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We introduce and investigate proper accelerations of the Dai–Liao (DL) conjugate gradient (CG) family of iterations for solving
large-scale unconstrained optimization problems. Te improvements are based on appropriate modifcations of the CG update
parameter in DL conjugate gradient methods. Te leading idea is to combine search directions in accelerated gradient descent
methods, defned based on the Hessian approximation by an appropriate diagonal matrix in quasi-Newton methods, with search
directions in DL-type CGmethods.Te global convergence of the modifed Dai–Liao conjugate gradient method has been proved
on the set of uniformly convex functions. Te efciency and robustness of the newly presented methods are confrmed in
comparison with similar methods, analyzing numerical results concerning the CPU time, a number of function evaluations, and
the number of iterative steps. Te proposed method is successfully applied to deal with an optimization problem arising in 2D
robotic motion control.

1. Introduction andOverviewofRelatedResults

Our research area is the large-scale multivariable un-
constrained optimization problem.

minf(x), x ∈ Rn
, (1)

in which the function f: Rn⟶ R is uniformly convex and
twice continuously diferentiable. Quasi-Newton (QN)
methods and conjugate gradient (CG) methods are the two
most popular approaches in solving nonlinear optimization
problems.

Various and numerous modifcations of Dai–Liao (DL)
conjugate gradient (CG) methods [1] with acceleration
parameters arise from the natural demand for solving large-
scale problems (1). Te motivation of this research is based
on the wide applications of unconstrained optimization
problems and the efciency of conjugate gradient methods
for solving them [2–11]. Te main result obtained in this
study is the verifcation and investigation of the correlation
between QN and CG approaches. More specifcally, in this
research, we study the possibilities of applying QN methods
in improving CG-type algorithms [12–16].
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Te generic iterative scheme that aimed to solve (1) is as
follows:

xk+1 � xk + αkdk, (2)

where xk is the previous iterative point, xk+1 is a new it-
erative point, gk � ∇f(xk) is the gradient vector in xk, dk is
a search direction defned upon the descent condition
gT

k dk < 0, and αk > 0 is a step length. Te basic descent di-
rection is the direction opposite to the gradient dk � − gk,
which leads to the template of gradient descent (GD) iter-
ations [17, 18].

xk+1 � xk − αkgk, (3)

in which αk is defned by the backtracking line search.
Algorithm 1 from [19] is selected as a framework for

implementing the inexact line search which determines the
step length αk.

Te starting point of our investigation is iterations of the
Newton method with line search.

xk+1 � xk − αkG
− 1
k gk, (4)

where G− 1
k is the inverse of the Hessian Gk � ▽2f(xk). Te

quasi-Newton type iterations

xk+1 � xk − αkB
− 1
k gk, (5)

are based on the assumption that Bk (resp., Hk) is an ap-
propriate symmetric positive defnite estimation ofGk (resp.,
G− 1

k ) [18]. Te update from Bk to Bk+1 is specifed on the
quasi-Newton property (secant equation)

Bk+1sk � yk, where sk � xk+1 − xk, yk � gk+1 − gk. (6)

Te quasi-Newton methods based on matrix approxi-
mations of Bk show some shortcomings in solving large-
scale problems due to the requirement to compute and store
matrices during iterations. Because of that, we choose the
simplest scalar approximation of Gk according to the clas-
sifcation presented in [20]. Terefore,

Bk � ckI, ck > 0. (7)

Tis defnes the simplest and numerically efcient ap-
proximation of Gk by the identity matrix I and approximate
scalar ck > 0. Such reduction results in the iterative fow as
follows:

xk+1 � xk − αkc
− 1
k gk. (8)

One efcient defnition of ck was proposed in [19] based
on the Taylor expansion of the objective function f,
resulting in

c
SM
k+1 � 2c

SM
k

c
SM
k f xk+1( 􏼁 − f xk( 􏼁􏼂 􏼃 + αk gk

����
����
2

α2k gk

����
����
2 . (9)

Initiated SM iterations of the form (8) and (9)

xk+1 � xk − αk c
SM
k􏼐 􏼑

− 1
gk, (10)

were defned in [19].
Furthermore, the next modifed SM (MSM) scheme was

proposed in [21], using the output αk of the backtracking
Algorithm 1 and the gain parameter ℷk :� 1 + αk − α2k > 1 in
the form of iterates.

xk+1 � xk − αkℷk c
MSM
k􏼐 􏼑

− 1
gk, (11)

where cMSM
k was defned in [21] by the rule

c
MSM
k+1 � 2c

MSM
k

c
MSM
k f xk+1( 􏼁 − f xk( 􏼁􏼂 􏼃 + αkℷk gk

����
����
2

αkℷk( 􏼁
2

gk

����
����
2 .

(12)

Since αk ∈ (0, 1], the main idea used in the MSM iterates
is to accelerate the SM iterations by the parameter ℷk :�

1 + αk − α2k ≥ 1. More details about accelerated gradient
methods can be found in [19, 22, 23]. Since ℷk′(αk) � 0 for
αk � (1/2) and ℷk(0) � ℷk(1) � 1, mathematical analysis of
the function ℷk(αk) in the interval αk ∈ (0, 1] reveals
maxℷk(αk) � ℷk(1/2) � (5/4) and 1≤ ℷk ≤ (5/4). Figure 1
presents the graph of ℷk(αk) for αk ∈ (0, 1].

We observe that the choice αk :� 1 reduces iterations (8)
to a kind of the GD iterative rule.

xk+1 � xk − c
− 1
k gk, (13)

in which ck can be determined in various approaches.
Barzilai and Borwein in [29] suggested two mutually dual
variations of the GD method, known as BB iterations, de-
fned by the step length cBB

k : � c− 1
k in (13) equal to

c
BB1
k �

s
T
k− 1yk− 1

y
T
k− 1yk− 1

, (14)

c
BB2
k �

s
T
k− 1sk− 1

s
T
k− 1yk− 1

. (15)

Suitable adaptive strategies for choosing among the frst
and the second BB step length enhance greatly the perfor-
mance of the BB method [30]. Te BB method has been
improved in numerous articles, such as [31, 32].

In this research, the acceleration parameters ℷk and
cMSM

k , used in the iterative process (11), will be exploited
to improve the efciency of the DL conjugate gradient
method which is based on the rule (2) with the search
direction

dk �
− g0, k � 0,

− gk + βDLk dk− 1, k≥ 1.
􏼨 (16)

Determined by the real parameter
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βDL
k �

g
T
k yk− 1

d
T
k− 1yk− 1

− t
g

T
k sk− 1

d
T
k− 1yk− 1

, t> 0. (17)

Te parameter βDLk is known as the CG update pa-
rameter. Table 6 in appendix shows the abbreviations and
full names of the methods considered in this paper.

Te conjugation condition

d
T
k yk− 1 � − tg

T
k sk− 1, t> 0, (18)

was introduced in [1] by Dai and Liao. Te condition (18)
has been an inspiration for many researchers, of which the
most important are Hager and Zhang [24, 25], Dai and Kou
[26], Babaie–Kafaki and Ghanbari [27], Ivanov et al. [28],
Lotf and Hosseini [15], and Zheng and Zheng [33] to create
new DL-type CG methods.

Some of the most signifcant rules to determine t are
collected in Table 1. Te diversity in defnitions of the DL
parameter t is confrmed in Table 1. Te parameter t in the
MDLmethod proposed in [15] is based on the improvement
of the Dai–Liao CG class by a modifed BFGS method.

But not all possibilities are exhausted. Since the line
search used in this research gives the output αk ∈ (0, 1), it
follows ℷk > 1 and consequently ℷk in commonwith cMSM

k are
useful in the proposal of a novel rule which determines the
CG parameter t. Our main idea is to fnd the DL parameter t

in (17) after the unifcation of descent directions in the MSM
method (11) and in the DL iterations (17). In the present
manuscript, we use an original approach which is developed
on the unifcation of two search directions included in the

MSM method or in the BB method (which belongs to the
class of quasi-Newton methods) and the DL method (from
the CG class). Te unifcation of the MSM and DL methods
leads to an equation with respect to the unknown parameter
t whose solution gives a new DL parameter and corre-
sponding DL-type method of the CG class, termed as the
MSMDL method. On the other hand, the hybridization of
the BB1 method with the DL class leads to the BB1DL
method.

Main contributions achieved in this article are high-
lighted as follows:

(1) A novel approach to fnding the DL parameter t is
proposed, based on the equalization of search di-
rections included in a diagonal matrix approxima-
tion of quasi-Newton methods with the search
direction from the CG class;

(2) Convergence analysis of the proposed MSMDL
method is conducted under standard assumptions;

(3) Numerical examples on standard test examples are
presented with the aim to show the efectiveness of
the proposed MSMDL and BB1DL methods.

Te global contents of the remaining sections are as
follows: in Section 2, we present an algorithm for the
MSMDL method for solving unconstrained optimization
problems with a new CG parameter tMSMDL

k which contains
an acceleration parameter from the MSM quasi-Newton
method. Section 3 explores the convergence properties of
the presented MSMDL method. Some numerical results are

Require: Objective f(x), the search direction dk at the point xk, and real numbers β ∈ (0, 1) and 0< σ < 0.5.
(1) Initialize α: � 1.
(2) While f(xk + αdk)>f(xk) + σαgT

k dk, update α: � αβ.
(3) Return αk � α.

ALGORITHM 1: Te backtracking line search.

1

1.05
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1.25
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2

Figure 1: Te graph of the function ℷ(αk) � 1 + αk − α2k for αk ∈ (0, 1].
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proposed and discussed in Section 4 as well as a comparison
of the suggested methods against some similar existing
methods. Te application of the suggested MSMDL method
on 2D robotic motion control is discussed in Section 5. Some
fnal conclusions and discussion are stated in Section 6.

2. New Dai–Liao CG Method with the
Acceleration Parameter

Te frst basis of the proposed iterations is the MSM scheme
(11) for solving unconstrained optimization (1). In order to
fulfll the Second-Order Necessary Condition and Second-
Order Sufcient Condition, inappropriate values cMSM

k+1 ≤ 0
which appear in (12) will be replaced by cMSM

k+1 � 1. To avoid
such situations, in accordance with [19, 21], the following
acceleration parameter will be used:

c
MSM
k+1 �

c
MSM
k+1 , c

MSM
k+1 > 0,

1, c
MSM
k+1 ≤ 0.

⎧⎨

⎩ (19)

Te resulting iterations are termed as MSM iterative
scheme and defned by

xk+1 � xk − αkℷk c
MSM
k􏼐 􏼑

− 1
gk

� xk + αkd
MSM
k .

(20)

Terefore, the search direction underlying in the MSM
method is determined by the vector

d
MSM
k � − ℷk c

MSM
k􏼐 􏼑

− 1
gk, (21)

where the parameter cMSM
k is defned in (12) using the Taylor

expansion as in [21].
On the other hand, the CG update parameter t from (17)

can be determined by putting (17) into (16), which leads to

d
DL
k ≔ − gk + βDL

k dk− 1

� − gk +
g

T
k yk− 1

d
T
k− 1yk− 1

− t
g

T
k sk− 1

d
T
k− 1yk− 1

􏼠 􏼡dk− 1.

(22)

After equalization of dMSM
k : � − ℷk(cMSM

k )− 1gk from (21)
with dDL

k from (22), the following equation with respect to
the unknown t is obtained:

− ℷk c
MSM
k􏼐 􏼑

− 1
gk � − gk +

g
T
k yk− 1

d
T
k− 1yk− 1

dk− 1 − t
g

T
k sk− 1

d
T
k− 1yk− 1

dk− 1.

(23)

Our idea is to fnd the Dai–Liao parameter t as a solution
to equation (23). Application of the scalar product by gT

k on
the left- and right-hand side in the equation (23) gives the
following equation with respect to t:

− ℷk c
MSM
k􏼐 􏼑

− 1
g

T
k gk � − g

T
k gk +

g
T
k yk− 1

d
T
k− 1yk− 1

g
T
k dk− 1

− t
g

T
k sk− 1

d
T
k− 1yk− 1

g
T
k dk− 1.

(24)

Tus, on the basis of (24), it further follows

t
g

T
k sk− 1

d
T
k− 1yk− 1

g
T
k dk− 1 � − gk

����
����
2

+ ℷk c
MSM
k􏼐 􏼑

− 1
gk

����
����
2

+
g

T
k yk− 1

d
T
k− 1yk− 1

g
T
k dk− 1

� ℷk c
MSM
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2

+
g

T
k yk− 1

d
T
k− 1yk− 1

g
T
k dk− 1.

(25)

Table 1: Some of the most signifcant rules to determine t.

Parameters tk Methods Reference

tk � 2(‖yk− 1‖
2/yT

k− 1sk− 1) CG-DESCENT [24, 25]

tk � τk + (‖yk− 1‖
2/yT

k− 1sk− 1) − (yT
k− 1sk− 1/‖sk− 1‖

2) DK [26]

tk � (sTk− 1yk− 1/‖sk− 1‖
2) + (‖yk− 1‖/‖sk− 1‖) M1 [27]

tk � max t∗k , θ(‖yk− 1‖
2/sT

k− 1yk− 1)􏽮 􏽯

MDL [15]

t∗k � ((1 − hk

����gk− 1‖
r )sT

k− 1gk + (gT
k yk− 1/yT

k− 1sk− 1)hk‖gk− 1‖
r‖sk− 1‖

2/gT
k sk− 1 +

(gT
k sk− 1/sTk− 1yk− 1)hk‖gk− 1‖

r‖sk− 1‖
2)

hk � C + max − (sT
k− 1yk− 1/‖sk− 1‖

2), 0􏽮 􏽯‖gk− 1‖
− r

θ> 1/4, C> 0, r> 0

tk � (‖gk‖2/max 1, dT
k− 1gk􏼈 􏼉 + (max 0, dT

k− 1gk/‖gk‖2􏽮 􏽯 + 1)‖gk‖2) EDL [28]
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Now, the parameter t is expressed from the equation (25)
as follows:

t �
ℷk c

MSM
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2

+ g
T
k yk− 1/d

T
k− 1yk− 1􏼐 􏼑g

T
k dk− 1

g
T
k sk− 1/d

T
k− 1yk− 1􏼐 􏼑g

T
k dk− 1

. (26)

Since sk− 1 � xk − xk− 1 � xk− 1 + αk− 1dk− 1 − xk− 1 � αk− 1
dk− 1 and αk− 1 > 0, after the substitution of dk− 1 � (sk− 1/αk− 1)

in (26), the following solution is obtained after some
simplifcations:

t �
ℷk c

MSM
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2

+ g
T
k yk− 1/ 1/αk− 1( 􏼁s

T
k− 1yk− 1􏼐 􏼑g

T
k 1/αk− 1( 􏼁sk− 1

g
T
k sk− 1/ 1/αk− 1( 􏼁s

T
k− 1yk− 1􏼐 􏼑g

T
k 1/αk− 1( 􏼁sk− 1

�
ℷk c

MSM
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2

+ g
T
k yk− 1/s

T
k− 1yk− 1􏼐 􏼑g

T
k sk− 1

g
T
k sk− 1􏼐 􏼑

2
/sT

k− 1yk− 1􏼒 􏼓

�
ℷk c

MSM
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2
s

T
k− 1yk− 1 + g

T
k yk− 1g

T
k sk− 1

g
T
k sk− 1􏼐 􏼑

2

� τMSM
k .

(27)

It is known that the DL parameter is calculated to
generate the direction of maximum enhancement, utilizing
the search direction matrix to be orthogonal to the gradient
vector [34]. To make sure that the new DL method satisfes
the descent condition, the defnition of t in (27) is altered
using concepts from [15, 34] in the fnal form:

t
MSMDL
k � max τMSM

k , θ
yk− 1

����
����
2

s
T
k− 1yk− 1

⎧⎨

⎩

⎫⎬

⎭, θ>
1
4
. (28)

Considering t :� tMSMDL
k in (17), the following im-

provement of the Dai–Liao CG parameter βDL
k is proposed:

βMSMDL
k �

g
T
k yk− 1

d
T
k− 1yk− 1

− t
MSMDL
k

g
T
k sk− 1

d
T
k− 1yk− 1

. (29)

TeMSMDL method is based on (2), (6), (28), and (29).
Te algorithmic procedure of the MSMDL method is
established in Algorithm 2.

Te previous strategy for combining MSM and DL
approaches can be applied to any quasi-Newton direction. If
we replace cMSM

k+1 by cBB1
k from (14), we get a new BB1DL

method. An analogous calculation gives

t �
c
BB1
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2
s

T
k− 1yk− 1 + g

T
k yk− 1g

T
k sk− 1

g
T
k sk− 1􏼐 􏼑

2

� τBB1k ,

t
BB1DL
k � max τBB1k , θ

yk− 1
����

����
2

s
T
k− 1yk− 1

⎧⎨

⎩

⎫⎬

⎭, θ>
1
4
.

(30)

Furthermore, the replacement t :� tBB1DLk in (17) initiates
the following improvement of the Dai–Liao CG parameter
βDLk :

βBB1DLk �
g

T
k yk− 1

d
T
k− 1yk− 1

− t
BB1DL
k

g
T
k sk− 1

d
T
k− 1yk− 1

. (31)

If we apply the mentioned changes, we arrive at another
variant of Algorithm 2, where the following steps are used
instead of steps 6, 7, 8, and 9 in the MSMDL method:

Step 6∗: We compute cBB1
k+1 using (14).

Step 7∗: We compute tBB1DLk+1 using (30).
Step 8∗: We compute βBB1DLk+1 using (31).
Step 9∗: We compute dk+1 � − gk+1 + βBB1DLk+1 dk.

Te variant of Algorithm 2 based on steps 1–5, 6∗, 7∗, 8∗,
9∗, 10, and 11: will be called the BB1DL method. More
precisely, the BB1DL method is based on (2), (16), (30),
and (31).

Te numerical results in Section 4 show the efectiveness
of the BB1DL method.

Based on all the previous discussion, we can conclude
that the general framework presented in Algorithm 2 is
applicable to other quasi-Newton methods.

3. Convergence Analysis

Te global convergence of the proposed variant of CG
methods is derived upon the standard assumptions.

Assumption 1

(1) Te level setM � x ∈ Rn|f(x) ≤f(x0)􏼈 􏼉, defned by
the initial guess x0 and (2), is bounded.
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(2) Te objective f is continuous and diferentiable in
a neighborhood P of M with the Lipschitz con-
tinuous gradient g. As a consequence, there exists
a positive constant L> 0 such that

(∀u, v ∈ P) ‖g(u) − g(v)‖≤ L‖u − v‖. (32)

Assumption 1 ensures the existence of positive values D

and c which fulfll

(∀u, v ∈ P) ‖u − v‖≤D, (33)

(∀u, v ∈ P) ‖g(u)‖≤ c. (34)

Another main element in proving the convergence of
a CG method is the property

s
T
k− 1yk− 1 ≥ η sk− 1

����
����
2
, (35)

of uniformly convex functions, where η> 0. Te verifcation
of this property can be found in Teorem 1.3.16 of [18]. By
(32), it follows ‖yk− 1‖≤L‖sk− 1‖, which in conjunction with
(35) initiates

η sk− 1
����

����
2 ≤ s

T
k− 1yk− 1 ≤ L sk− 1

����
����
2
. (36)

Clearly, the inequality (36) implies η≤ L. Furthermore,
(36) initiates

s
T
k− 1yk− 1 � αk− 1d

T
k− 1yk− 1 > 0. (37)

Taking into account αk− 1 > 0 and (37), we conclude

d
T
k− 1yk− 1 > 0. (38)

Te statement of Lemma 1 will be useful in the verif-
cation of main statements. It can be verifed on the basis of
the results obtained in Lemma 2.2 in [50] and [35].

Lemma 1. Let the Assumption 1 be satisfed and the sequence
xk􏼈 􏼉 be generated by the MSMDL method (2), (16), and (29).
Ten, it holds

􏽘

∞

k�0

gk

����
����
4

dk

����
����
2 < +∞. (39)

Lemma 2. Let Assumption 1 hold, f be uniformly convex,
and the CG parameter (29) fulfls tMSMDL

k ≥ θ(‖yk− 1‖
2/

sT
k− 1yk− 1), for all k≥ 0 and for some constant θ> (1/4).

Ten, MSMDL satisfes the sufcient descent condition

g
T
k dk ≤ − c gk

����
����
2
, (40)

with c � 1 − (1/4θ).

Proof. Assumption 1 guarantees (38) for search directions
(16) in the proposed MSMDL method. Te inequality (40)
will be confrmed by the induction. For k � 0, it follows that
gT
0 d0 � − ‖g0‖

2 ≤ − c‖g0‖
2. So, (40) is fulflled for k � 0. We

assume that (52) is satisfed for k. Multiplying the identity
(16) in the case k + 1 and corresponding to the MSMDL
method by gT

k+1, it can be derived

g
T
k+1dk+1 � − gk+1

����
����
2

+ βMSMDL
k+1 g

T
k+1dk

� − gk+1
����

����
2

+
g

T
k+1yk

d
T
k yk

− t
MSMDL
k+1

g
T
k+1sk

d
T
k yk

􏼠 􏼡g
T
k+1dk

� − gk+1
����

����
2

+
g

T
k+1yk

d
T
k yk

g
T
k+1dk − t

MSMDL
k+1

g
T
k+1sk

d
T
k yk

g
T
k+1dk

� − gk+1
����

����
2

+
g

T
k+1yk

d
T
k yk

g
T
k+1dk − t

MSMDL
k+1

αk g
T
k+1dk􏼐 􏼑

2

d
T
k yk

.

(41)

Now, from the equality (41), it follows

Require: Goal function f(x), initial approximation x0 ∈ dom(f), and parameters 0< ε≪ 1, 0< δ≪ 1.
(1) We set k � 0, c0 � 1 and calculate f(x0), g0 � ∇f(x0), d0 � − g0.
(2) If test criteria ‖gk‖≤ ε and (|f(xk+1) − f(xk)|/1 + |f(xk)|)≤ δ are fulflled then go to step 11: and stop; else, go to the step 3.
(3) We compute αk customizing Algorithm 1.
(4) We compute xk+1 � xk + αkdk.
(5) We compute f(xk+1) and gk+1 � ∇f(xk+1).
(6) We compute cMSM

k+1 using (19).

(7) We compute tMSMDL
k+1 using (28).

(8) We compute βMSMDL
k+1 using (29).

(9) We compute dk+1 � − gk+1 + βMSMDL
k+1 dk.

(10) We set k: � k + 1 and go to step 2.
(11) We return xk+1 and f(xk+1).

ALGORITHM 2: MSMDL method.
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g
T
k+1dk+1 � − gk+1

����
����
2

+
g

T
k+1yk

d
T
k yk

g
T
k+1dk −

t
MSMDL
k+1 αk g

T
k+1dk􏼐 􏼑

2

d
T
k yk

�
− gk+1

����
����
2

d
T
k yk􏼐 􏼑

2
+ g

T
k+1yk􏼐 􏼑 d

T
k yk􏼐 􏼑 g

T
k+1dk􏼐 􏼑

d
T
k yk􏼐 􏼑

2 −
t
MSMDL
k+1 αk g

T
k+1dk􏼐 􏼑

2
d

T
k yk􏼐 􏼑

d
T
k yk􏼐 􏼑

2 .

(42)

Use the inequality

u
T
v≤

1
2

‖u‖
2

+‖v‖
2

􏼐 􏼑, (43)

with

u �
1
��
2θ

√ d
T
k yk􏼐 􏼑gk+1,

v �
��
2θ

√
g

T
k+1dk􏼐 􏼑yk.

(44)

We get

g
T
k+1dk+1 ≤

gk+1
����

����
2

d
T
k yk􏼐 􏼑

2
+ 1/2 1/

��
2θ

√
d
T
k yk􏼐 􏼑gk+1

�����

�����
2

+
��
2θ

√
g

T
k+1dk􏼐 􏼑yk

�����

�����
2

􏼒 􏼓

d
T
k yk􏼐 􏼑

2 −
t
MSMDL
k+1 αk g

T
k+1dk􏼐 􏼑

2
d

T
k yk􏼐 􏼑

d
T
k yk􏼐 􏼑

2

�
− gk+1

����
����
2

d
T
k yk􏼐 􏼑

2
+ 1/2 1/2θ d

T
k yk􏼐 􏼑

2
gk+1

����
����
2

+ 2θ g
T
k+1dk􏼐 􏼑

2
yk

����
����
2

􏼒 􏼓

d
T
k yk􏼐 􏼑

2 −
t
MSMDL
k+1 αk g

T
k+1dk􏼐 􏼑

2

d
T
k yk

�
− gk+1

����
����
2

d
T
k yk􏼐 􏼑

2
+ 1/4θ d

T
k yk􏼐 􏼑

2
gk+1

����
����
2

+ θ g
T
k+1dk􏼐 􏼑

2
yk

����
����
2

d
T
k yk􏼐 􏼑

2 − t
MSMDL
k+1

αk g
T
k+1dk􏼐 􏼑

2

d
T
k yk

≤ − gk+1
����

����
2

+
1
4θ

gk+1
����

����
2

+
θ g

T
k+1dk􏼐 􏼑

2
yk

����
����
2

d
T
k yk􏼐 􏼑

2 − θ
yk

����
����
2

s
T
k yk

αk g
T
k+1dk􏼐 􏼑

2

d
T
k yk

� − gk+1
����

����
2

+
1
4θ

gk+1
����

����
2

+
θ g

T
k+1dk􏼐 􏼑

2
yk

����
����
2

d
T
k yk􏼐 􏼑

2 − θ
yk

����
����
2

αkd
T
k yk

αk g
T
k+1dk􏼐 􏼑

2

d
T
k yk

� − gk+1
����

����
2

+
1
4θ

gk+1
����

����
2

� − 1 −
1
4θ

􏼒 􏼓 gk+1
����

����
2
.

(45)

Because θ> (1/4), the inequality (40) is fulflled for c �

1 − (1/4θ) in (45), and arbitrary k≥ 0.
Global convergence of the MSMDL iterations is verifed

inTeorem 1. Assumption 2 and the proofs of Lemma 3 can
be found in [36–38]. □

Assumption 2. Te function f: Rn⟶ R is twice contin-
uously diferentiable and uniformly convex on Rn.

If the conditions in Assumption 2 hold, then Assump-
tion 1 is satisfed.

Lemma 3 (see [36–38]). Under the conditions in Assumption
2, there exist real numbers m, M satisfying

0<m≤ 1≤M. (46)

It is such that f(xk) has a unique minimizer x∗ and

m‖y‖
2 ≤y

T∇2f xk( 􏼁y≤M‖y‖
2
, ∀xk, y ∈ Rn

,

(47)

1
2

m xk − x
∗����
����
2 ≤f xk( 􏼁 − f x

∗
( 􏼁

≤
1
2

M xk − x
∗����
����
2
, ∀xk ∈ R

n
,

(48)

m xk − x
∗����
����≤ gk

����
����≤M xk − x

∗����
����, ∀xk ∈ R

n
. (49)
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Theorem 1. Let restrictions in Assumption 1 hold. If f is
uniformly convex, then the series xk􏼈 􏼉 generated inside the
MSMDL iterations satisfes

liminf
k⟶∞

gk

����
���� � 0. (50)

Proof. We suppose the opposite, i.e., that (50) is not true.
Tis initiates the existence of a positive constant ∁ > 0 such
that for all k,

gk

����
����≥ ∁. (51)

Ten, from (32) and (35), we obtain

dk

����
���� � − gk + βMSMDL

k dk− 1
����

����

≤ gk

����
���� + βMSMDL

k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 dk− 1
����

����

� gk

����
���� +

g
T
k yk− 1

d
T
k− 1yk− 1

− t
MSMDL
k

g
T
k sk− 1

d
T
k− 1yk− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dk− 1

����
����

� gk

����
���� +

g
T
k yk− 1

αk− 1d
T
k− 1yk− 1

− t
MSMDL
k

g
T
k sk− 1

αk− 1d
T
k− 1yk− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
αk− 1dk− 1

����
����

� gk

����
���� +

g
T
k yk− 1

s
T
k− 1yk− 1

− t
MSMDL
k

g
T
k sk− 1

s
T
k− 1yk− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
sk− 1

����
����

≤ gk

����
���� +

gk

����
���� yk− 1
����

����

s
T
k− 1yk− 1

+ t
MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
gk

����
���� sk− 1
����

����

s
T
k− 1yk− 1

􏼠 􏼡 sk− 1
����

����

� gk

����
���� +

gk

����
���� yk− 1

����
���� + t

MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 sk− 1
����

����􏼒 􏼓

s
T
k− 1yk− 1

sk− 1
����

����.

(52)

Further calculations and approximations on the basis of
(32) are given as follows:

dk

����
����≤ gk

����
���� +

gk

����
���� L sk− 1

����
���� + t

MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 sk− 1
����

����􏼒 􏼓

s
T
k− 1yk− 1

sk− 1
����

����

� gk

����
���� +

gk

����
���� L + t

MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 sk− 1
����

����

s
T
k− 1yk− 1

sk− 1
����

����

≤ gk

����
���� +

gk

����
���� L + t

MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 sk− 1
����

����

η sk− 1
����

����
2 sk− 1

����
����

� 1 +
L + t

MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

η
⎛⎝ ⎞⎠ gk

����
����.

(53)

To complete the theorem, it is necessary to prove that
tMSMDL
k is bounded. Two cases should be distinguished based
on the defnition of tMSMDL

k in (28). □

Case 1. If tMSMDL
k � θ‖yk− 1‖

2/sT
k− 1yk− 1, one concludes

t
MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � θ
yk− 1

����
����
2

s
T
k− 1yk− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ θ

L
2

sk− 1
����

����
2

η sk− 1
����

����
2 �

θL
2

η
. (54)

Case 2. In the case tMSMDL
k � τk, it follows

t
MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

ℷk c
MSM
k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2
s

T
k− 1yk− 1 + g

T
k yk− 1g

T
k sk− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

g
T
k sk− 1􏼐 􏼑

2

≤
ℷk c

MSM
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 gk

����
����
2
L sk− 1

����
����
2

+ gk

����
���� yk− 1
����

���� gk

����
���� sk− 1
����

����

gk

����
����
2

sk− 1
����

����
2

≤
ℷk c

MSM
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 gk

����
����
2
L sk− 1

����
����
2

+ gk

����
����
2
L sk− 1

����
����
2

gk

����
����
2

sk− 1
����

����
2

� L ℷk c
MSM
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + L.

(55)

Based on Algorithm 1 and the initial value for αk � 1, it
follows that αk ∈ (0, 1]. Now, the fact αk ∈ (0, 1] implies

1≤ ℷk ≤ (5/4) (Figure 1), which further in common with (55)
gives as follows:

8 Journal of Mathematics



t
MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤L ℷk c
MSM
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + L

≤L ℷk c
MSM
k􏼐 􏼑

− 1
+ 1􏼒 􏼓 + L

≤L 2 +
5
4

c
MSM
k􏼐 􏼑

− 1
􏼒 􏼓.

(56)

Since ck is an approximation of the Hessian∇2f(xk), the
inequality (47) implies m≤ ck ≤M. Now, from (56), we
conclude

t
MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ L 2 +
5
4m

􏼒 􏼓. (57)

Based on the cases 1 and 2, it follows

t
MSMDL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max
θL

2

η
, L 2 +

5
4m

􏼒 􏼓􏼨 􏼩 � T. (58)

Now, on the basis of (53) and (58), it follows

dk

����
����≤ 1 +

L + T

η
􏼨 􏼩 gk

����
���� �

η + L + T

η
gk

����
����. (59)

Squaring both sides in (59) implies

dk

����
����
2 ≤

(η + L + T)
2

η2
gk

����
����
2
. (60)

Next, dividing both sides of inequalities (60) by ‖gk‖4

and using (61), it can be concluded that

dk

����
����
2

gk

����
����
4 ≤

(η + L + T)
2

η2
·
1
∁2
⇔

gk

����
����
4

dk

����
����
2 ≥

η2 · ∁2

(η + L + T)
2. (61)

Te inequalities in (61) imply

􏽘

∞

k�0

gk

����
����
4

dk

����
����
2 ≥ 􏽘
∞

k�0

η2 · ∁2

(η + L + T)
2 �∞. (62)

Terefore, ‖gk‖≥ ∁ causes a contradiction with Lemma 1.

Theorem 2. Let the restrictions in Assumption 1 hold. If the
goal function f(x) is uniformly convex, then the series xk􏼈 􏼉

generated within the BB1DL iterations satisfes (60).

Proof. Proof Teorem 2 is similar to proof Teorem 1. It
difers in the part where it is necessary to prove that tBB1DL

k is
bounded. In the sequel, we prove that tBB1DL

k is bounded.
Two cases should be distinguished based on the defnition of
tBB1DL
k in (30).

Case (i): If tBB1DLk � (θ‖yk− 1‖
2/sT

k− 1yk− 1), based on (63),
we have

t
BB1DL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
θL

2

η
. (63)

Case (ii): In the case tBB1DLk � τBB1
k , it follows

t
BB1DL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

c
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k􏼐 􏼑

− 1
− 1􏼒 􏼓 gk

����
����
2
s

T
k− 1yk− 1 + g

T
k yk− 1g

T
k sk− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

g
T
k sk− 1􏼐 􏼑

2

≤
c
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k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 gk

����
����
2
L sk− 1

����
����
2

+ gk

����
���� yk− 1
����

���� gk

����
���� sk− 1
����

����

gk

����
����
2

sk− 1
����

����
2

≤
c
BB1
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 gk

����
����
2
L sk− 1

����
����
2

+ gk

����
����
2
L sk− 1

����
����
2

gk

����
����
2

sk− 1
����

����
2

� L c
BB1
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + L.

(64)

Now, from (14) and (37), it follows cBB1
k > 0, i.e.,
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t
BB1DL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤L c
BB1
k􏼐 􏼑

− 1
− 1

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + L

≤L c
BB1
k􏼐 􏼑

− 1
+ 1􏼒 􏼓 + L

� L
sT

k− 1yk− 1

yT
k− 1yk− 1

􏼠 􏼡

− 1

+ 2L

� L
yk− 1

����
����
2

s
T
k− 1yk− 1

+ 2L

≤L
L
2

sk− 1
����

����
2

η sk− 1
����

����
2 + 2L

≤L
L
2

η
+ 2􏼠 􏼡.

(65)

Te penultimate inequality in (65) directly follows from
(32) and (35). Based on the cases (i) and (ii), it follows

t
BB1DL
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max
θL

2

η
, L

L
2

η
+ 2􏼠 􏼡􏼨 􏼩 � T. (66)

Te proof is completed.

An additional limit-type convergence result is proved in
Teorem 3. Teorem 3 shows the linear convergence of the
MSMDLmethod under Assumption 2. In order to prove the
linear convergence of the MSMDL method, we present
Lemma 4 which gives a lower bound of the step length αk.
Te proof is similar as in the case of Lemma 4 in Danmalam
et al. in [39] or Lemma 4 in [40]. □

Lemma  . We suppose that the conditions in Assumption 2
hold, and the sequence xk􏼈 􏼉 be generated by the MSMDL
method with the backtracking line search. Ten, there is
a constant λ> 0 such that

αk ≥ λ,∀k> 0. (67)

Proof. Te backtracking line search condition gives as
follows:

f xk + αkdk( 􏼁≤f xk( 􏼁 + σαkg
T
k dk. (68)

If αk ≠ 1, then ρ− 1αk does not satisfy (68), that is,

f​ xk + ρ− 1αkdk􏼐 􏼑 − f xk( 􏼁> σρ− 1αkg
T
k dk. (69)

Temean value theorem and (32) ensure the existence of
ξk ∈ [0, 1], such that

f xk + ρ− 1αkdk􏼐 􏼑 − f xk( 􏼁 � ρ− 1αk g xk + ξkρ
− 1αkdk􏼐 􏼑􏼐 􏼑

T
dk

� ρ− 1αkg
T
k dk + ρ− 1αk g xk + ξkρ

− 1αkdk􏼐 􏼑 − gk􏼐 􏼑
T
dk

≤ ρ− 1αkg
T
k dk + Lρ− 2α2k dk

����
����
2
.

(70)

From (60), we obtain

gk

����
����
2

dk

����
����
2 ≥

η2

(η + L + T)
2 � λ1. (71)

Now, the following inequalities hold on the basis of (69)
and (70):

σρ− 1αkg
T
k dk <f xk + ρ− 1αkdk􏼐 􏼑 − f xk( 􏼁≤ ρ− 1αkg

T
k dk + Lρ− 2α2k dk

����
����
2

σρ− 1αkg
T
k dk − ρ− 1αkg

T
k dk ≤ Lρ− 2α2k dk

����
����
2

(σ − 1)ρ− 1αkg
T
k dk ≤ Lρ− 2α2k dk

����
����
2

(σ − 1)g
T
k dk ≤ Lρ− 1αk dk

����
����
2

− (1 − σ)g
T
k dk ≤ Lρ− 1αk dk

����
����
2
.

(72)

Te inequalities (72), (40), and (71) give

(1 − σ)c gk

����
����
2 ≤Lρ− 1αk dk

����
����
2
, (73)

which leads to

αk ≥
ρ(1 − σ)c

L

gk

����
����
2

dk

����
����
2 ≥

ρ(1 − σ)c

L
λ1. (74)

Te last inequality gives the required inequality (67) by
setting λ � (ρ(1 − σ)c/L)λ1. Te proof is completed. □
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Theorem 3. Let Assumption 2 hold and x∗ be the unique
minimizer of (1). Ten, there are constants p> 0 and
r ∈ (0, 1) such that the sequence xk􏼈 􏼉 generated by the
MSMDL method fulflls

xk − x
∗����
����≤pr

k
. (75)

Proof. From the backtracking line search (40), Lemma 2,
and Lemma 4, it follows

f xk+1( 􏼁 − f x
∗

( 􏼁≤f xk( 􏼁 − f x
∗

( 􏼁 + σαkg
T
k dk

≤f xk( 􏼁 − f x
∗

( 􏼁 − σαkc gk

����
����
2

≤f xk( 􏼁 − f x
∗

( 􏼁 − σλc gk

����
����
2
.

(76)

Using the left inequality in (49) and afterwards the right
inequality in (48), the inequality in (76) is further ap-
proximated as follows:

f xk+1( 􏼁 − f x
∗

( 􏼁≤f xk( 􏼁 − f x
∗

( 􏼁 − σλcm
2

xk − x
∗����
����
2

≤f xk( 􏼁 − f x
∗

( 􏼁 − 2σλc
m

2

M
f xk( 􏼁(

− f x
∗

( 􏼁􏼁

� 1 − 2σλc
m

2

M
􏼠 􏼡 f xk( 􏼁 − f x

∗
( 􏼁( 􏼁.

(77)

We consider the replacement r � 1 − 2σλc(m2/M) in the
inequality (77). Clearly, on the basis of 0< σ < 0.5, λ> 0,
(m2/M)> 0, and c � 1 − (1/4θ)> 0, θ> (1/4), it follows
r< 1. On the other hand, σ < 0.5, λ≤ αk ≤ 1, (m2/M)< 1, and
c< 1 imply r> 1 − λc> 0.

Furthermore, it follows

f xk+1( 􏼁 − f x
∗

( 􏼁≤ r f xk( 􏼁 − f x
∗

( 􏼁( 􏼁≤ · · ·

≤ r
k+1

f x0( 􏼁 − f x
∗

( 􏼁( 􏼁.
(78)

Combining the left inequality of (48) with (78), we
obtain

xk − x
∗����
����≤

2
m

f xk( 􏼁 − f x
∗

( 􏼁( 􏼁

≤
2
m

f x0( 􏼁 − f x
∗

( 􏼁( 􏼁r
k ≤pr

k
,

(79)

which shows that the inequality (75) holds for
p � (2/m)(f(x0) − f(x∗))> 0.Te proof is completed. □

Remark 1. Te result as inTeorem 3 can be directly applied
to the BB1DL method.

4. Numerical Experiments

In this section, we are going to prove the numerical efciency
of the MSMDL and BB1DL methods. To this aim, we
perform two competitions on standard test functions with

given initial points from [41, 42]. Te frst competition is
between CG-DESCENT [24], M1 [27], DK [26], and
MSMDL methods, and the second one is between BB1DL,
MSMDL, and two recently developed DL CG methods with
global convergence property (EDL [28] and MDL [15]). We
compare all of these methods into three criteria:

(i) Te CPU time in seconds, CPUts
(ii) Te number of iterative steps, NI
(iii) Te number of function evaluations, NFE

Te methods which participate in the competition are
presented in Section 1 (Table 1). Test problems are
evaluated in ten dimensions (100, 500, 1000, 3000, 5000,
7000, 8000, 10000, 15000, and 20000). Codes imple-
menting the tested methods are evaluated in MATLAB
R2017a and on a LAP’s (Intel (R) Core (TM) i3-7020U, up
to 2.3 GHz, and 8 GB memory) with the Windows 10 Pro
operating system.

Algorithms MSMDL, BB1DL, CG-DESCENT, M1, DK,
EDL, and MDL were compared using the backtracking line
search with parameters σ � 0.0001, β � 0.8. Tested algo-
rithms are stopped after 50000 iterations or

gk

����
����≤ ε � 10− 6

,

f xk+1( 􏼁 − f xk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + f xk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
≤ δ � 10− 16

.

(80)

Specifc parameters used only in the MDL and MSMDL
methods are defned as follows:

(i) In the MDL method, θ � 0.26, C � 1, and
r � rk � θ‖gk− 1‖

(ii) In the MSMDL method, θ � 0.26

Te symbol “∗” in the subsequent tables means that the
method failed to achieve the prescribed accuracy after 50000
iterations for one or more tested dimensions of the observed
test function.

Summary numerical results for the frst competition
(between MSMDL, CG-DESCENT, M1, and DK methods)
are obtained by testing 34 test functions and presented in
Table 2. Tis table includes numerical results obtained by
monitoring the criteria NI, NFE, and CPUts in the MSMDL,
CG-DESCENT, M1, and DK methods.

Te performance profles proposed in [43] are applied to
compare obtained numerical data for criteria CPUts, NI, and
NFE generated by the tested methods listed at the beginning
of the section.Te left-hand side of each performance profle
in Figures 2–5 indicates the percentage of test problems in
which the considered method is the best among tested
methods, whereas the right-hand side gives the percentage of
the test problems that are successfully solved by each
method.

Benchmark comparison ranges the solvers included in
the set S on the set of test problems P. Te performance
profle ratio rp,s is defned for each problem p ∈ P and each
solver s ∈ S, and it is formulated as follows:
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rp,s �
xp,s

min xp,s: p ∈ P and s ∈ S􏽮 􏽯
, (81)

where xp,s denotes the NI or NFE or CPUts needed to solve
the problem p by the solver s. Ten, the performance profle
for a solver s in the log 2-scale is defned by the following:

ρs(τ) �
1
np

size p ∈ P: log2rp,s ≤ τ􏽮 􏽯. (82)

Solvers with a greater probability ρs(τ) are more de-
sirable. If the solver s1 achieves better results compared to
the solver s2, then the curve ρs1

(τ) of the performance profle
generated by the solver s1 is located above the corresponding

curve ρs2
(τ) of the performance profle generated by the

solver s2.
In Figure 2, we compare the performance profles NI and

NFE for CG-DESCENT, MSMDL, M1, and DK methods
based on the numerical values covered in Table 2. A careful
analysis reveals that the MSMDL method solves 64.71% of
the test problems with the least NI compared to the CG-
DESCENT(8.82%), M1 (5.88%), and DK (32.35%). From
Figure 2(a), it is perceptible that the MSMDL graphs attain
the top level frst, which indicates that MSMDL outperforms
other considered methods with respect to the criterion NI.
Figure 2(b) shows that the MSMDLmethod is more efcient
than the CG-DESCENT, MSMDL, M1, and DK methods,
with respect to NFE, since it solves 67.65% of the test

0 2 4 6 8 10

CG-DESCENT
MSMDL

M1
DK

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρ 

(τ
)

(a)

0 2 4 6 8 10

CG-DESCENT
MSMDL

M1
DK

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ 
(τ

)

(b)

Figure 2: (a) NI and (b) NFE performance profles for MSMDL, M1, CG-DESCENT, and DK.
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Figure 3: CPUts performance profles for MSMDL, CG-DESCENT, M1, and DK.
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problems with the least NFE compared to the CG-
DESCENT(8.82%), M1 (5.88%), and DK (29.41%). From
Figure 2 (bottom), it is notifed that the MSMDL graph frst
reaches the top, so MSMDL is the winner relative to other
considered methods.

Figure 3 shows the performance profle of the CG-
DESCENT, MSMDL, M1, and DK methods based on the
CPUts included in Table 2. Te MSMDL method solves
58.82% of the test problems with the least CPUts compared
to CG-DESCENT(5.88%), M1 (2.94%), and DK (23.53%).
According to Figure 3, the MSMDL graph comes frst to the
top, which verifes its dominance in terms of CPUts.

Te MSMDL method did not successfully solve
4(11.76%) of all the test functions in Table 2, while each of
the CG-DESCENT, M1, and DK methods did not

successfully solve 5(14.71%) of the test functions. A detailed
summary of the results for each method is arranged in
Table 3.

With the total of 330 solved test problems, MSMDL is
able to solve the largest number of test problems (97.06% of
all tested problems), while M1 and CG-DESCENT solved
only 92.35% of all tested problems.

Based on the data involved in Tables 2 and 3 and graphs
involved in Figures 2 and 3, it is noticed that the MSMDL
method achieves the best results compared to CG-DE-
SCENT, M1, and DK methods with respect to three basic
criteria: NI, NFE, and CPUts.

In addition to standard analysis of numerical results, we
performed additional analysis for the MSMDL method. Te
goal of additional tests is to monitor the usage of the
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Figure 4: (a) NI and (b) NFE performance profles for EDL, MDL, MSMDL, and BB1DL.
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Figure 5: CPUts performance profles for EDL, MDL, MSMDL, and BB1DL.
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imposed value ck � 1 in iterations for each of the tested
functions. We also count the assignments tMSMDL

k � τk in
(28) for each individual function. Te third analysed pa-
rameter is the maximum value for (gT

k dk/‖gk‖2) obtained
during testing. Te test results are given in Table 4.

Te total number of assigned values ck � 1 (respectively.
tMSMDL
k � τk) from Table 4 will be denoted by ⋌ck�1 (re-
spectively. ⋌tk�τk

). Furthermore, the values μ �

max (gT
k dk/‖gk‖2)􏽮 􏽯 will be monitored. Te total sum of

individual values NI, ⋌ck�1, and ⋌tk�τk
across the tested

functions will be denoted by 􏽐NI, 􏽐⋌ck�1, and 􏽐⋌tk�τk
,

respectively. Te total sum of all iterative steps across all test
functions is equal to 􏽐NI � 240235, which further implies
􏽐⋌ck�1 � 117966 � 0.491044􏽐 NI and 􏽐⋌tk�τk

� 118352 �

0.492651􏽐 NI. In this way, the behavior 􏽐⋌ck�1 ≈
􏽐⋌tk�τk

≈ 0.5􏽐NI is observable.
In the subsequent numerical experiments, we compare

the MSMDL and BB1DL methods versus EDL and MDL
methods.

Te performance comparisons of the MSMDL and
BB1DL solvers against the EDL and MDL methods are
shown in Figures 4 and 5. Figure 4(a) compares considered
solvers with respect to the profle NI, Figure 4(b) in terms of
the NFE. Graphs of CPUts performance profles for EDL,
MDL, MSMDL, and BB1DL are arranged in Figure 5.

Figure 4(b) shows that theMSMDL and BB1DLmethods
achieved more efcient results than EDL and MDL methods
in terms of NFE, which is confrmed by upper positions of
the graphs of their performance profles. Figure 4(a) shows
that the MSMDL and BB1DL methods achieved slightly
superior results compared to the EDL and MDL methods in
terms of NI, which is confrmed by the dominant graphs of
their performance profles.

Summary numerical results for the second competition
(between EDL, MDL, MSMDL, and BB1DL) are obtained by
testing 25 test functions and arranged in Table 5. Tis table
shows numerical data obtained by monitoring the criteria
NI, NFE, and CPUts for the EDL, MDL, MSMDL, and
BB1DL methods.

Numerical results in Table 5 show that the MSMDL
method solves about 36%, while the BB1DL method

successfully solves 32% of the test problems with the least
values of NI and NFE.

Profle performances based on CPUts of the MSMDL
and BB1DL in Figure 5 show better performances of these
solvers compared to the profle performances of the EDL and
MDL solvers. In numerical results in Table 5, we found that
the MSMDL method solves about 28%, while the BB1DL
method successfully solves 36% of the test problems with the
minimal CPUts.

We observe that the EDL and MDL methods, which are
currently among the best DL conjugate gradient methods
proposed in the literature, give worse numerical results than
the MSMDL and BB1DL methods in terms of the NI, NFE,
and CPUts.

5. Application in 2D Robotic Motion Control

Problems arising from the concept of robot system have
attracted the attention of researchers and subsequently,
some algorithms for handling them have been developed
[6, 44]. For instance, Zhang et al. [45] discussed the fun-
damentals of n-link robots known as a 1-link robot system.
Qiang et al. [46] pointed out that the importance of taking
the characteristics of motor dynamics into account for the
accuracy and stability requirements of robot movements to
be achieved. More so, among the criteria that the motor
dynamics need to satisfy is for the actual output of the system
to track the desired output within an acceptable minimal
error [47]. Motivated by the work of Zhang et al. [11], Sun
et al. [7] applied an algorithm for solving real-valued un-
constrained optimization to solve 2D robotic motion
control.

We consider a motion control problem involving a two-
joint planar robotic manipulator as described in [11]. Let
ζk ∈ R2 and φk ∈ R2 denote the joint angle vector and end
efector position vector, respectively. A discrete time kine-
matics equation of a two-joint planar robot manipulator at
a position level is governed by the following model:

h ζk( 􏼁 � φk. (83)

Te vector-valued function h(·) is referred to the ki-
nematics mapping which has the following structure:

h(ζ) � ℓ1 cos ζ1( 􏼁 + ℓ2 cos ζ1 + ζ2( 􏼁, ℓ2 sin ζ1( 􏼁 + ℓ2 sin ζ1 + ζ2( 􏼁􏼂 􏼃
T
, (84)

where the parameters ℓ1 and ℓ2 represent the lengths of the
frst and second rod, respectively. Now, with regards to

robotic motion control, the following unconstrained opti-
mization problem,

Table 3: Statistics of not successfully solved test functions by each method.

Method Test functions 􏽐 � 34 Percentage (%) Test problems 􏽐 � 340 Percentage (%)

CG-DESCENT 5 14.71 26 7.65
MSMDL 4 11.76 10 2.94
M1 5 14.71 26 7.65
DK 5 14.71 22 6.47
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Table 4: Summary test results for behavior of parameters in the MSMDL method.

Test NI ⋌ck�1 ⋌tk�τk
μ

Extended penalty function 1575 758 757 − 0.2533
Raydan 1 function 30614 14981 14983 − 0.2565
Raydan 2 function 57 57 57 − 1
Diagonal 1 function 21812 10876 10876 − 0.2608
Diagonal 3 function 34503 17203 17203 − 0.2711
Hager function 1430 606 607 − 0.2600
Generalized tridiagonal 1 function 1124 477 477 − 0.2600
Extended tridiagonal 1 function 1053 463 444 − 0.2600
Extended TET function 1090 330 415 − 0.2201
Diagonal 4 function 2058 925 925 − 0.2557
Diagonal 5 function 40 40 34 − 1
Extended Himmelblau function 1220 555 555 − 0.2619
Extended quadratic penalty QP1 function 894 378 383 − 0.2465
Extended quadratic exponential EP1 function 499 247 247 − 0.26
ARWHEAD function (CUTE) 18117 9074 9059 − 0.2494
ENGVAL1 function (CUTE) 1008 391 391 − 0.2600
Diagonal 6 function 57 57 57 − 1
Generalized quartic function 832 246 351 − 0.2600
Diagonal 7 function 189 73 179 − 0.26
Diagonal 8 function 270 109 263 − 0.26
Full Hessian FH3 function 2249 1139 1143 − 0.26
Diagonal 9 function 66739 33345 33345 − 0.2617
Extended Rosenbrock 50 0 10 − 0.26
Extended BD1 function (block diagonal) 1175 411 437 − 0.2403
Extended Maratos function 9716 4760 4751 − 0.1634
NONDQUAR function (CUTE) 31 15 15 − 0.2719
DQDRTIC function (CUTE) 7082 3452 3452 − 0.2600
Extended Freudenstein and Roth function 31821 15851 15851 − 0.2612
Extended Beale function 1880 758 698 − 0.1753
EDENSCH function (CUTE) 1050 389 387 − 0.2600

Table 5: Summary test results of EDL, MDL, MSMDL, and BB1DL methods for NI, NFE, and CPUts.

Test function EDL
NI/NFE/CPUts

MDL
NI/NFE/CPUts

MSMDL
NI/NFE/CPUts

BB1DL
NI/NFE/CPUts

Extended penalty function 2304/82602/32.719 1866/55194/20.516 1575/49766/18.766 1862/55274/19.813
Raydan 2 function ∗/∗/∗ 325/660/1.078 57/124/0.313 76/162/0.422
Hager function 1940/33206/85.703 1274/20621/45.203 1430/22994/52.063 1218/19995/43.641
Generalized tridiagonal 1 function 2161/33285/37.266 1250/18463/22.453 1124/17065/19.25 1329/19648/22.969
Extended tridiagonal 1 function 308/4129/11.063 5590/11602/32.516 1053/3292/12.797 452/1407/5.109
Diagonal 5 function ∗/∗/∗ 290/590/1.813 40/90/0.438 50/110/0.453
Extended Himmelblau function 50/2413/0.859 1344/21510/5.297 1220/21461/4.578 1350/21921/4.719
Extended quadratic penalty QP1 function 1157/18043/7.359 845/10736/5.125 894/13296/5.406 865/11335/4.766
Extended quadratic exponential EP1 function 21431/43829/6.25 481/10518/4.391 499/12243/4.938 481/10518/3.797
ENGVAL1 function (CUTE) 1975/27260/10.063 1167/16242/7.891 1008/13576/6.484 1160/16202/7.359
Diagonal 6 function ∗/∗/∗ 343/757/1.109 57/124/0.281 76/190/0.344
DIXON3DQ function (CUTE) ∗/∗/∗ ∗/∗/∗ ∗/∗/∗ ∗/∗/∗
BIGGSB1 function (CUTE) ∗/∗/∗ ∗/∗/∗ ∗/∗/∗ ∗/∗/∗
Generalized quartic function 959/10662/2.344 1459/10061/3.656 832/6769/2.984 1361/7935/3.266
Diagonal 7 function ∗/∗/∗ 110/457/0.75 189/1750/2.594 105/1128/1.453
Diagonal 8 function ∗/∗/∗ 125/1338/1.781 270/2318/2.844 71/254/0.438
Full Hessian FH3 function ∗/∗/∗ 1330/41888/20.891 2249/73823/25.156 1795/54550/20.578
Extended Rosenbrock 60/130/0.406 50/110/0.375 50/110/0.328 50/110/0.313
Extended BD1 function (block diagonal) 1200/12605/4.938 1160/8976/4.813 1175/10059/5.188 1030/7974/4.188
Extended clif function 950/13187/4.891 46500/530421/273.781 4773/36089/21.719 1208/23850/12.703
NONDQUAR function (CUTE) 86/4989/15.781 45/2732/9.156 31/2721/10.156 24/2332/9.109
DQDRTIC function (CUTE) 3637/92315/28.766 2460/58286/19.141 7082/170118/49.594 2430/57850/19.938
Extended Freudenstein and Roth function 2018/66654/13.516 3524/113935/21.531 31821/1040192/213.016 2186/69397/14.531
Extended Beale function 181/4748/5.469 1593/19562/52.656 1880/24895/65.016 1300/17186/45.172
EDENSCH function (CUTE) 1684/22731/96.219 1300/16218/66.328 1050/13383/55.078 1132/14810/63.563

16 Journal of Mathematics



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 1.6 1.80.6 1.2 1.40.2 0.80 0.4

(a)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

Desired path
Actual trajectory

1.75

(b)

10-6

10-4

10-2

100

0 20 40 60 80 100 120 140 160 180 200

e1

(c)

0 20 40 60 80 100 120 140 160 180 200

e2

10-6

10-5

10-4

10-3

10-2

10-1

100

(d)

Figure 6: Numerical results generated by theMSMDLmethod for 􏽢φk � 􏽢φ1k: (a) synthesized robot trajectories, (b) end efector trajectory and
desired path, (c) tracking residual error on the x-axis, and (d) tracking residual error on the y-axis.
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minφk∈R2
1
2
φk − φ
∧

k

������

������

2
, (85)

is solved at each instantaneous time tk within the interval
[0, tend] with tend being the task duration.Te end efector φk

is usually controlled to track a Lissajous curve denoted by 􏽢φk.
We note that by taking f(x) ≡ (1/2)‖φk − φ

∧
k‖2, then

problem (85) has the form of problem (1), and therefore, the
proposed MSMDL method can be used to solve it.

In this experiment, unlike the Lissajous curve used in
[7, 48, 49], we require the end efector φk to track the fol-
lowing two Lissajous curves,

􏽢φ1k �
3
2

+
1
5
sin tk( 􏼁,

�
3

√

2
+
1
5
sin 3tk +

π
2

􏼒 􏼓􏼢 􏼣

T

,

􏽢φ2k �
3
2

+
1
5
sin 3tk( 􏼁,

�
3

√

2
+
1
5
sin 2tk( 􏼁􏼢 􏼣

T

.

(86)

Te implementation of the proposed MSMDL with
regard to the motion control experiment was coded in
MATLAB R2019b and run on a PC with an Intel Core (TM)
i5-8250u processor with 4GB of RAM and CPU 1.60 GHZ.
In this experiment, the lengths of the frst and second rods
are taken as ℓ1 � ℓ2 � 1, where the initial point is
ζ0 � [ζ1, ζ2] � [0, (π/3)]T with the task duration [0, tend]

divided into 200 equal parts, where tend � 10 seconds. Te
results experimental with 􏽢φk � 􏽢φ1k are presented in Figure 6,
while that of 􏽢φk � 􏽢φ2k are given in Figure 7. Figures 6(a) and
7(a) depict the robot trajectories synthesized by the MSMDL
for 􏽢φ1k and 􏽢φ2k, respectively. On the other hand, Figures 6(b)
and 7(b), respectively, plot the end efector trajectory and
desired path for 􏽢φ1k and 􏽢φ2k.

Te errors recorded by MSMDL during the course of the
experiment with respect to the horizontal axis are reported
in Figures 6(c) and 7(c) for 􏽢φ1k and 􏽢φ2k, respectively, while
those of the vertical axis are equally presented in Figures 6(d)
and 7(d) for 􏽢φ1k and 􏽢φ2k, respectively.

Figures 6(a), 6(b), 7(a), and 7(b) confrm that the
MSMDL method successfully and efciently executed the
task given to it with acceptable error. In addition,
Figures 6(c), 6(d), 7(c), and 7(d) show that the proposed
MSMDL method not only solves test problems but com-
pletes them with acceptable error. Tis further demonstrates
the efciency and applicability of the MSMDL method.

6. Conclusion

Temain result obtained in this study is the verifcation and
investigation of the correlation between QN and CG ap-
proaches. More specifcally, it has been shown that QN and
CG are not independent approaches, and QN iterates can be
used to improve CG-type iterations.

Defning the best CG direction and also fnding an
optimal parameter for the DL CG class are open problems
[14]. Te parameters tMSMDL

k of the MSMDL method and
tBB1DLk of the BB1DL method are defned and selected using
the unifcation of the MSM and the BB1 method and the CG
DL class, respectively. Based on the presented numerical
results in Tables 2 and 5 and Figures 2–5, we can conclude
that the proposed MSMDL and BB1DL methods achieve
superior numerical results with respect to all the three
criteria (NI, NFE, and CPUts) versus opposing methods.
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Figure 7: Numerical results generated by theMSMDLmethod for 􏽢φk � 􏽢φ2k: (a) synthesized robot trajectories, (b) end efector trajectory and
desired path, (c) tracking residual error on the x-axis, and (d) tracking residual error on the y-axis.

Table 6: Abbreviations for the methods.

Abbreviations Full name
CG-DESCENT CG-DESCENT
MSMDL MSMDL
M1 M1
DK Dai and Kou
BB1DL BB1DL
EDL Efective Dai-Liao
MDL MDL
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A modifed Dai–Liao CG method termed the MSMDL
method, intended for solving unconstrained optimization
problems, is proposed and examined both theoretically and
numerically. Te modifcation is based on an appropriately
scaled CG parameter tMSMDL

k by means of the approximation
of the Hessian matrix via the diagonal matrix ckI in the
MSM method. Our leading principle is to fnd the DL pa-
rameter t in (17) as a solution to the equation which appears
after the unifcation of descent directions in the MSM
method (11) and in the DL iterations (17). In this way, the
expression 1 + αk − α2k and the acceleration parameter cMSM

k

from the MSM method will appear in the expression which
determines tMSMDL

k . Te new parameter contains not only
the gradient information but also some Hessian matrix
information. Te general perception is that the proposed
iterations are defned as a hybridization of MSM and DL-
type CG methods. Under some standard assumptions, the
global convergence property of the MSMDL method is
established. Numerical comparisons on a large class of well-
known test problems, especially for solving high-
dimensional problems, indicate that the MSMDL method
is quite efective. Te application of the MSMDL method on
solving problems arising from 2D robotic motion control
further confrms its efciency as well as applicability.

Te proposed unifcation of the search directions dk of
twomethods of the general pattern (2) belonging to diferent
classes is a continuation of a new branch of research in
nonlinear optimization, which could be termed as unifca-
tion. Tis research investigates the unifcation of MSM and
BB methods with the DL CG solver to determine the pa-
rameter t. Further research may include the unifcation of
search directions between diferent quasi-Newton methods
and various CG methods. Te method proposed in this
paper is useful as a general principle for hybridizing any two
methods from the conjugate gradient group or from the
quasi-Newton methods group.

Appendix

Table 6 shows the abbreviations and full names of the
methods. For most methods, the abbreviation and the full
name of the method are identical.
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Te numerical results and graphical illustrations used to
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M.-K. Wang, “A novel value for the parameter in the dai-
liao-type conjugate gradient method,” Journal of Function
Spaces, vol. 2021, Article ID 6693401, 10 pages, 2021.

[29] J. Barzilai and J. M. Borwein, “Two-point step size gradient
methods,” IMA Journal of Numerical Analysis, vol. 8, no. 1,
pp. 141–148, 1988.

[30] D. di Serafno, V. Ruggiero, G. Toraldo, and L. Zanni, “On the
steplength selection in gradient methods for unconstrained
optimization,” Applied Mathematics and Computation,
vol. 318, pp. 176–195, 2018.

[31] M. Raydan, “On the Barzilai and Borwein choice of steplength
for the gradient method,” IMA Journal of Numerical Analysis,
vol. 13, no. 3, pp. 321–326, 1993.

[32] M. Raydan, “Te Barzilai and Borwein gradient method for
the large scale unconstrained minimization problem,” SIAM
Journal on Optimization, vol. 7, no. 1, pp. 26–33, 1997.

[33] Y. Zheng and B. Zheng, “Two new Dai-Liao-type conjugate
gradient methods for unconstrained optimization problems,”
Journal of Optimization Teory and Applications, vol. 175,
no. 2, pp. 502–509, 2017.

[34] Z. Aminifard and S. Babaie-Kafaki, “An optimal parameter
choice for the Dai-Liao family of conjugate gradient methods
by avoiding a direction of the maximum magnifcation by the

search direction matrix,” 4OR, vol. 17, no. 3, pp. 317–330,
2019.

[35] G. Zoutendijk, “Nonlinear programming, computational
methods,” Integer and Nonlinear Programming, pp. 37–86,
North-Holland, Amsterdam, Netherland, 1970.

[36] G. Wu, Y. Li, and G. Yuan, “A three-term conjugate gradient
algorithm with quadratic convergence for unconstrained
optimization problems,” Mathematical Problems in Engi-
neering, vol. 2018, Article ID 4813030, 15 pages, 2018.

[37] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of
Nonlinear Equation in Several Variables, Academic Press,
New York, NY, USA, 1970.

[38] R. T. Rockafellar, Convex Analysis, Princeton University
Press, Princeton, NJ, USA, 1970.

[39] K. U. Danmalam, H. Mohammad, and M. Y. Waziri,
“Structured diagonal Gauss–Newton method for nonlinear
least squares,” Computational and Applied Mathematics,
vol. 41, no. 2, p. 68, 2022.

[40] M. Li, “A family of three–term nonlinear conjugate gradient
methods close to the memoryless BFGS method,” Optics
Letters, vol. 12, no. 8, pp. 1911–1927, 2018.

[41] N. Andrei, “An unconstrained optimization test functions
collection,” Advanced Modeling and Optimization, vol. 10,
pp. 147–161, 2008.

[42] I. Bongartz, A. R. Conn, N. Gould, and Ph. L. Toint, “CUTE:
constrained and unconstrained testing environments,” ACM
Transactions on Mathematical Software, vol. 21, no. 1,
pp. 123–160, 1995.

[43] E. D. Dolan and J. J. Moré, “Benchmarking optimization
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