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1. Introduction

1.1. Notation

As usual, throughout the paper, the set of all positive natural numbers is denoted by N, the set of all
whole numbers is denoted by Z, whereas the set of real numbers is denoted by R. If k ∈ Z is fixed, then
by Nk we denote the set

{ j ∈ Z : j ≥ k}.

If k, l ∈ Z where k ≤ l, then the notation j = k, l is used instead of using the following phrase/notation:
k ≤ j ≤ l for j ∈ Z. If l ∈ Z, then we regard that

l−1∏
j=l

a j = 1,
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where a j ∈ R is a member of a finite or infinite sequence of numbers and the index j ∈ I ⊆ Z.

1.2. Little on history and some classical closed-form formulas

Difference equations and systems of difference equations appeared in some classical problems
in combinatorics, probability and economics. To solve some of the practical problems in these
scientific areas, it has been of a great importance to know some closed-form formulas for the solutions
of the difference equations which serve as models for the problems. The following papers and
books [7, 10, 12, 21–24] contain some of the oldest results on solvability of difference equations
and their applications (see also the references therein). Since that time have appeared many books
containing chapters devoted to the solvability and their applications such as [8, 15, 25, 26, 28, 50].

De Moivre solved the equation

xn+2 − pxn+1 − qxn = 0, n ∈ N0, (1.1)

as well as the corresponding linear difference equations with constant coefficients of the order three
and four (see [10, 12]), whereas Bernoulli in [7] presented a method for solving the linear difference
equations with constant coefficients of any order.

The formula

xn =
(x1 − t2x0)tn

1 − (x1 − t1x0)tn
2

t1 − t2
, n ∈ N0, (1.2)

where t j, j = 1, 2, are the zeros of the polynomial

Pp,q(t) = t2 − pt − q, (1.3)

is a closed-form formula for the general solution to Eq (1.1) under the assumptions:

p ∈ R, q ∈ R \ {0} and p2 + 4q , 0.

If
p ∈ R, q ∈ R \ {0} and p2 + 4q = 0,

then we have

xn = ((x1 − t1x0) n + t1x0) tn−1
1 , n ∈ N0. (1.4)

In this case the zeros of (1.3) are
t1 = t2 =

p
2
.

Classical formulas (1.2) and (1.4) are frequently used in the literature. This will be the case also in
the present paper.

One of the first nonlinear difference equations for which was found the general solution in a closed
form is the bilinear one

yn+1 =
αyn + β

γyn + δ
, n ∈ N0. (1.5)

See, for example, [1, 8, 9, 20–22, 25, 27, 28, 43, 44, 49], where some applications of the closed-form
formulas can be found.

For some recent results on solvability and related topics see, for instance, [14,29,30,32–35,40–49]
and the references therein.
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1.3. Motivation

The following class of nonlinear difference equations of second order

xn+1 = axn +
bxnxn−1

cxn + dxn−1
, n ∈ N0, (1.6)

where a, b, c, d, x− j ∈ R, j = 0, 1, was considered in [11], where several claims were formulated
and were also given some closed-form formulas for solutions of several special cases of Eq (1.6), but
without providing any theory or explanations related to the formulas. It has been noticed that many of
the papers of this type have various type of problems (see, for instance, [43, 44, 49]).

1.4. Aim of the paper

We provide some detailed theoretical explanations for getting the closed-form formulas and
representations for the general solutions to the four special cases of Eq (1.6) considered in [11], and
give some natural proofs of the results which where not proved therein, that is, without using only the
method of mathematical induction, and show that all the difference equations are special cases of a
general class of difference equations which is solvable in closed form. We also show that the main
results on the long-term behavior, that is, the ones on local and global stability, of the solutions to
Eq (1.6) formulated therein are not correct. Finally, we give some results on convergence of solutions
to Eq (1.6), under some assumptions related to the ones posed in [11].

2. On some formulas for solutions to special cases of Eq (1.6)

Closed-form formulas for solutions to four special cases of Eq (1.6) were given in [11]. The
formulas for two of these equations were proved by the method of mathematical induction, whereas
the formulas for the other two ones were even not proved. It was only said therein that the cases can
be treated similarly. Beside this, nothing was said about the methods which were used for getting the
formulas.

2.1. On four special cases of Eq (1.6) and the closed-form formulas

The following four special cases of Eq (1.6) were considered in [11]:

xn+1 =xn +
xnxn−1

xn + xn−1
, n ∈ N0, (2.1)

xn+1 =xn +
xnxn−1

xn − xn−1
, n ∈ N0, (2.2)

xn+1 =xn −
xnxn−1

xn + xn−1
, n ∈ N0, (2.3)

xn+1 =xn −
xnxn−1

xn − xn−1
, n ∈ N0. (2.4)

It is claimed therein that solutions to Eq (2.1) are given by the formula

xn = x0

n∏
j=1

A jx0 + 2B jx−1

B jx0 + A jx−1
, n ∈ N0, (2.5)
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where A j and B j are the solutions to the equation

yn+1 = 2yn + yn−1, n ∈ N0, (2.6)

with the initial values

y−1 = −1, y0 = 1, (2.7)

and
y−1 = 1, y0 = 0,

respectively, that the solutions to Eq (2.2) are given by the formulas

x2n−1 =
x2n

0

xn−1
−1 (x0 − x−1)n

, n ∈ N0, (2.8)

x2n =
x2n+1

0

(x−1(x0 − x−1))n , n ∈ N0, (2.9)

that the solutions to Eq (2.3) are given by the formula

xn =
xn+1

0∏n
j=1(x0 j + x−1)

, n ∈ N0, (2.10)

and that the solutions to Eq (2.4) are given by the formulas

x2n−1 =
xn

0

xn−1
−1

(
x0 − 2x−1

x0 − x−1

)n

, n ∈ N0, (2.11)

x2n =
xn+1

0

xn
−1

(
x0 − 2x−1

x0 − x−1

)n

, n ∈ N0. (2.12)

2.2. Explanations for above formulas for solutions to Eqs (2.1)–(2.4)

Here we present some very detailed explanations how the closed-form formulas and representations
given in (2.5), (2.8)–(2.12), for the general solutions to the corresponding difference equations given
in (2.1)–(2.4), can be obtained in some natural ways, where an inductive argument is not the only used
method in obtaining and verifying closed-form formulas, which occurs in the investigation. In fact, one
of our aims is to eliminate any inductive argument as much as is possible. In the present investigation,
we employ some methods, ideas and tricks related to the ones, for example, in [14, 42–47, 49].

On Eq (2.1). First note that
B1 = 2B0 + B−1 = 1.

Hence, we have

B0 = 0 and B1 = 1. (2.13)

The solution to Eq (1.1) with these initial values is a sort of a fundamental solution to the difference
equation. Some explanations for the claim follow.
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Let
(sn)n∈N0 = (sn(p, q))n∈N0

be the solution to Eq (1.1) satisfying the initial conditions

x0 = 0 and x1 = 1. (2.14)

If p2 + 4q , 0, then we have

sn =
tn
1 − tn

2

t1 − t2
, n ∈ N0, (2.15)

where t1 and t2 are the zeros of polynomial (1.3).
From (1.2) and (2.15) we see that the solution to Eq (1.1) with the initial values x0 and x1, can be

written in the form

xn = x1sn + qx0sn−1, n ∈ N0. (2.16)

Here we naturally regard that

s−1 =
s1 − ps0

q
=

1
q
,

so that formula (2.16) holds also for n = 0. Let us mention that the formula holds also in the case
p2 + 4q = 0. Namely, in this case we have

sn = ntn−1
1 , n ∈ N0

and (1.4) holds.
Consider Eq (1.5) under the assumptions:

α, β, γ, δ, y0 ∈ R, γ , 0 and αδ , βγ.

Employing the change of variables

zn

zn+1
=

1
γyn + δ

, n ∈ N0, (2.17)

the equation is transformed to

zn+1 − (α + δ)zn + (αδ − βγ)zn−1 = 0, n ∈ N. (2.18)

Thus from (2.16) we have

zn = z1sn + z0(βγ − αδ)sn−1, n ∈ N0, (2.19)

where
sn = sn(α + δ, βγ − αδ).

Relations (2.17)–(2.19) together with some calculations imply

yn =
(αy0 + β)sn + y0(βγ − αδ)sn−1

(γy0 − α)sn + sn+1
, n ∈ N0. (2.20)
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Now, we apply the analysis in the case of Eq (2.1). If in the equation we use the change of variables

yn =
xn

xn−1
, n ∈ N0, (2.21)

we get the following special case of Eq (1.5)

yn+1 =
yn + 2
yn + 1

, n ∈ N0.

The corresponding associate Eq (2.18) is the following

zn+1 − 2zn − zn−1 = 0, n ∈ N, (2.22)

from which together with (2.13) we have

Bn = sn(2, 1), n ∈ N−1. (2.23)

From (2.20) and since α = γ = δ = 1 and β = 2, we have

yn =
(sn + sn−1)y0 + 2sn

sny0 + sn+1 − sn
, n ∈ N0,

from which together with (2.21) it follows that

xn =
(sn + sn−1)x0 + 2snx−1

snx0 + (sn+1 − sn)x−1
xn−1, n ∈ N0. (2.24)

From (2.23), (2.24), since

An = A1sn + A0sn−1 = sn + sn−1, n ∈ N0,

(here we have also used the fact that A1 = 2A0 + A−1 = 1; see (2.7)), and the fact that sn is a solution to
Eq (2.22) it easily follows that

xn =
Anx0 + 2Bnx−1

Bnx0 + Anx−1
xn−1, n ∈ N0, (2.25)

from which formula (2.5) follows.

Remark 2.1. Note that from (2.25) it follows the formula

xn = x−1

n∏
j=0

A jx0 + 2B jx−1

B jx0 + A jx−1
, n ∈ N−1,

which is a bit better closed-form formula for solutions to Eq (2.1), than the one given in (2.5).
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On Eq (2.2). First note that Eq (2.2) can be written in the following form

xn+1 =
x2

n

xn − xn−1
, n ∈ N0,

from which for all the solutions such that xn , 0, n ∈ N0, we have

xn

xn+1
= 1 −

xn−1

xn
, n ∈ N0. (2.26)

Hence, the sequence
yn =

xn−1

xn
, n ∈ N0,

satisfies the relation
yn+1 = 1 − yn, n ∈ N0,

from which it follows that
yn+1 = yn−1, n ∈ N,

that is, the sequence (yn)n∈N0 is two-periodic.
Hence, we have

x2m− j−1

x2m− j
=

x− j−1

x− j
, m ∈ N0, j = −1, 0,

from which it follows that
x2m =

x0

x−1
x2m−1, m ∈ N0,

and
x2m−1 =

x1

x0
x2m−2 =

x0

x0 − x−1
x2m−2, m ∈ N,

and consequently

x2m =
x2

0

x−1(x0 − x−1)
x2m−2, m ∈ N, (2.27)

and

x2m−1 =
x2

0

x−1(x0 − x−1)
x2m−3, m ∈ N. (2.28)

From (2.27) and (2.28) we obtain

x2m = x0

(
x2

0

x−1(x0 − x−1)

)m

, m ∈ N0,

and

x2m−1 = x−1

(
x2

0

x−1(x0 − x−1)

)m

, m ∈ N0,

from which the formulas in (2.8) and (2.9) immediately follow.
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On Eq (2.3). First note that Eq (2.3) can be written in the following form

xn+1 =
x2

n

xn + xn−1
, n ∈ N0,

from which for all the solutions such that xn , 0, n ∈ N0, we have

xn

xn+1
=

xn−1

xn
+ 1, n ∈ N0. (2.29)

Hence, the sequence
yn =

xn−1

xn
, n ∈ N0,

satisfies the relation
yn+1 = yn + 1, n ∈ N0,

from which it follows that
yn = n + y0, n ∈ N0,

that is,
xn−1

xn
= n +

x−1

x0
, n ∈ N0.

Hence, we have

xn =
x0

x0n + x−1
xn−1, n ∈ N0, (2.30)

and consequently

xn = x0

n∏
j=1

x0

x0 j + x−1
, n ∈ N0,

from which formula (2.10) immediately follows.

Remark 2.2. Note that from (2.30) it follows the formula

xn = x−1
xn+1

0∏n
j=0(x0 j + x−1)

, n ∈ N−1,

which is a bit better closed-form formula for solutions to Eq (2.3), than the one given in (2.10).

On Eq (2.4). First note that Eq (2.4) can be written in the following form

xn+1 = xn
xn − 2xn−1

xn − xn−1
, n ∈ N0.

Let
yn =

xn

xn−1
, n ∈ N0.

Then, the sequence (yn)n∈N0 satisfies the bilinear difference equation

yn+1 =
yn − 2
yn − 1

, n ∈ N0,
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from which along with the formula where index n is replaced with n − 1, it follows that

yn+1 = yn−1, n ∈ N0,

that is, the sequence yn is two-periodic.
Hence, we have

x2m =
x0

x−1
x2m−1, m ∈ N0,

and
x2m−1 =

x1

x0
x2m−2 =

x0 − 2x−1

x0 − x−1
x2m−2, m ∈ N,

from which it follows that

x2m−1 =

(
x0(x0 − 2x−1)
x−1(x0 − x−1)

)
x2m−3, m ∈ N,

x2m =

(
x0(x0 − 2x−1)
x−1(x0 − x−1)

)
x2m−2, m ∈ N,

and consequently

x2m−1 =x−1

(
x0(x0 − 2x−1)
x−1(x0 − x−1)

)m

, m ∈ N0,

x2m =x0

(
x0(x0 − 2x−1)
x−1(x0 − x−1)

)m

, m ∈ N0,

from which the closed-form formulas for the general solution of Eq (2.4) given in (2.11) and (2.12)
immediately follow.

3. Solvability of an extension of Eq (1.6)

Solvability of Eq (1.6) can be treated in some general ways. Namely, the following equation

xn+1 = f −1
(

f (xn)
α f (xn) + β f (xn−1)
γ f (xn) + δ f (xn−1)

)
, n ∈ N0, (3.1)

where α, β, γ, δ ∈ R, γ2 + δ2 , 0, f : R → R is a function, is a natural extension of Eq (1.6). Indeed,
note that Eq (1.6) can be written in the form

xn+1 = xn
acxn + (ad + b)xn−1

cxn + dxn−1
, n ∈ N0,

from which it follows that the difference equation is obtained from the Eq (3.1) with

f (x) ≡ x, α = ac, β = ad + b, γ = c and δ = d.

The following result has been recently proved in [47].
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Theorem 3.1. Let α, β, γ, δ ∈ R, α2+β2 , 0 , γ2+δ2, f be a homeomorphism of R such that f (0) = 0.
Then Eq (3.1) is solvable in closed-form. Moreover, the following statements hold.

(a) If αδ = βγ, α = 0 or γ = 0, then the general solution to Eq (3.1) is given by the formula

xn = f −1
((
β

δ

)n

f (x0)
)
, n ∈ N0. (3.2)

(b) If αδ = βγ, β = 0 or δ = 0, then the general solution to Eq (3.1) is given by the formula

xn = f −1
((
α

γ

)n

f (x0)
)
, n ∈ N0. (3.3)

(c) If αδ = βγ, αβγδ , 0, then the general solution to Eq (3.1) is given by formula (3.2), which in this
case matches with formula (3.3).

(d) If αδ , βγ, γ = 0, α = δ, then the general solution to Eq (3.1) is given by the formula

xn = f −1

 f (x−1)
n∏

j=0

(
β

δ
j +

f (x0)
f (x−1)

) , (3.4)

for n ∈ N−1.

(e) If αδ , βγ, γ = 0, α , δ, then the general solution to Eq (3.1) is given by the formula

xn = f −1

 f (x−1)
n∏

j=0

(
β

(α/δ) j − 1
α − δ

+
(α
δ

) j f (x0)
f (x−1)

) , (3.5)

for n ∈ N−1.

(f) If αδ , βγ, γ , 0, ∆ := (α + δ)2 − 4(αδ − βγ) , 0, then the general solution to Eq (3.1) is given by
the formula

xn = f −1

 f (x−1)
n∏

j=0

 ( f (x0)
f (x−1) − λ2 +

δ
γ
)λ j+1

1 − ( f (x0)
f (x−1) − λ1 +

δ
γ
)λ j+1

2

( f (x0)
f (x−1) − λ2 +

δ
γ
)λ j

1 − ( f (x0)
f (x−1) − λ1 +

δ
γ
)λ j

2

−
δ

γ


 , (3.6)

for n ∈ N−1, where

λ1 =
α + δ +

√
∆

2γ
and λ2 =

α + δ −
√
∆

2γ
.

(g) If αδ , βγ, γ , 0, ∆ := (α + δ)2 − 4(αδ − βγ) = 0, then the general solution to Eq (3.1) is given by
the formula

xn = f −1

 f (x−1)
n∏

j=0

 (( f (x0) + ( δ
γ
− λ1) f (x−1))( j + 1) + λ1 f (x−1))λ1

( f (x0) + ( δ
γ
− λ1) f (x−1)) j + λ1 f (x−1)

−
δ

γ


 , (3.7)

for n ∈ N−1, where λ1 =
α+δ
2γ .
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Remark 3.1. From Theorem 3.1 it follows that Eq (1.6) is solvable in closed form. By using the
corresponding formulas in (3.2)–(3.7), after some calculations can be obtained some closed-form
formulas for solutions to Eqs (2.1)–(2.4). The closed-form formulas in (2.8)–(2.11) can be obtained
relatively easy. Regarding formula (2.5), since it is a representation of the general solution of Eq (2.1),
it needs some further works which we have conducted in the previous section.

Remark 3.2. The above analyses and results refers to well-defined solutions. It is obvious that not
for all initial values solutions to the equations are defined. In the case of Eq (3.1) for a well-defined
solution it must be

γ f (xn) + δ f (xn−1) , 0

for every n ∈ N0.

4. On some results on local and global stability in [11]

Here we discuss the results on local and global stability solutions of Eq (1.6) formulated in [11].
Results on long term behaviour of solutions to difference equations and systems, including the ones
on local and especially on global stability, are of a great importance. Some of them can be found, for
instance, in [1, 2, 5, 6, 9, 13, 16–20, 25, 27, 31, 33, 36, 38–40] (see also the related references therein).

4.1. On equilibria of Eq (1.6)

In [11] were first studied the equilibria of Eq (1.6). Let x̄ be an equilibrium of the equation. Then it
must be

x̄ = ax̄ +
bx̄2

(c + d)x̄
. (4.1)

The relation in (4.1) shows that x̄ cannot be equal to zero. This was not noticed in [11]. Not noticing
this fact the author of [11] multiplied both sides in (4.1) by x̄ and obtained a relation from which he
concluded that it must be x̄ = 0, if

(c + d)(1 − a) , b, (4.2)

which leads to a contradiction. In this case, (1.6) simply does not have an equilibrium.
Thus, Theorem 1 in [11] tries to show that a wrong equilibrium point of the equation is locally

asymptotically stable under the condition

b < (1 − a)(c + d),

a statement which makes no sense.
Relation (4.1) is also not defined if c + d = 0, so if we assume that

c + d , 0, (4.3)

from (4.1) we have
x̄((c + d)(1 − a) − b) = 0.
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Thus, if

(c + d)(1 − a) − b = 0, (4.4)

any x̄ , 0 is an equilibrium of (1.6).
This is a typical situation for the difference equations whose right-hand side is a homogeneous

function of order one on the diagonal.

4.2. On a claim on global stability

The main result in [11] on the long-term behavior of positive solutions to Eq (1.6) should have been
Theorem 2 therein. The theorem is on global convergence of the solutions to the difference equation.
Here is the claim.

Claim 1. Let min{a, b, c, d} > 0, then the equilibrium point x̄ = 0 of Eq (1.6) is global attractor.

As we have shown x̄ = 0 is not an equilibrium point of Eq (1.6), so the claim has a problem.
Moreover, the claim is even wrong since all well-defined solutions to the equation need not be
convergent. Indeed, if

(ac + d)2 , −4bc,

then by Theorem 3.1 (f) the general solution to Eq (1.6) is given by the formula

xn = x−1

n∏
j=0

 (x0 + ( d
c − λ2)x−1)λ j+1

1 − (x0 + ( d
c − λ1)x−1)λ j+1

2

(x0 + ( d
c − λ2)x−1)λ j

1 − (x0 + ( d
c − λ1)x−1)λ j

2

−
d
c

 , (4.5)

for n ∈ N0, where

λ1 =
ac + d +

√
(ac + d)2 + 4bc
2c

and

λ2 =
ac + d −

√
(ac + d)2 + 4bc
2c

.

Let

yn =
(x0 + ( d

c − λ2)x−1)λn+1
1 − (x0 + ( d

c − λ1)x−1)λn+1
2

(x0 + ( d
c − λ2)x−1)λn

1 − (x0 + ( d
c − λ1)x−1)λn

2

−
d
c
, n ∈ N0. (4.6)

If

x0 +
(d
c
− λ2

)
x−1 , 0, (4.7)

then by letting n→ +∞ in relation (4.6), it is not difficult to see that the following relation holds

lim
n→+∞

yn = λ1 −
d
c
=

ac − d +
√

(ac + d)2 + 4bc
2c

. (4.8)
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Assume that a, b, c, d satisfy the condition

ac − d +
√

(ac + d)2 + 4bc
2c

> 1,

and that x−1, x0 are positive numbers satisfying condition (4.7), then from (4.8) and since

xn = x−1

n∏
j=0

y j, n ∈ N−1,

we have

lim
n→+∞

xn = +∞. (4.9)

Relation (4.9) shows that many of the solutions to such chosen special cases of equation (1.6) are not
only divergent but are even unbounded, showing that Claim 1 is not true.

For example, if
a = 2, b = 1, c = 1 and d = 2,

then we have

xn = x−1

n∏
j=0

 (x0 + (2 − λ2)x−1)λ j+1
1 − (x0 + (2 − λ1)x−1)λ j+1

2

(x0 + (2 − λ2)x−1)λ j
1 − (x0 + (2 − λ1)x−1)λ j

2

− 2

 , (4.10)

for n ∈ N0, where
λ1 = 2 +

√
5 and λ2 = 2 −

√
5,

from which when
x0

x−1
, λ2 − 2 = −

√
5,

and if xn is a well-defined solution, it follows that

lim
n→+∞

(x0 + (2 − λ2)x−1)λn+1
1 − (x0 + (2 − λ1)x−1)λn+1

2

(x0 + (2 − λ2)x−1)λ j
1 − (x0 + (2 − λ1)x−1)λ j

2

− 2 =
√

5 > 1. (4.11)

From (4.10) and (4.11) we have that for such chosen solutions relation (4.9) holds. Hence, the solutions
are not convergent.

4.3. On a result on boundedness

Beside above mentioned results, in [11] was proved the following simple result on the boundedness
of positive solutions to Eq (1.6).

Theorem 4.1. Every (positive) solution of Eq (1.6) is bounded if

a +
b
d
< 1. (4.12)
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This result is an immediate consequence of the most simple comparison result in the theory of
difference equations. Namely, if a positive sequence (xn)n∈N0 satisfies the inequality

xn+1 ≤ xn, n ∈ N0,

then it is bounded.
For some other extensions of the result and various methods for proving boundedness of solutions

to nonlinear difference equations, see, for instance, [3–5, 13, 36–41] and the related references therein.
Bearing in mind that from (1.6) for every positive solution to the equation we obviously have

xn+1 ≤ axn +
bxnxn−1

dxn−1
=

(
a +

b
d

)
xn ≤ xn, n ∈ N0, (4.13)

the result immediately follows.

Remark 4.1. Note that the argument in (4.13) holds if

0 ≤ a +
b
d
≤ 1, (4.14)

which was not noticed in [11]. This means that Theorem 4.1 also holds if condition (4.12) is replaced
by (4.14). A natural generalization of the boundedness result under condition (4.12) frequently appears
in the literature (see, e.g., [37, Theorem 1]).

Remark 4.2. Note that if condition (4.12) holds, then for every positive solution to Eq (1.6) we have

xn+1 ≤

(
a +

b
d

)
xn, n ∈ N0,

from which it follows that

xn ≤

(
a +

b
d

)n

x0, n ∈ N0. (4.15)

From inequality (4.15), condition (4.12), and the positivity of the sequence xn, it follows that

lim
n→+∞

xn = 0.

Hence, the following simple result on convergence holds, which was also not noticed in [11].

Theorem 4.2. Assume that

min{a, b, c, d} > 0 (4.16)

and that inequality (4.12) holds. Then every positive solution to Eq (1.6) converges to zero.
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Remark 4.3. Note that from (1.6) for every positive solution (xn)n∈N−1 to the equation we have

xn+1 = xn
acxn + (ad + b)xn−1

cxn + dxn−1
≤ xn

max{ac, ad + b}
min{c, d}

, n ∈ N0. (4.17)

From (4.17) we have

xn ≤

(
max{ac, ad + b}

min{c, d}

)n

x0, n ∈ N0. (4.18)

Employing estimate (4.18) and the arguments in Remarks 4.1 and 4.2, we see that the following result
holds.

Theorem 4.3. Assume that condition (4.16) holds. Then the following statements hold.

(a) If
max{ac, ad + b}

min{c, d}
≤ 1,

then every positive solution to Eq (1.6) is bounded.

(b) If
max{ac, ad + b}

min{c, d}
< 1,

then every positive solution to Eq (1.6) converges to zero.

5. Conclusions

We provide some detailed theoretical explanations for getting the closed-form formulas and
representations for the general solutions to four special cases of a difference equation in the literature,
without using only the method of mathematical induction, and conducted some analyses which show
that investigations of difference equations should be conducted more carefully than it is frequently
done in the literature. The methods and ideas given in the paper can be used in many similar situations
and should be useful to a wide audience.
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