implies

1 <3, < (5/4) (Figure 1), which further in common with (55)
gives as follows:
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|t}12/ISMDL'<LlJ MSM) 1’+L
<L<Jk(y£ASM) 1) +L (56)
<12 30)")
Since y;, is an approximation of the Hessian V f (x;), the

inequality (47) implies m <y, <M. Now, from (56), we
conclude

[P < L<2 + i) (57)
4m
Based on the cases 1 and 2, it follows
2
[rase <max<lGL,L<2 +5>} =T. (58)
n 4m
Now, on the basis of (53) and (58), it follows
L+T +L+T
= {1+ = o -2 el )
Ul Ul
Squaring both sides in (59) implies
(17 + L +T)*
il <=—=——laul" (60)

Next, dividing both sides of inequalities (60) by || gk||4
and using (61), it can be concluded that

1>||gk||25121yk_1 + Gk Y195k

9
e’ _+L+T) 1 ||9k|| - C
-9 (61)
7 C P LTy
The inequalities in (61) imply
Hgk" -
= 00. 62
Zlaf” kzowmz * (©2

Therefore, ||g; |l = ( causes a contradiction with Lemma 1.

Theorem 2. Let the restrictions in Assumption 1 hold. If the
goal function f (x) is uniformly convex, then the series {x;}
generated within the BBIDL iterations satisfies (60).

Proof. Proof Theorem 2 is similar to proof Theorem 1. It
differs in the part where it is necessary to prove that t251PL js
bounded. In the sequel, we prove that t£5'PL is bounded
Two cases should be distinguished based on the definition of
tPBIDL in (30).

Case (i): Ifl‘EBIDL = (Gllyk,lllz/sz_lyk,l), based on (63),
we have

BBlDL| 971‘2 (63)

Case (ii): In the case £ = 7251 it follows

BB1\~!
BBIDL' _l<(Yk ) -

|t

(gzskq)z
J(me = 1[lgelLlisics I + lgilllyics Mgilllsical
lgell i (64)
<‘(V11<3B1 = 1flgd 2l I + gl 2lsi )
lgel i
= 1|(") -1+

Now, from (14) and (37), it follows y5' >0, i.e.,
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't£B1DL| SL’()}]}:BI)—I B 1' LI
L((yfm)fl + 1) +L

Sk Yk o
:L<—"Tl 1) +2L
Yi-1Vk-1

IN

2 (65)
= L7||Tyk_1|| +2L
Sk-1Yk-1
L]

sl

L2
SL(— + 2).
n

The penultimate inequality in (65) directly follows from
(32) and (35). Based on the cases (i) and (ii), it follows

L’ (L
|ee™™| Smax{%,L(—+ 2)} =T. (66)
"

The proof is completed.

<L

+ 2L

Journal of Mathematics

An additional limit-type convergence result is proved in
Theorem 3. Theorem 3 shows the linear convergence of the
MSMDL method under Assumption 2. In order to prove the
linear convergence of the MSMDL method, we present
Lemma 4 which gives a lower bound of the step length «.
The proof is similar as in the case of Lemma 4 in Danmalam
et al. in [39] or Lemma 4 in [40]. O

Lemma 4. We suppose that the conditions in Assumption 2
hold, and the sequence {x} be generated by the MSMDL
method with the backtracking line search. Then, there is
a constant A >0 such that

o >, Yk > 0. (67)

Proof. The backtracking line search condition gives as
follows:

(i + o) < f (i) + oo g e (68)
If o # 1, then p~'a; does not satisfy (68), that is,
f (e + P agdy) = £ (x1) > op” o gpedly (69)

The mean value theorem and (32) ensure the existence of
&, € [0,1], such that

f(xk + Pilakdk> —fla)=p I“k(g(xk * 5kP71“kdk))Tdk

=p lakgidk tp 1“k(g(xk + ka_lkadk) - gk)Tdk (70)

<p lakgzdk + Lp_zoc,i”dkHZ.

From (60), we obtain

2

lo” . n
> =1, 71
”dk"Z 2 (’1 +L+T)2 1 ( )

Now, the following inequalities hold on the basis of (69)
and (70):

op” gl < f(xk tp l‘xkdk) - f(x) <P mgdi + LP_Z‘X;zc”dk"Z
op agrdy - p apgidi < Lp g d|’
(0 - Dp 'agrdi <Lp 2o |di|’ (72)
(0= Dgidy<Lp |’

—(1- a)gzdk < Lpflockndk"z.

_p=a) gl _p1-o)

The inequalities (72), (40), and (71) give 5>
Lo e L

(1- cr)c”gk“2 <Lp ltxk”dk"2, (73)

A (74)

The last inequality gives the required inequality (67) by

which leads to setting A = (p(1 — 0)c/L)A,. The proof is completed. O
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Theorem 3. Let Assumption 2 hold and x* be the unique
minimizer of (1). Then, there are constants p>0 and
r € (0,1) such that the sequence {x,} generated by the
MSMDL method fulfills

[ = x*|| < pr'. (75)

Proof. From the backtracking line search (40), Lemma 2,
and Lemma 4, it follows

f () = () < f () = £ (x) + oagiedy
* 2
<flx) - f(x7) - U“kC"gkn (76)
* 2
<f (%) = £ (x") = oAl
Using the left inequality in (49) and afterwards the right
inequality in (48), the inequality in (76) is further ap-
proximated as follows:

fa) = F(x7) < f (x) = f () = ohem® | = x°

2

< f(x) - f(x") =200 T (f (1)
(=)

= (1 - 20Ac%2> (f (x) = f(x7)).
(77)

We consider the replacement r = 1 — 20Ac (m*/M) in the
inequality (77). Clearly, on the basis of 0<0<0.5, 1>0,
(m?/M)>0, and c=1- (1/40)>0, 0> (1/4), it follows
r < 1. On the other hand, 6 < 0.5, A< a; < 1, (m?/M) < 1, and
c<1limply r>1-Ac>0.

Furthermore, it follows

f @) = () <r(f () - f(x7)) < -
<™ (f (%) = £ (x7)).

Combining the left inequality of (48) with (78), we
obtain

(78)

=< (f () - £ (=)
(79)

2
<—
m

(f (xo) = f (x")r" < pr",

which shows that the inequality (75) holds for
p = (2/m)(f (xy) — f (x*)) > 0. The proof is completed. O

Remark 1. The result as in Theorem 3 can be directly applied
to the BBIDL method.

4. Numerical Experiments

In this section, we are going to prove the numerical efficiency
of the MSMDL and BB1DL methods. To this aim, we
perform two competitions on standard test functions with

11

given initial points from [41, 42]. The first competition is
between CG-DESCENT [24], M1 [27], DK [26], and
MSMDL methods, and the second one is between BB1DL,
MSMDL, and two recently developed DL CG methods with
global convergence property (EDL [28] and MDL [15]). We
compare all of these methods into three criteria:

(i) The CPU time in seconds, CPUts
(ii) The number of iterative steps, NI

(iii) The number of function evaluations, NFE

The methods which participate in the competition are
presented in Section 1 (Table 1). Test problems are
evaluated in ten dimensions (100, 500, 1000, 3000, 5000,
7000, 8000, 10000, 15000, and 20000). Codes imple-
menting the tested methods are evaluated in MATLAB
R2017a and on a LAP’s (Intel (R) Core (TM) i3-7020U, up
to 2.3 GHz, and 8 GB memory) with the Windows 10 Pro
operating system.

Algorithms MSMDL, BB1DL, CG-DESCENT, M1, DK,
EDL, and MDL were compared using the backtracking line
search with parameters ¢ = 0.0001, 3 = 0.8. Tested algo-
rithms are stopped after 50000 iterations or

lgl <& =107%

|f Goen) = F G _ e (80)
ETICh I

Specific parameters used only in the MDL and MSMDL
methods are defined as follows:

(i) In the MDL method, =026, C=1, and
r=ri=0lgil
(ii) In the MSMDL method, 6 = 0.26

The symbol “¢’ in the subsequent tables means that the
method failed to achieve the prescribed accuracy after 50000
iterations for one or more tested dimensions of the observed
test function.

Summary numerical results for the first competition
(between MSMDL, CG-DESCENT, M1, and DK methods)
are obtained by testing 34 test functions and presented in
Table 2. This table includes numerical results obtained by
monitoring the criteria NI, NFE, and CPUts in the MSMDL,
CG-DESCENT, M1, and DK methods.

The performance profiles proposed in [43] are applied to
compare obtained numerical data for criteria CPUts, NI, and
NEFE generated by the tested methods listed at the beginning
of the section. The left-hand side of each performance profile
in Figures 2-5 indicates the percentage of test problems in
which the considered method is the best among tested
methods, whereas the right-hand side gives the percentage of
the test problems that are successfully solved by each
method.

Benchmark comparison ranges the solvers included in
the set & on the set of test problems . The performance
profile ratio r, ; is defined for each problem p € & and each
solver s € &, and it is formulated as follows:
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Ficure 2: (a) NI and (b) NFE performance profiles for MSMDL, M1, CG-DESCENT, and DK.
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Figure 3: CPUts performance profiles for MSMDL, CG-DESCENT, M1, and DK.

_ Xps
- min{xp)sz p € Pands € cS’}’

Tos (81)

where x, . denotes the NI or NFE or CPUts needed to solve
the problem p by the solver s. Then, the performance profile
for a solver s in the log 2-scale is defined by the following:

1
p. (1) = n—size{p € P logyr, < T}. (82)
P

Solvers with a greater probability p,(7) are more de-
sirable. If the solver s, achieves better results compared to
the solver s,, then the curve p; (7) of the performance profile
generated by the solver s, is located above the corresponding

curve p, (1) of the performance profile generated by the
solver s,.

In Figure 2, we compare the performance profiles NI and
NFE for CG-DESCENT, MSMDL, M1, and DK methods
based on the numerical values covered in Table 2. A careful
analysis reveals that the MSMDL method solves 64.71% of
the test problems with the least NI compared to the CG-
DESCENT (8.82%), M1 (5.88%), and DK (32.35%). From
Figure 2(a), it is perceptible that the MSMDL graphs attain
the top level first, which indicates that MSMDL outperforms
other considered methods with respect to the criterion NI.
Figure 2(b) shows that the MSMDL method is more efficient
than the CG-DESCENT, MSMDL, M1, and DK methods,
with respect to NFE, since it solves 67.65% of the test
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FiGure 4: (a) NI and (b) NFE performance profiles for EDL, MDL, MSMDL, and BB1DL.
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Figure 5: CPUts performance profiles for EDL, MDL, MSMDL, and BBIDL.

problems with the least NFE compared to the CG-
DESCENT (8.82%), M1 (5.88%), and DK (29.41%). From
Figure 2 (bottom), it is notified that the MSMDL graph first
reaches the top, so MSMDL is the winner relative to other
considered methods.

Figure 3 shows the performance profile of the CG-
DESCENT, MSMDL, M1, and DK methods based on the
CPUts included in Table 2. The MSMDL method solves
58.82% of the test problems with the least CPUts compared
to CG-DESCENT (5.88%), M1 (2.94%), and DK (23.53%).
According to Figure 3, the MSMDL graph comes first to the
top, which verifies its dominance in terms of CPUts.

The MSMDL method did not successfully solve
4(11.76%) of all the test functions in Table 2, while each of
the CG-DESCENT, M1, and DK methods did not

successfully solve 5(14.71%) of the test functions. A detailed
summary of the results for each method is arranged in
Table 3.

With the total of 330 solved test problems, MSMDL is
able to solve the largest number of test problems (97.06% of
all tested problems), while M1 and CG-DESCENT solved
only 92.35% of all tested problems.

Based on the data involved in Tables 2 and 3 and graphs
involved in Figures 2 and 3, it is noticed that the MSMDL
method achieves the best results compared to CG-DE-
SCENT, M1, and DK methods with respect to three basic
criteria: NI, NFE, and CPUts.

In addition to standard analysis of numerical results, we
performed additional analysis for the MSMDL method. The
goal of additional tests is to monitor the usage of the
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TABLE 3: Statistics of not successfully solved test functions by each method.

Method Test functions Y, = 34 Percentage (%) Test problems Y = 340 Percentage (%)
CG-DESCENT 5 14.71 26 7.65
MSMDL 4 11.76 10 2.94
M1 5 14.71 26 7.65
DK 5 14.71 22 6.47

imposed value y, =1 in iterations for each of the tested
functions. We also count the assignments t}MPL = 7, in
(28) for each individual function. The third analysed pa-
rameter is the maximum value for ( gde/ IngIIZ) obtained
during testing. The test results are given in Table 4.

The total number of assigned values y, = 1 (respectively.
MSMDL = 7} from Table 4 will be denoted by A1 (re-

A ). Furthermore, the
k=" k

max{(gzdk/llgkllz)} will be monitored. The total sum of
individual values NI, «, _;, and «,_, across the tested
functions will be denoted by » NI, } <, _;, and ¥ %, .,
respectively. The total sum of all iterative steps across all test
functions is equal to Y NI = 240235, which further implies
Y 4y 1 = 117966 = 0.491044 Y NI and ¥ <, _, = 118352 =
0.492651 ) NI. In this way, the behavior } «,_, =

Y A=z, = 0.5 NI is observable.

In the subsequent numerical experiments, we compare
the MSMDL and BB1DL methods versus EDL and MDL
methods.

The performance comparisons of the MSMDL and
BB1DL solvers against the EDL and MDL methods are
shown in Figures 4 and 5. Figure 4(a) compares considered
solvers with respect to the profile NI, Figure 4(b) in terms of
the NFE. Graphs of CPUts performance profiles for EDL,
MDL, MSMDL, and BB1DL are arranged in Figure 5.

Figure 4(b) shows that the MSMDL and BB1DL methods
achieved more efficient results than EDL and MDL methods
in terms of NFE, which is confirmed by upper positions of
the graphs of their performance profiles. Figure 4(a) shows
that the MSMDL and BBIDL methods achieved slightly
superior results compared to the EDL and MDL methods in
terms of NI, which is confirmed by the dominant graphs of
their performance profiles.

Summary numerical results for the second competition
(between EDL, MDL, MSMDL, and BB1DL) are obtained by
testing 25 test functions and arranged in Table 5. This table
shows numerical data obtained by monitoring the criteria
NI, NFE, and CPUts for the EDL, MDL, MSMDL, and
BB1DL methods.

Numerical results in Table 5 show that the MSMDL
method solves about 36%, while the BBIDL method

spectively. values p=

successfully solves 32% of the test problems with the least
values of NI and NFE.

Profile performances based on CPUts of the MSMDL
and BB1DL in Figure 5 show better performances of these
solvers compared to the profile performances of the EDL and
MDL solvers. In numerical results in Table 5, we found that
the MSMDL method solves about 28%, while the BBIDL
method successfully solves 36% of the test problems with the
minimal CPUts.

We observe that the EDL and MDL methods, which are
currently among the best DL conjugate gradient methods
proposed in the literature, give worse numerical results than
the MSMDL and BB1DL methods in terms of the NI, NFE,
and CPUts.

5. Application in 2D Robotic Motion Control

Problems arising from the concept of robot system have
attracted the attention of researchers and subsequently,
some algorithms for handling them have been developed
[6, 44]. For instance, Zhang et al. [45] discussed the fun-
damentals of n-link robots known as a 1-link robot system.
Qiang et al. [46] pointed out that the importance of taking
the characteristics of motor dynamics into account for the
accuracy and stability requirements of robot movements to
be achieved. More so, among the criteria that the motor
dynamics need to satisfy is for the actual output of the system
to track the desired output within an acceptable minimal
error [47]. Motivated by the work of Zhang et al. [11], Sun
et al. [7] applied an algorithm for solving real-valued un-
constrained optimization to solve 2D robotic motion
control.

We consider a motion control problem involving a two-
joint planar robotic manipulator as described in [11]. Let
{, € R* and ¢, € R* denote the joint angle vector and end
effector position vector, respectively. A discrete time kine-
matics equation of a two-joint planar robot manipulator at
a position level is governed by the following model:

h(Ck) = ¢ (83)

The vector-valued function h(-) is referred to the ki-
nematics mapping which has the following structure:

h(Q) =[€,cos(¢)) +€,cos(¢; +y), 8, sin (L)) + €, sin(; + (2)]T, (84)

where the parameters ¢, and ¢, represent the lengths of the
first and second rod, respectively. Now, with regards to

robotic motion control, the following unconstrained opti-
mization problem,
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TABLE 4: Summary test results for behavior of parameters in the MSMDL method.
Test NI Ape=1 — U
Extended penalty function 1575 758 757 —-0.2533
Raydan 1 function 30614 14981 14983 —-0.2565
Raydan 2 function 57 57 57 -1
Diagonal 1 function 21812 10876 10876 —-0.2608
Diagonal 3 function 34503 17203 17203 -0.2711
Hager function 1430 606 607 -0.2600
Generalized tridiagonal 1 function 1124 477 477 -0.2600
Extended tridiagonal 1 function 1053 463 444 —-0.2600
Extended TET function 1090 330 415 -0.2201
Diagonal 4 function 2058 925 925 —-0.2557
Diagonal 5 function 40 40 34 -1
Extended Himmelblau function 1220 555 555 —-0.2619
Extended quadratic penalty QP1 function 894 378 383 —0.2465
Extended quadratic exponential EP1 function 499 247 247 —-0.26
ARWHEAD function (CUTE) 18117 9074 9059 —-0.2494
ENGVALI function (CUTE) 1008 391 391 —-0.2600
Diagonal 6 function 57 57 57 -1
Generalized quartic function 832 246 351 —-0.2600
Diagonal 7 function 189 73 179 -0.26
Diagonal 8 function 270 109 263 -0.26
Full Hessian FH3 function 2249 1139 1143 —-0.26
Diagonal 9 function 66739 33345 33345 —-0.2617
Extended Rosenbrock 50 0 10 -0.26
Extended BDI function (block diagonal) 1175 411 437 —-0.2403
Extended Maratos function 9716 4760 4751 —-0.1634
NONDQUAR function (CUTE) 31 15 15 -0.2719
DQDRTIC function (CUTE) 7082 3452 3452 ~0.2600
Extended Freudenstein and Roth function 31821 15851 15851 —-0.2612
Extended Beale function 1880 758 698 -0.1753
EDENSCH function (CUTE) 1050 389 387 ~0.2600
TABLE 5: Summary test results of EDL, MDL, MSMDL, and BB1DL methods for NI, NFE, and CPUts.
Test function EDL MDL MSMDL BB1DL
NI/NFE/CPUts NI/NFE/CPUts NI/NFE/CPUts NI/NFE/CPUts
Extended penalty function 2304/82602/32.719  1866/55194/20.516 1575/49766/18.766 1862/55274/19.813
Raydan 2 function e 325/660/1.078 57/124/0.313 76/162/0.422
Hager function 1940/33206/85.703  1274/20621/45.203 1430/22994/52.063 1218/19995/43.641
Generalized tridiagonal 1 function 2161/33285/37.266  1250/18463/22.453 1124/17065/19.25 1329/19648/22.969
Extended tridiagonal 1 function 308/4129/11.063 5590/11602/32.516 1053/3292/12.797 452/1407/5.109
Diagonal 5 function e 290/590/1.813 40/90/0.438 50/110/0.453
Extended Himmelblau function 50/2413/0.859 1344/21510/5.297 1220/21461/4.578 1350/21921/4.719
Extended quadratic penalty QP1 function 1157/18043/7.359 845/10736/5.125 894/13296/5.406 865/11335/4.766
Extended quadratic exponential EP1 function 21431/43829/6.25 481/10518/4.391 499/12243/4.938 481/10518/3.797
ENGVALI function (CUTE) 1975/27260/10.063 1167/16242/7.891 1008/13576/6.484 1160/16202/7.359
Diagonal 6 function A 343/757/1.109 57/124/0.281 76/190/0.344
DIXON3DQ function (CUTE) Ak A e A
BIGGSBL function (CUTE) arA I I AN
Generalized quartic function 959/10662/2.344 1459/10061/3.656 832/6769/2.984 1361/7935/3.266
Diagonal 7 function e 110/457/0.75 189/1750/2.594 105/1128/1.453
Diagonal 8 function WAV 125/1338/1.781 270/2318/2.844 71/254/0.438
Full Hessian FH3 function WAk 1330/41888/20.891 2249/73823/25.156 1795/54550/20.578
Extended Rosenbrock 60/130/0.406 50/110/0.375 50/110/0.328 50/110/0.313
Extended BD1 function (block diagonal) 1200/12605/4.938 1160/8976/4.813 1175/10059/5.188 1030/7974/4.188
Extended cliff function 950/13187/4.891  46500/530421/273.781 4773/36089/21.719 1208/23850/12.703
NONDQUAR function (CUTE) 86/4989/15.781 45/2732/9.156 31/2721/10.156 24/2332/9.109
DQDRTIC function (CUTE) 3637/92315/28.766  2460/58286/19.141 7082/170118/49.594  2430/57850/19.938
Extended Freudenstein and Roth function 2018/66654/13.516  3524/113935/21.531  31821/1040192/213.016 2186/69397/14.531
Extended Beale function 181/4748/5.469 1593/19562/52.656 1880/24895/65.016 1300/17186/45.172
EDENSCH function (CUTE) 1684/22731/96.219  1300/16218/66.328 1050/13383/55.078 1132/14810/63.563
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FIGURE 6: Numerical results generated by the MSMDL method for ¢, = ¢;,: (a) synthesized robot trajectories, (b) end effector trajectory and
desired path, (c) tracking residual error on the x-axis, and (d) tracking residual error on the y-axis.
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FIGURE 7: Numerical results generated by the MSMDL method for ¢, = @,;: (a) synthesized robot trajectories, (b) end effector trajectory and
desired path, (c) tracking residual error on the x-axis, and (d) tracking residual error on the y-axis.

TABLE 6: Abbreviations for the methods.

Abbreviations Full name
CG-DESCENT CG-DESCENT
MSMDL MSMDL
M1 M1
DK Dai and Kou
BB1DL BB1DL
EDL Effective Dai-Liao
MDL MDL
. 1 A
mln%eRzE O — Pkl (85)

is solved at each instantaneous time ¢, within the interval
[0, t.nq] With £, 4 being the task duration. The end effector ¢,
is usually controlled to track a Lissajous curve denoted by ¢.
We note that by taking f(x)= (1/2)l¢s - (pkllz, then
problem (85) has the form of problem (1), and therefore, the
proposed MSMDL method can be used to solve it.

In this experiment, unlike the Lissajous curve used in
[7, 48, 49], we require the end effector ¢, to track the fol-
lowing two Lissajous curves,

T
~ 3.1, V3 o1, /A
q)lk:[5+gsm(tk),7+gsm<3tk+5>] ,

3.1 V31 '
P = [2 + gs1n(3tk),7 +gsin (Ztk)] .

The implementation of the proposed MSMDL with
regard to the motion control experiment was coded in
MATLAB R2019b and run on a PC with an Intel Core (TM)
i5-8250u processor with 4 GB of RAM and CPU 1.60 GHZ.
In this experiment, the lengths of the first and second rods
are taken as ¢, =¢, =1, where the initial point is
(= [ &1 = [0, (7/3)]" with the task duration [0,t,,4]

divided into 200 equal parts, where t, 4 = 10 seconds. The
results experimental with ¢, = ¢y, are presented in Figure 6,
while that of ¢, = ¢, are given in Figure 7. Figures 6(a) and
7(a) depict the robot trajectories synthesized by the MSMDL
for ¢, and @,,, respectively. On the other hand, Figures 6(b)
and 7(b), respectively, plot the end effector trajectory and
desired path for ¢;; and @5;.

The errors recorded by MSMDL during the course of the
experiment with respect to the horizontal axis are reported
in Figures 6(c) and 7(c) for ¢;; and ¢,;, respectively, while
those of the vertical axis are equally presented in Figures 6(d)
and 7(d) for ¢;; and ¢,, respectively.

Figures 6(a), 6(b), 7(a), and 7(b) confirm that the
MSMDL method successfully and efficiently executed the
task given to it with acceptable error. In addition,
Figures 6(c), 6(d), 7(c), and 7(d) show that the proposed
MSMDL method not only solves test problems but com-
pletes them with acceptable error. This further demonstrates
the efficiency and applicability of the MSMDL method.

6. Conclusion

The main result obtained in this study is the verification and
investigation of the correlation between QN and CG ap-
proaches. More specifically, it has been shown that QN and
CG are not independent approaches, and QN iterates can be
used to improve CG-type iterations.

Defining the best CG direction and also finding an
optimal parameter for the DL CG class are open problems
[14]. The parameters t}MPL of the MSMDL method and
tpBIPL of the BB1DL method are defined and selected using
the unification of the MSM and the BB1 method and the CG
DL class, respectively. Based on the presented numerical
results in Tables 2 and 5 and Figures 2-5, we can conclude
that the proposed MSMDL and BB1DL methods achieve
superior numerical results with respect to all the three
criteria (NI, NFE, and CPUts) versus opposing methods.
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A modified Dai-Liao CG method termed the MSMDL
method, intended for solving unconstrained optimization
problems, is proposed and examined both theoretically and
numerically. The modification is based on an appropriately
scaled CG parameter £}">MPL by means of the approximation
of the Hessian matrix via the diagonal matrix y,I in the
MSM method. Our leading principle is to find the DL pa-
rameter ¢ in (17) as a solution to the equation which appears
after the unification of descent directions in the MSM
method (11) and in the DL iterations (17). In this way, the
expression 1 + oy — o and the acceleration parameter yy™
from the MSM method will appear in the expression which
determines #}MPL. The new parameter contains not only
the gradient information but also some Hessian matrix
information. The general perception is that the proposed
iterations are defined as a hybridization of MSM and DL-
type CG methods. Under some standard assumptions, the
global convergence property of the MSMDL method is
established. Numerical comparisons on a large class of well-
known test problems, especially for solving high-
dimensional problems, indicate that the MSMDL method
is quite effective. The application of the MSMDL method on
solving problems arising from 2D robotic motion control
further confirms its efficiency as well as applicability.

The proposed unification of the search directions d;. of
two methods of the general pattern (2) belonging to different
classes is a continuation of a new branch of research in
nonlinear optimization, which could be termed as unifica-
tion. This research investigates the unification of MSM and
BB methods with the DL CG solver to determine the pa-
rameter t. Further research may include the unification of
search directions between different quasi-Newton methods
and various CG methods. The method proposed in this
paper is useful as a general principle for hybridizing any two
methods from the conjugate gradient group or from the
quasi-Newton methods group.

Appendix

Table 6 shows the abbreviations and full names of the
methods. For most methods, the abbreviation and the full
name of the method are identical.
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