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Abstract
We introduce and study the Chaplygin systems with gyroscopic forces. This natural
class of nonholonomic systems has not been treated before. We put a special emphasis
on the important subclass of such systems with magnetic forces. The existence of an
invariant measure and the problem of Hamiltonization are studied, both within the
Lagrangian and the almost-Hamiltonian framework. In addition, we introduce prob-
lems of rolling of a ball with the gyroscope without slipping and twisting over a plane
and over a sphere in R

n as examples of gyroscopic SO(n)-Chaplygin systems. We
describe an invariant measure and provide examples of SO(n −2)-symmetric systems
(ball with gyroscope) that allow the Chaplygin Hamiltonization. In the case of addi-
tional SO(2)-symmetry, we prove that the obtained magnetic geodesic flows on the
sphere Sn−1 are integrable. In particular, we introduce the generalized Demchenko
case inRn , where the inertia operator of the system is proportional to the identity oper-
ator. The reduced systems are automatically Hamiltonian and represent the magnetic
geodesic flows on the spheres Sn−1 endowed with the round-sphere metric, under the
influence of a homogeneous magnetic field. The magnetic geodesic flow problem on
the two-dimensional sphere is well known, but for n > 3 was not studied before. We
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Vladimir.Dragovic@utdallas.edu

Borislav Gajić
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perform explicit integrations in elliptic functions of the systems for n = 3 and n = 4
and provide the case study of the solutions in both situations.
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1 Introduction

1.1 Nonholonomic Lagrangian Systems with Gyroscopic Forces

The main aim of this paper is to introduce and study a general setting for Chaplygin
systems with gyroscopic forces, with a special emphasis on the important subclass
of the Chaplygin systems with magnetic forces. This class of nonholonomic systems,
although quite natural, has not been treated before.

In his first PhD thesis, Vasilije Demchenko (Demchenko (1924); Dragović et al.
(2023)), studied the rolling of a ball with a gyroscope without slipping over a sphere in
R
3, by using the Voronec equations (Voronec 1901; Woronetz 1911, 1912). Inspired

by this thesis, we consider the rolling of a ball with a gyroscope without slipping and
twisting over a sphere inRn . This will provide us with examples of gyroscopic SO(n)-
Chaplygin systems that reduce to integrablemagnetic geodesic flows on a sphere Sn−1.

Let (Q,G) be a Riemannian manifold. Consider a Lagrangian nonholonomic sys-
tem (Q, L1,D), where the constraints define a nonintegrable distribution D on Q.
The constraints are homogeneous and do not depend on time. The Lagrangian, along
with the difference of the kinetic and potential energy, contains an additional term,
which is linear in velocities:

L1(q, q̇) = 1

2
(G(q̇), q̇) + (A, q̇) − V (q).
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Here and throughout the text, (·, ·)denotes the parringbetween appropriate dual spaces,
while A is a one-form on Q. The metric G is also considered as a mapping T Q →
T ∗Q.

A smooth path q(t) ∈ Q, t ∈ � is called admissible if the velocity q̇(t) belongs
to Dq(t) for all t ∈ �. An admissible path q(t) is a motion of the natural mechanical
nonholonomic system (Q, L1,D) if it satisfies the Lagrange-d’Alembert equations

δL1 =
(

∂L1

∂q
− d

dt

∂L1

∂q̇
, δq

)
= 0, for all δq ∈ Dq . (1.1)

Equation (1.1) are equivalent to the equations

δL =
(

∂L

∂q
− d

dt

∂L

∂ q̇
, δq

)
= F(q̇, δq), for all δq ∈ Dq , (1.2)

where L is the part of the Lagrangian L1 which does not contain the term linear in
velocities:

L(q, q̇) = 1

2
(G(q̇), q̇) − V (q).

Here the additional force F(q̇, δq) is defined as the exact two-form

F = dA,

where A is the one-form from the linear in velocities term of the Lagrangian L1. We
will subsequently consider a more general class of systems where an additional force
is given as a two-form which is neither exact nor even closed.

Systems with an additional force defined by a closed two-form F and without
nonholonomic constraints are verywell studied. The correspondingHamiltonian flows
are usually called magnetic flows or twisted flows. For the problem of integrability of
magnetic flows, see, e.g., Bolotin and Kozlov (2017), Bolsinov and Jovanović (2008),
Taimanov (206), Magazev et al. (2008) and Saksida (2002). Following tradition, we
introduce

Definition 1.1 Let F be a 2-form on Q. We refer to a system (Q, L,F,D) as a natural
mechanical nonholonomic system with gyroscopic forces. The additional gyroscopic
force F(q̇, δq) is called magnetic if the form F is closed,

dF = 0,

and in this case we say that the system (Q, L,F,D) is a natural mechanical
nonholonomic system with a magnetic force.

The equations of motion of a natural mechanical nonholonomic system with a
gyroscopic force (Q, L,F,D) are given in (1.2).
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Starting from the notion of G-Chaplygin systems for nonholonomic systems with-
out gyroscopic forces [see Bakša (1975), Stanchenko (1989), Koiller (1992), Bloch
et al. (1996), Cantrijn et al. (2002), Garcia-Naranjo andMarrero (2020)], we introduce
the following.

Definition 1.2 Assume that Q is a principal bundle over S with respect to a free action
of a Lie group G, π : Q → S = Q/G, and that L and F are G-invariant. Suppose
that D is a principal connection, that is, D is G-invariant, transverse to the orbits of
the G-action, and rankD = dim S. Then we refer to (Q, L,D, G,F) as a gyroscopic
G-Chaplygin system.

Obviously, a gyroscopic G-Chaplygin system (Q, L,D, G,F) is G-invariant and
reduces to the tangent space of the base-manifold S = Q/G.

1.2 Outline and Results of the Paper

In Sect. 2 we consider gyroscopic nonholonomic systems on fiber spaces. In Sect. 3
we employ them to describe a reduction procedure for the gyroscopic G-Chaplygin
systems (Theorem 3.1). The Chaplygin systems have a natural geometrical framework
as connections on principal bundles [see Koiller (1992)]. On the other hand, nonholo-
nomic systems were incorporated into the geometrical framework of the Ehresmann
connections on fiber spaces in Bloch et al. (1996). In this paper, we combine the
approach ofBloch et al. (1996)with theVoronec nonholonomic equations, seeVoronec
(1901).

In Sect. 4we derive the equations ofmotion of the reduced gyroscopicG-Chaplygin
systems in an almost-Hamiltonian form and study the existence of an invariantmeasure
(Theorem 4.1). A closely related problem is the Hamiltonization of nonholonomic
systems [see Chaplygin (1911), Stanchenko (1989), Borisov and Mamaev (2001),
Borisov and Mamaev (2008), Balseiro and Garcia-Naranjo (2012), Bolsinov et al.
(2011), Borisov et al. (2014), Bolsinov et al. (2015), Ehlers et al. (2005), Cantrijn
et al. (2002), Fedorov and Jovanović (2004), Jovanović (2019), Jovanović (2018)]. In
Sect. 5 we consider the Chaplygin reducing multiplier and the time reparametrization
of magnetic Chaplygin systems, both within the Lagrangian and the Hamiltonian
framework (see Theorem 5.1).

In Sect. 6 we briefly review the results about integrable nonholonomic problems
of rolling of a ball with the gyroscope, without slipping and twisting, over a plane
and over a sphere in the three-dimensional space. In particular, we present the Dem-
chenko integrable case (Demchenko 1924) and the Zhukovskiy condition for the
system (Zhukovskiy 1893).

In Sect. 7 we introduce the problems of rolling of a ball with a gyroscope, without
slipping and twisting, over a plane and over a sphere in Rn . We describe the reduction
(Propositions 7.1, 7.2) and an invariantmeasure (Proposition 7.3) of these newsystems.
The obtained systems are examples of gyroscopic SO(n)-Chaplygin systems that
reduce to magnetic flows.

In Sect. 8 we provide examples of SO(n − 2)-symmetric systems (ball with gyro-
scope) that allow the Chaplygin Hamiltonization (Theorem 8.1). We also prove the
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integrability of the obtained magnetic geodesic flows on a sphere in R
n, n ≥ 3 in

the case of SO(2) × SO(n − 2)-symmetry (Theorem 8.2). Note that the phase space
of a nonholonomic system that is integrable after the Chaplygin Hamiltonization is
foliated by d-dimensional invariant tori, where the system is subject to a nonuniform
quasi-periodic motion of the form

ϕ̇1 = ω1/�(ϕ1, . . . , ϕd), . . . , ϕ̇d = ωd/�(ϕ1, . . . , ϕd), � > 0, (1.3)

with some d, d ≤ n. In Theorem 8.2 we present two examples of such systems, one
with d = 2 and n = 3 and another one with d = 3 and any n > 3.

Finally, in Sect. 9 we consider the case when the inertia operator for systems is
SO(n)-invariant, i.e., it satisfies the Zhukovskiy condition in R

n with an additional
nontwisting condition. We will refer to such systems as the generalized Demchenko
case without twisting inRn . The reduced systems are automatically Hamiltonian. They
represent themagnetic geodesic flow on a sphere Sn−1 endowedwith the round-sphere
metric, under a influence of the homogeneous magnetic field placed in the ambient
space Rn . The magnetic geodesic flow problem on a two-dimensional sphere is well
known [see Saksida (2002)]. However, themagnetic geodesic flow problems for n > 3
have not been studied before. We prove the complete integrability of the system on
the three-dimensional sphere (Theorem 9.3). We conclude the paper with a detailed
analysis of the motion of the generalized Demchenko systems without twisting for
n = 3 and n = 4 in terms of elliptic functions.

2 Nonholonomic Systems with Gyroscopic Forces on Fibred Spaces

2.1 TheVoronec Equations

Following Demchenko1 (Demchenko 1924; Dragović et al. 2023); we recall the
Voronec equations for nonholonomic systems (Voronec 1901). We will then employ
them to formulate the reduced equations of gyroscopic Chaplygin systems. Here we
assume that the constraints may be time-dependent and nonhomogeneous.

Let q = (q1, . . . , qn+k) be local coordinates of the configuration space Q. Consider
a nonholonomic system with kinetic energy T = T (t, q, q̇), generalized forces Qs =
Qs(t, q, q̇) that correspond to coordinates qs , and time-dependent nonhomogeneous
nonholonomic constraints

q̇n+ν =
n∑

i=1

aνi (q, t)q̇i + aν(q, t), ν = 1, 2, . . . , k. (2.1)

Let Tc be the kinetic energy T after imposing the constraints (2.1). Let Kν be the
partial derivatives of the kinetic energy T with respect to q̇ν , ν = 1, 2, . . . , k, restricted

1 Demchenko’s PhD advisor, Anton Bilimović (1879–1970), was a distinguished student of Peter
Vasilievich Voronec (1871–1923) and one of the founders of Belgrade’s Mathematical Institute. We note
that some recent results [see Borisov and Tsiganov (2020); Borisov et al. (2021)] are inspired by Bilimović’s
work in nonholonomic mechanics (Bilimovitch 1913a, b, 1914; Bilimovic 1915; Bilimovich 1916).
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to the constrained subspace. We assume that the constraints (2.1) are imposed after
the differentiation and get:

Tc(t, q1, . . . , qn+k, q̇1, . . . , q̇n) = T (t, q, q̇)|q̇n+ν=∑n
i=1 aνi (q,t)q̇i +aν (q,t),

Kν(t, q1, . . . , qn+k, q̇1, . . . , q̇n) = ∂T

∂ q̇n+ν

(t, q, q̇)|q̇n+ν=∑n
i=1 aνi (q,t)q̇i +aν (q,t).

The equations of motion of the given nonholonomic system can be presented in a
form which does not use the Lagrange multipliers:

d

dt

∂Tc

∂q̇i
= ∂Tc

∂qi
+ Qi +

k∑
ν=1

aνi

(
∂Tc

∂qn+ν

+ Qn+ν

)
+

k∑
ν=1

Kν

( n∑
j=1

A(ν)
i j q̇ j + A(ν)

j

)
.

(2.2)

The derivation of these equations is based on the Lagrange–d’Alembert principle
and follows Voronec (1901). Here i = 1, . . . , n. The components A(ν)

i j and A(ν)
i are

functions of the time t and the coordinates q1, . . . , qn+k given by

A(ν)
i j =

(
∂aνi

∂q j
+

k∑
μ=1

aμ j
∂aνi

∂qn+μ

)
−

(
∂aν j

∂qi
+

k∑
μ=1

aμi
∂aν j

∂qn+μ

)
,

A(ν)
i =

(
∂aνi

∂t
+

k∑
μ=1

aμ

∂aνi

∂qn+μ

)
−

(
∂aν

∂qi
+

k∑
μ=1

aμi
∂aν

∂qn+μ

)
.

When all considered objects do not depend on the variables qn+ν, ν = 1, 2, . . . , k,
we have a Chaplygin system. Then Eq. (2.2) are called the Chaplygin equations. The
Voronec and the Chaplygin equations, along with the equations of nonholonomic
systems written in terms of quasi-velocities, known as the Euler–Poincaré–Chetayev–
Hamel equations, form core tools in the study of nonholonomic mechanics [see
Neimark and Fufaev (1972), Bloch et al. (1996), de León (2012), Ehlers et al. (2005),
Ehlers and Koiller (2019), Zenkov (2016)].

2.2 The Ehresmann Connections and Systems with Gyroscopic Forces

Consider a natural mechanical nonholonomic system with a gyroscopic force
(Q, L,F,D). After Bloch et al. (1996), we assume that Q has a structure of a fiber
bundle π : Q → S over a base manifold S and that the distribution D is transverse to
the fibers of π :

Tq Q = Dq ⊕ Vq , Vq = ker dπ(q).

The space Vq is called the vertical space at q. The distribution D can be seen as the
kernel of a vector-valued one-form A on Q, which defines the Ehresmann connection,
that satisfies
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(i) Aq : Tq Q → Vq is a linear mapping, q ∈ Q;
(ii) A is a projection: A(Xq) = Xq , for all Xq ∈ Vq .

The distribution D is called the horizontal space of the Ehresmann connection A.
By Xh and Xv we denote the horizontal and the vertical component of the vector field
X ∈ X(Q). The curvature B of the connection A is a vertical vector-valued two-form
defined by

B(X , Y ) = −A([Xh, Y h]).

Let dim Q = n + k and dim S = n. There exist local “adapted” coordinates
q = (q1, . . . , qn+k) on Q, such that the projection π : Q → S and the constraints
defining D are given by

π : (q1, . . . , qn, qn+1, . . . , qn+k) �−→ (q1, . . . , qn),

q̇n+ν =
n∑

i=1

aνi (q)q̇i , ν = 1, . . . , k.

Here (q1, . . . , qn) are the local coordinates on S. Then, locally, we also have

A =
k∑

ν=1

ων ∂

∂qn+ν

, ων = dqn+ν −
n∑

i=1

aνi dqi ,

Xh =
( n+k∑

l=1

Xl
∂

∂ql

)h

=
n∑

i=1

Xi
∂

∂qi
+

k∑
ν=1

n∑
i=1

aνi Xi
∂

∂qn+ν

,

Xv =
( n+k∑

l=1

Xl
∂

∂ql

)v

=
k∑

ν=1

(
Xn+ν −

n∑
i=1

aνi Xi

)
∂

∂qn+ν

,

B

(
∂

∂qi
,

∂

∂q j

)
=

k∑
ν=1

Bν
i j

∂

∂qn+ν

, F =
∑

1≤s<l≤n+k

Fsldqs ∧ dql .

Here Bν
i j (q) = A(ν)

i j (q), where A(ν)
i j (q) come from the Voronec equations (2.2) with

homogeneous constraints, which do not depend on time. The generalized forces Qs =
Qs(q, q̇), s = 1, . . . , n + k are the sums of the potential and the gyroscopic forces

Qs = QV
s + QF

s , QV
s = −∂V /∂qs, QF

s =
n+k∑
l=1

Fsl q̇l .

The Voronec equations (2.2) take the form:

d

dt

∂Lc

∂q̇i
= ∂Lc

∂qi
+

k∑
ν=1

aνi
∂Lc

∂qn+ν

+
k∑

ν=1

n∑
j=1

∂L

∂q̇n+ν

Bν
i j q̇ j + QF

i +
k∑

ν=1

aνi QF
n+ν,

(2.3)
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(i = 1, . . . , n), where Lc is the constrained Lagrangian Lc = L(q, q̇h) = Tc − V . In
a compact form, the equations can be expressed as2:

δLc = FL(q, q̇)(B(q̇, δq)) + F(q̇, δq) (2.4)

for all virtual displacements

δq =
n+k∑
s=1

δqs
∂

∂qs
∈ Dq .

Here δLc is the variational derivative of the constrained Lagrangian along the variation
δq and FL is the fiber derivative of L:

δLc =
(

∂Lc

∂q
− d

dt

∂Lc

∂q̇
, δq

)
=

n+k∑
s=1

(
∂Lc

∂qs
− d

dt

∂Lc

∂ q̇s

)
δqs,

FL(q, X)(Y ) = d

ds
|s=0L(q, X + sY ), X , Y ∈ Tq Q,

FL(q, q̇)(B(q̇, δq)) =
k∑

ν=1

∂L

∂q̇n+ν

(q, q̇)Bν(q̇, δq).

See Bloch et al. (1996) for the case without gyroscopic two-form F.
Note that, even in the case when the two form F is exact F = dA, it is convenient

to use the Lagrangian L and the form of Eq. (2.4), rather then the Lagrangian L1 with
the term linear in velocities.

Remark 2.1 In the case when the constraints are nonhomogeneous and time dependent
(2.1), the coefficients A(ν)

i j , A(ν)
i can be also interpreted as the components of the

curvature of the Ehresmann connection of the fiber bundle π : Q × R → S × R [see
Bakša (2012)].

3 The Gyroscopic Chaplygin Systems

In addition to the assumptions from Sect. 2.2, we now assume that the fibration π :
Q → S is determined by a free action of a k-dimensional Lie group G on Q, so
that S = Q/G and that the constraint distribution D, the gyroscopic two-form F and
the Lagrangian L = T − V are G-invariant. Then A is a principal connection and
the nonholonomic system (2.4) is G-invariant and reduces to the tangent bundle of
the base manifold S by the identification T S = D/G. More precisely, we use the
following definition.

2 One can compare the form of Eq. (2.4) with the compact form of the Voronec equations obtained from
the Voronec principle, see, e.g., Dragović et al. (2023).
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Definition 3.1 LetG, V , and F be a G-invariant metric, a potential and a two-form on
Q. The reduced metric g, the reduced potential v, and the reduced two-form f on S
are defined by:

g(X , Y )|x = G(Xh, Y h)|q , v(x) = V (q), f(X , Y )|x = F(Xh, Y h)|q .

Here Xh, Y h are the horizontal lifts of X , Y at a point q ∈ π−1(x) defined by

dπ |q(Xh) = X , dπ |q(Y h) = Y , Xh, Y h ∈ Dq .

Note that we do not impose any additional assumptions on F. In particular, F does
not need to be of the form F = π∗w, where w is a 2-form on the base manifold S.

Equation (2.4) are G-invariant and they reduce to T S

δl =
(

∂l

∂x
− d

dt

∂l

∂ ẋ
, δx

)
= JK(ẋ, δx) + f(ẋ, δx) for all δx ∈ Tx S, (3.1)

where

l = 1

2
(g(ẋ), ẋ) − v(x)

is the reduced Lagrangian and the term3 JK(·, ·) depends on the metric and the cur-
vature of the connection, induced by FL(B(·, ·)). The term JK(·, ·) can be described
as follows. Consider the (0,3)-tensor field 
 on S defined by


(X , Y , Z)|x = FL(q, Xh)(B(Y h, Zh))|q , q ∈ π−1(x), (3.2)

where Xh, Y h, Zh are the horizontal lifts of vector fields X , Y , Z on S. Then 
 is
skew-symmetric with respect to the second and the third argument, and

JK(X , Y )|(x,ẋ) = 
(ẋ, X , Y ). (3.3)

Remark 3.1 Let us explain the notation for the JK-term. It is obtained from the natural
paring of the momentum mapping of the G-action J : T Q → g∗ and the curvature
K : T Q × T Q → g of the principal connection A, where g is the Lie algebra of
the Lie group G. Namely, we have a canonical identification of the vertical space
Vq with the Lie algebra g. Then the curvature of the Ehresmann connection B is g-
valued and coincides with the curvature K of the principal connection. Also, within
this identification, the fiber derivative FL(q, q̇) in the direction of the vertical vector
ξ ∈ g ∼= Vq becomes the value of themomentummapping J of the G-action evaluated
at ξ . In this way the expression (3.2), as the natural paring of the tangent bundle
momentum mapping J and the curvature two-form K , defines a (0, 3)-tensor field 


on S. On the other hand, the JK-term defined by (3.3) is a semi-basic 2-form on T S.

3 Let us note that in Ehlers et al. (2005), the term “JK" is used for the associated semi-basic two-form σ

on T ∗S given below.
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Definition 3.2 We refer to (S, l, JK, f) as a reduced gyroscopic G-Chaplygin system.
In the case when f is a closed form, we call it a reduced magnetic G-Chaplygin system.

The equations of motion of the reduced gyroscopic G-Chaplygin system
(S, l, JK, f) are described in (3.1).

We summarize the above considerations in the following statement.

Theorem 3.1 The solutions of the gyroscopic G-Chaplygin system (Q, L,D, G,F)

project to solutions of the reduced gyroscopic G-Chaplygin system (S, l, JK, f). Let
x(t) be a solution of the reduced system (3.1) with the initial conditions x(0) = x0,
ẋ(0) = X0 ∈ Tx0 S and let q0 ∈ π−1(x0). Then the horizontal lift q(t) of x(t) through
q0 is the solution of the original system (1.2), i.e., (2.4), with the initial conditions
q(0) = x0, q̇(0) = Xh

0 ∈ Dq0 .

Remark 3.2 If f is an exact magnetic form, e.g., f = da, then Eq. (3.1) are equivalent
to

δl1 =
(

∂l1
∂x

− d

dt

∂l1
∂ ẋ

, δx

)
= JK(ẋ, δx) for all δx ∈ Tx S, (3.4)

where the Lagrangian l1, given by

l1 = 1

2
(g(ẋ), ẋ) + (a, ẋ) − v(x),

has the linear term (a, ẋ).

Remark 3.3 Within the affine connection approach to the Chaplygin reduction, it is
convenient to introduce (1, 2)-tensor fields B and C defined by [see Koiller (1992),
Cantrijn et al. 2002]


(X , Y , Z) = g(B(X , Y ), Z) = g(X ,C(Y , Z)).

Gajić and Jovanović (2019a), the tensor field B was used, while here we work with
the skew-symmetric tensor C. Note that C is equal to the negative gyroscopic tensor
T defined by Garcia-Naranjo (2019a, b).

Note that if F is magnetic, then f is not necessarily magnetic. Indeed, we have

Proposition 3.1 Assume that the form F is closed. Then the reduced form f is closed
if and only if

F([Xh, Y h] − [X , Y ]h, Zh) + F([Zh, Xh] − [Z , X ]h, Y h)

+F([Y h, Zh] − [Y , Z ]h, Xh) = 0, (3.5)

for all vector fields X, Y , Z on S. In the adapted coordinates q = (q1, . . . , qn+k) on
Q described in Sect. 2.2, the condition (3.5) is equivalent to the equations

k∑
ν=1

(
Bν

i j Fp,n+ν + Bν
pi Fj,n+ν + Bν

j p Fi,n+ν

)
= 0, 1 ≤ i, j, p ≤ n. (3.6)
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In particular, if the curvature B of the Ehresmann connection vanishes (equivalently,
the curvature K of the principal connection vanishes), then f is closed.

Proof Since F is magnetic, we have

dF(X ′, Y ′, Z ′) = X ′F(Y ′, Z ′) + Y ′F(Z ′, X ′) + Z ′F(X ′, Y ′)
− F([X ′, Y ′], Z ′) − F([Z ′, X ′], Y ′) − F([Y ′, Z ′], X ′) = 0,

for arbitrary vector fields X ′, Y ′, Z ′ on Q. On the other hand, by using the above
relation and the definition of f that depends on the horizontal distribution D, we get

df(X , Y , Z)|x =
(

X f(Y , Z) + Y f(Z , X) + Z f(X , Y )

− f([X , Y ], Z) − f([Z , X ], Y ) − f([Y , Z ], X)

)∣∣∣∣
x

=
(

XhF(Y h, Zh) + Y hF(Zh, Xh) + ZhF(Xh, Y h)

− F([X , Y ]h, Zh) − F([Z , X ]h, Y h) − F([Y , Z ]h, Xh)

)∣∣∣∣
q

=
(
F([Xh, Y h], Zh) + F([Zh, Xh], Y h) + F([Y h, Zh], Xh)

− F([X , Y ]h, Zh) − F([Z , X ]h, Y h) − F([Y , Z ]h, Xh)

)∣∣∣∣
q

,

where Xh, Y h, Zh are the horizontal lifts of the vector fields X , Y , Z on S, q ∈
π−1(x) is arbitrary. Thus, df = 0 if and only if (3.5) is satisfied. Consider the adapted
coordinates q = (q1, . . . , qn+k) on Q described in Sect. 2.2 and take

X = ∂

∂qi
, Y = ∂

∂q j
, Z = ∂

∂qp
, 1 ≤ i, j, p ≤ n.

Then the equation df(X , Y , Z) = 0 takes the form (3.6). �
Remark 3.4 In the special case, when F = π∗w, where w is a two-form on the base
manifold S, Eq. (3.6) are automatically satisfied (Fi,n+ν = 0, 1 ≤ i ≤ n, 1 ≤ ν ≤ k).
In this special case f = w, and dF = 0 if and only if df = 0.

4 Almost Hamiltonian Description and an Invariant Measure

4.1 Almost Symplectic Manifolds

Recall that an almost symplectic structure is a pair (M, ω) of a manifold M and a
nondegenerate 2-form ω [see Libermann and Marle (1987)]. Here we do not assume
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that the form ω is closed, in contrast to the symplectic case. As in the symplectic
case, since ω is nondegenerate, to a given function H one can associate the almost
Hamiltonian vector field X H by the identity

iX H ω(·) = ω(X H , ·) = −d H(·).

The almost symplectic structure (M, ω) is locally conformally symplectic, if in a
neighborhood of each point x on M , there exists a function f different from zero
such that f ω is closed. If f is defined globally, then (M, ω) is conformally symplectic
(Libermann and Marle 1987).

4.2 Reduced Flows on Cotangent Bundles

Let (x1, . . . , xn) be local coordinates on S in which the metric g is given by the
quadratic form

∑
i j gi j dxi ⊗ dx j and the components of the (1,2)-tensor C are Ck

i j
(see Remark 3.3). Then the Lagrangian, the gyroscopic two-form and the JK-term
read as follows

l(x, ẋ) = 1

2

∑
gi j ẋi ẋ j − v(x), f =

∑
i< j

fi j dxi ∧ dx j ,

JK(X , Y )|(x,ẋ) = g(ẋ,C(X , Y )) =
∑

k,l,i, j

gklC
k
i j Xi Y j ẋl .

We also introduce the Hamiltonian function

h(x, p) = 1

2
(p, g−1(p)) + v(x) = 1

2

∑
gi j pi p j + v(x),

as the usual Legendre transformation of l. Here (p1, . . . , pn, x1, . . . , xn) are the
canonical coordinates of the cotangent bundle T ∗S,

pi = ∂l/∂ ẋi =
∑

j

gi j ẋ j ,

and {gi j } is the inverse of the metric matrix {gi j }. For simplicity, the same symbol
denotes a function on the base manifold f : S → R and its lift to the cotangent bundle
ρ∗ f = f ◦ ρ : T ∗S → R, where ρ : T ∗S → S is the canonical projection.

In canonical coordinates Eq. (3.1) takes the form

ẋi = ∂h

∂ pi
=

n∑
j=1

gi j p j , (4.1)

ṗi = − ∂h

∂xi
+ �i (x, p) +

n∑
j=1

fi j (x)
∂h

∂ p j
. (4.2)
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Here, the JK-term is given in the form

�i (x, p) = JK
(

∂

∂xi
, ẋ

)∣∣∣∣
ẋ=g−1(p)

=
n∑

k,l, j=1

gkl ẋlC
k
i j (x)ẋ j |ẋ=g−1(p)

=
n∑

j,k=1

Ck
i j (x)pk

∂h

∂ p j
. (4.3)

Let z = (x, p). The reduced Eqs. (4.1), (4.2) on the cotangent bundle T ∗S can be
written in the almost Hamiltonian form

ż = Xred , iXred (� + σ + ρ∗f) = −dh, (4.4)

where � is the canonical symplectic form on T ∗S, σ is a semi-basic form defined by
the JK term [see Cantrijn et al. (2002), Stanchenko (1989)]:

� = dp1 ∧ dx1 + · · · + dpn ∧ dxn, (4.5)

σ =
∑

1≤i< j≤n

n∑
k=1

Ck
i j (x)pkdxi ∧ dx j . (4.6)

4.3 Invariant Measure

The existence of an invariant measure for nonholomic problems is well studied [see
Fedorov (1988), Veselov and Veselova (1988), Kozlov (1988), Fedorov and Kozlov
(1995), Zenkov and Bloch (2003), Fasso et al. (2019), Jovanović (2015), Fedorov et al.
(2015)]. We will consider smooth measures of the form μ = ν �n , where �n [see
(4.5)] is the standard measure on the cotangent bundle T ∗S and ν is a nonvanishing
smooth function, called the density of the measure μ.

In absence of potential and gyroscopic forces, it was proved in Cantrijn et al. (2002)
that Eqs. (4.1), (4.2) have an invariant measure if and only if its density is basic, i.e.,
ν = ν(x). Then the systemwith a potential force v(x) also preserves the samemeasure
[see Stanchenko (1989), Cantrijn et al. (2002)].

For f = 0, the existence of the basic density ν = ν(x) is equivalent to the condition
that the one-form

� =
∑
i, j

C j
i j (x)dxi , i.e., �(X)|x = trC(X , ·)|x , X ∈ Tx S, (4.7)

is exact: there exists a function λ such that � = dλ. Then the function ν(x) =
exp(λ(x)) is the density of an invariant measure [see Cantrijn et al. (2002), Garcia-
Naranjo and Marrero (2020)]. The statement formulated in terms of the tensor field
B is given in Cantrijn et al. (2002), while in Garcia-Naranjo and Marrero (2020) it is
formulated in terms of the gyroscopic tensor T = −C. An example of a system with a
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potential force and with an invariant nonbasic measure is also given in Garcia-Naranjo
and Marrero (2020).

In the presence of the gyroscopic form f we have a similar situation.

Theorem 4.1 The reduced gyroscopic Chaplygin equations (4.1), (4.2) have an invari-
ant measure μ = ν �n with a basic density ν(x) if and only if the one-form (4.7) is
exact � = dλ. Then the function ν = exp(λ(x)) is the density of the invariant measure.

In other words, according to Cantrijn et al. (2002), Garcia-Naranjo and Marrero
(2020), a Chaplygin systemwith a gyroscopic term possesses a basic invariantmeasure
if and only if the same Chaplygin system without gyroscopic term preserves the same
basic invariant measure.

Proof The Lie derivative LXred (μ) vanishes if and only if the divergence of the vector
field νXred with respect to the canonicalmeasure equals to zero. By using the identities

∂

∂ pi

∂h

∂ p j
= g ji ,

∑
i, j

fi j g
ji = 0,

∑
i j

Ck
i j g

ji = 0,

we get:

div(νXred) =
n∑

i=1

∂

∂xi

(
ν

∂h

∂ pi

)

+
∑

i

∂

∂ pi

(
ν

(
− ∂h

∂xi
+

n∑
k, j=1

Ck
i j (x)pk

∂h

∂ p j
+

n∑
j=1

fi j (x)
∂h

∂ p j

))

=
n∑

i=1

(
∂ν

∂xi
− ν

n∑
j=1

C j
i j (x)

)
∂h

∂ pi
.

Since ẋi = ∂h
∂ pi

is arbitrary for each fixed x , the vector filed Xred preserves the
measure ν �n if and only if

ν−1 ∂ν

∂xi
=

n∑
j=1

C j
i j (x), i = 1, . . . , n,

that is, if and only if

d ln ν =
n∑

i=1

ν−1 ∂ν

∂xi
dxi =

n∑
i, j=1

C j
i j (x)dxi = �.

Note that, although the proof is derived in local coordinates, all considered objects are
global and the identity d ln ν = � holds globally. �
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5 Chaplygin Hamiltonization for Systems withMagnetic Forces

5.1 Chaplygin Multipliers in the Lagrangian Framework

We consider the reduced Chaplygin systems (3.1) and study the question of their
transformation into a Lagrangian system after a time reparametrization.

Let us consider a time substitution dτ = N (x)dt , where N (x) is a differentiable
nonvanishing function on S. Denote x ′ = dx/dτ = N−1 ẋ .

We first treat the exact case: f = da (see Remark 3.2). Locally, the one-form a is
given by a = ∑

i ai (x)dxi and

l1(x, ẋ) = 1

2

∑
gi j ẋi ẋ j +

∑
i

ai ẋi − v(x).

The Lagrangians l and l1 in the coordinates (x, x ′) are denoted l∗ and l∗1 respectively
and take the form

l∗(x, x ′) = 1

2

∑
N 2gi j x ′

i x ′
j − v(x), (5.1)

l∗1 (x, x ′) = 1

2

∑
N 2gi j x ′

i x ′
j +

∑
i

Nai (x)x ′
i − v(x). (5.2)

Following Chaplygin (1911), we are looking for a nowhere vanishing function
N (x), called a Chaplygin reducing multiplier such that the reduced Chaplygin system
(3.4)

d

dt

∂l1
∂ ẋi

= ∂l1
∂xi

+
n∑

k,l, j=1

Ck
i j (x)gkl ẋl ẋ j (5.3)

after a time reparametrization dτ = N (x)dt becomes the Lagrangian system

d

dτ

∂l∗1
∂x ′

i
= ∂l∗1

∂xi
, i = 1, . . . , n. (5.4)

Equivalently, we can use the Lagrangians l and l∗. Let

f = da =
∑
i< j

fi j dxi ∧ dx j , fi j = ∂a j

∂xi
− ∂ai

∂x j
,

f∗ = d(Na) =
∑
i< j

f ∗
i j dxi ∧ dx j , f ∗

i j = N fi j + a j
∂N
∂xi

− ai
∂N
∂x j

.

Then, we are looking for a nowhere vanishing functionN (x), such that the reduced
Chaplygin system
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d

dt

∂l

∂ ẋi
= ∂l

∂xi
+

n∑
k,l, j=1

Ck
i j (x)gkl ẋl ẋ j +

n∑
j=1

fi j (x)ẋ j (5.5)

after a time reparametrization dτ = N (x)dt becomes the Lagrangian system with
magnetic forces

d

dτ

∂l∗

∂x ′
i

= ∂l∗

∂xi
+

n∑
j=1

f ∗
i j x ′

j , i = 1, . . . , n. (5.6)

Proposition 5.1 Suppose that f is exact: f = da. The reduced equations of the Chap-
lygin system with a linear term in velocities (5.3) after a time reparametrization
dτ = N (x)dt becomes the Lagrangian system (5.4) if and only if the corresponding
system without the linear term allows the Chaplygin multiplierN (x) and dN ∧a = 0,
that is, if

a j
∂N
∂xi

= ai
∂N
∂x j

. (5.7)

Note that conditions (5.7) imply that

f∗ = d(Na) = Nda + dN ∧ a = N f

and

d(N f) = dN ∧ f = 0. (5.8)

Let us now turn to the nonexact case. Thus, we assume now f is not exact. In this
case we set

f∗ = N f . (5.9)

Proposition 5.2 Suppose that f is not exact. The equations of motion of the reduced
gyroscopic Chaplygin system (5.5) after a time reparametrization dτ = Ndt become
the Lagrangian equations with gyroscopic forces (5.6), where f ∗ is given by (5.9) if
and only if the corresponding system without gyroscopic forces allows the Chaplygin
multiplier N (x).

Propositions 5.1 and 5.2 follow from the derivation given below for theHamiltonian
setting as indicated in Remark 5.1.

Note that the gyroscopic system (5.6) is magnetic if the form (5.9) is closed. In
particular, if f is closed, but not exact, then the Lagrangian system (5.6) is magnetic
only if the condition (5.8) holds. The condition (5.8) is always satisfied when n = 2.
This is a rather strong condition for n ≥ 3. When n = 3, condition (5.8) reduces to
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the partial differential equation

f23
∂N
∂x1

+ f31
∂N
∂x2

+ f12
∂N
∂x3

= 0.

Finally, it is important to note that even if we consider the exact case f = da and
the Lagrangians that are linear in velocities, instead of Eqs. (5.3) and (5.4) and the
gyroscopic form defined by f∗ = d(Na) it is more natural to consider Eqs. (5.5) and
(5.6) with f∗ defined as f∗ = N f = Nda. In the latter case, for n = 2, the form f∗ is
magnetic regardless of (5.7).

5.2 Conformally Symplectic Structures

The existence of an invariantmeasure is closely related to theHamiltonization problem
for magnetic G-Chaplygin systems. We first consider G-Chaplygin systems without
the gyroscopic term, see Cantrijn et al. (2002), Stanchenko (1989) and Ehlers et al.
(2005). For f ≡ 0, the reduced system (4.4) takes the form

ż = X0
red , iX0

red
(� + σ) = −dh. (5.10)

Suppose that the form�+σ is conformally symplectic, i.e., there exists a nonvanishing
function N , such that d(N (� + σ)) = 0. Since d� = 0, the last relation can be
rewritten as:

dN ∧ � + dN ∧ σ + Ndσ = 0. (5.11)

After the time rescaling dτ = Ndt , Eq. (5.10) reads

z′ = N−1 ż = N−1X0
red =: X̃0

red .

The last relation introduces the rescaled vector field X̃0
red , which is Hamiltonian:

i X̃0
red

N (� + σ) = −dh.

Therefore, the system in the new time becomes theHamiltonian systemwith respect
to the symplectic formN (� + σ). Then, according to the Liouville theorem (Arnold
1974), the Hamiltonian vector field X̃0

red preserves the standard measure N n(� +
σ)n = N n�n ,

LX̃0
red

(N n�n) = d(i X̃0
red

(N n�n)) = 0.

Thus, for the almost Hamiltonian vector field X0
red = N X̃0

red we have

LX0
red

(N n−1�n) = d(iX0
red

(N n−1�n)) = d(i X̃0
red

(N n�n)) = 0,
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and the flow of X0
red preserves the measure N n−1�n .

Now, we consider G-Chaplygin systems with a gyroscopic term.

Proposition 5.3 The function N = N (x) is a conformal factor for the almost sym-
plectic form �+σ +ρ∗f if and only if it is a conformal factor for the almost symplectic
form � + σ and the form f∗ = N f is magnetic.

Proof The form � + σ + ρ∗f is conformally symplectic with a conformal factorN if
and only if

dN ∧ � + dN ∧ σ + Ndσ + dN ∧ ρ∗f + Nρ∗df = 0. (5.12)

Assume that N = N (x) is basic. Since only two last terms are basic, equation
(5.12) is satisfied if and only if N (x) satisfies (5.11) and f∗ = N f is closed. �

Consider the reduced gyroscopic Chaplygin system (4.4). If N = N (x) is a con-
formal factor for �+ σ +ρ∗f , as above we have that the rescaled vector field X̃red =
N−1Xred is Hamiltonian and preserves the measure N n(� + σ + ρ∗f)n = N n�n .
Thus, the reduced gyroscopic Chaplygin system ż = Xred preserves the same mea-
sure as in the case of the absence of gyroscopic forces. This is in accordance with
Theorem 4.1.

The existence of a basic conformal factor, as wewill see in Sect. 5.3, is equivalent to
the condition thatN is the classical Chaplyginmultiplier in the Lagrangian framework
described above.

5.3 Chaplygin Multipliers: From the Lagrangian to the Hamiltonian Framework

In the study of nonholonomic rigid body systems in R
n [see Fedorov and Jovanović

(2004), Jovanović (2010), Jovanović (2018), Jovanović (2019)], the Chaplygin time
reparametrization of Lagrangian systems was transported into the Hamiltonian frame-
work via the Legendre transformation. Similarly, consider the time substitution
dτ = N (x)dt and the Lagrangian function l∗(x, x ′) given in (5.1). Then the conjugate
momenta are

p̃i = ∂l∗/∂x ′
i = N 2

∑
j

gi j x ′
j ,

and the corresponding Hamiltonian is

h∗(x, p̃) = 1

2

∑ 1

N 2 gi j p̃i p̃ j + v(x).
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The following diagram commutes:

T S{x, ẋ} x ′=N−1 ẋ−−−−−−→ T S{x, x ′}
p=g(ẋ)

⏐⏐� ⏐⏐� p̃=N 2g(x ′)

T ∗S{x, p} p̃= N p−−−−→ T ∗S{x, p̃}.

(5.13)

Let �̃ be the canonical symplectic form on T ∗S with respect to the coordinates
(x, p̃). Then

�̃ =
∑

i

d p̃i ∧ dxi = N� + dN ∧ θ, θ = p1dx1 + . . . pndxn, � = dθ.

(5.14)

Thus, h and h∗ represent the same Hamiltonian function on T ∗S written in two
coordinate systems. These coordinate systems are related by the noncanonical change
of variables

(x, p) �−→ (x, p̃) = (x,N p). (5.15)

Assume that the two-form f∗ = N f is closed on S.
By using the commutative diagram (5.13), we get that the function N is a Chap-

lygin reducing multiplier for the reduced gyroscopic Chaplygin system (5.5) (see
Sect. 5.1) if and only if the almost Hamiltonian equations (4.1), (4.2), after the time
reparametrization dτ = N (x)dt and the coordinate transformation (5.15) become the
Hamiltonian equations

x ′
i = ∂h∗

∂ p̃i
(x, p̃), p̃′

i = −∂h∗

∂xi
(x, p̃) + N

∑
j

fi j (x)
∂h∗

∂ p̃ j
(x, p̃) (5.16)

with respect to the twisted symplectic form

�̃ + ρ∗f∗ =
∑

i

d p̃i ∧ dxi + N
∑
i< j

fi j dxi ∧ dx j . (5.17)

Let N be a nonvanishing function and consider the time reparametrization dτ =
N (x)dt . Eq. (5.16) in the original time t after the coordinate transformation (5.15)
takes the form
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ẋi = N ∂h∗

∂ p̃i
(x, p̃) = NN−2

∑
j

gi j p̃ j =
∑

j

gi j p j , (5.18)

˙̃pi = −N ∂h∗

∂xi
(x, p̃) + N 2

∑
j

fi j (x)
∂h∗

∂ p̃ j
(x, p̃) (5.19)

= −N
(

1

2N 2

∑
j,k

∂g jk

∂xi
p̃ j p̃k − 1

N 3

∂N
∂xi

∑
j,k

g jk p̃ j p̃k + ∂v

∂xi
−

∑
j,k

fi j g
jk pk

)

= −N
(
1

2

∑
j,k

∂g jk

∂xi
p j pk − 1

N
∂N
∂xi

∑
j,k

g jk p j pk + ∂v

∂xi
−

∑
j,k

fi j g
jk pk

)

Eqs. (4.1) and (5.18) coincide. From p̃i = N pi , we get ˙̃pi = N ṗi + Ṅ pi , that is
ṗi = N−1( ˙̃pi − Ṅ pi ). Therefore, using Eq. (5.19), we obtain

ṗi = −1

2

∑
j,k

∂g jk

∂xi
p j pk + 1

N
∂N
∂xi

∑
j,k

g jk p j pk (5.20)

− 1

N
∑

j

∂N
∂x j

ẋ j pi − ∂v

∂xi
+

∑
j,k

fi j g
jk pk

= − ∂h

∂xi
(x, p) + 1

N
∂N
∂xi

∑
j,k

g jk p j pk − 1

N
∑
j,k

∂N
∂x j

g jk pk pi +
∑
j,k

fi j g
jk pk

= − ∂h

∂xi
(x, p̃) +

n∑
j,k,l=1

N−1
(

δk
j
∂N
∂xi

− δk
i
∂N
∂x j

)
g jl pk pl +

n∑
j=1

fi j (x)
∂h

∂ p j
,

Equations (4.2), (4.3), and (5.20) imply that the reduced gyroscopic Chaplygin
system (4.1), (4.2) after the time reparametrization dτ = N (x)dt and the change of
variables (5.15) takes the twisted canonical form (5.16) if and only if we have the
equality of the quadratic forms in momenta:

n∑
j,k,l=1

Ck
i j (x)g jl pk pl =

n∑
j,k,l=1

N−1
(

δk
j
∂N
∂xi

− δk
i
∂N
∂x j

)
g jl pk pl , i = 1, . . . , n.

(5.21)

In the invariant form, (5.21) can be written as the condition on JK force term (4.3):

�(x, p) = N−1(p, g−1(p))dN − N−1(dN , g−1(p))p, (5.22)

Remark 5.1 Note that Eqs. (5.16)–(5.20) are valid without assumption that the form
f∗ = N f is closed, i.e., when �̃ + ρ∗f∗ [see (5.17)] is an almost symplectic
form as well. In this way, according to the commutative diagram (5.13), they imply
Propositions 5.1 and 5.2.
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It is clear that the sufficient conditions for the identities (5.21) are:

Ck
i j (x) = N−1

(
δk

j
∂N
∂xi

− δk
i
∂N
∂x j

)
, i, j, k = 1, . . . , n. (5.23)

Thus, if the (1, 2)-tensor field C defined in Remark 3.3 satisfies (5.23), N is a
Chaplygin reducing multiplier for the reduced gyroscopic G-Chaplygin system (4.1),
(4.2), e.g., (5.5). Then the (1, 2)-tensor C and the two-form σ in the invariant form
can be written as

C(X , Y ) = N−1X(N )Y − N−1Y (N )X , (5.24)

σ = N−1dN ∧ θ. (5.25)

Moreover, from (5.14), (5.17), and (5.25), we obtain that the form � + σ + ρ∗f
is conformally symplectic with N a conformal factor being a Chaplygin reducing
multiplier:

�̃ + ρ∗f∗ = N (� + σ + ρ∗f).

In the terminology of Garcia-Naranjo (2019a, b), Eqs. (5.23) and (5.24) mean that
the gyroscopic tensor T = −C is φ-simple, where φ = lnN . Following Garcia-
Naranjo, we say that a (1, 2)-tensor C is lnN -simple if (5.24) holds.

Garcia-Naranjo and Marrero (2020) the following inverse statement is proved: if a
two-form � + σ is conformally symplectic with a basic conformal factorN (x), then
the gyroscopic tensor T is lnN -simple. Now, based on the above considerations, we
can reformulate and extend Theorem 3.21 from Garcia-Naranjo and Marrero (2020)
on φ-simple Chaplygin systems as follows:

Theorem 5.1 (i) Assume that two-form f∗ = N f is closed on S. The conditions (a)–
(c) listed below are equivalent. The conditions (d) and (e) are equivalent, while
(e) implies (c):

(a) the reduced gyroscopic Chaplygin system (5.5)after the time reparametrization
dτ = N (x)dt takes the form of the magnetic Lagrangian system (5.6);

(b) the reduced gyroscopic Chaplygin system (4.1), (4.2) after the time
reparametrization dτ = N (x)dt and the change of variables (5.15) takes
the twisted canonical form (5.16);

(c) the JK force term (4.3) on T ∗S has the form (5.22);
(d) the almost symplectic form � + σ + ρ∗f is conformally symplectic with the

base conformal factor N (x) and σ is given by (5.25);
(e) the (1, 2)-tensor C is lnN -simple, that is, it is given by (5.24).

(ii) IfN (x) is a Chaplygin multiplier, then the reduced equations of motion (4.1), (4.2)
possess the base invariant measure

N n−1�n . (5.26)
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(iii) If n = 2, then the statement (ii) can be inverted: if the reduced equations of motion
(4.1), (4.2) possess the base invariant measure

N (x)dp1 ∧ dp2 ∧ dx1 ∧ dx2,

then, after the time reparametrization dτ = N (x)dt the reduced equations become
the usual Hamiltonian equations on T ∗S with respect to the twisted symplectic
form (5.17). For n = 2, all items (a)–(e) are equivalent.

Theorem 5.1 relates the classical Chaplygin Hamiltonization [items (a)–(c) see
Chaplygin (1911), Fedorov and Jovanović (2004)] and the Chaplygin Hamiltonization
within the framework of almost symplectic forms and the gyroscopic tensor field C
[items (d) and (e), see Cantrijn et al. (2002), Garcia-Naranjo and Marrero (2020)].

For the Veselova problem on SO(n) [see Fedorov and Jovanović (2004)], it is
proved in Garcia-Naranjo and Marrero (2020) that (c) implies (d) as well. A similar
statement can be proved for the nonholonomic problem of a ball rolling over a sphere
considered in Jovanović (2018).

Remark 5.2 Note that (5.21) implies that the symmetric parts of the tensors∑n
j=1 Ck

i j (x)g jl and
∑n

j=1N−1
(

δk
j
∂N
∂xi

− δk
i

∂N
∂x j

)
g jl are equal, but the conditions

(5.21) and (5.23), i.e., the items (c) and (e) of Theorem 5.1 do not need to be equivalent.
For example, one can have C and σ different from zero, but with iXred σ = 0. Then
� = 0 and Xred is a Hamiltonian vector field with respect to the magnetic symplectic
form � + ρ∗f . Thus, the constant N = 1 can be chosen as a Chaplygin multiplier.
As a result, the right-hand side of (5.23) is zero, while the left-hand side of (5.23) is
different from zero.

Further, from Theorem 5.1 it follows that if a Chaplygin systemwithout gyroscopic
force allows Hamiltonization with a basic multiplierN , and ifN f is closed, then the
system with reduced gyroscopic force f also allows Hamiltonization and vice versa:
if a Chaplygin system with gyroscopic force f allows Hamiltonization with a basic
multiplierN (either in the sense thatN is a conformal factor for the almost symplectic
form � + σ + ρ∗f and according to Proposition 5.3 N f is closed, or in the sense of
the classical Hamiltonization where N f is also closed) then the system without the
gyroscopic force f allows Hamiltonization as well.

For n = 2, Eq. (5.5) are

d

dt

∂l

∂ ẋ1
= ∂l

∂x1
+ S(x)ẋ2, (5.27)

d

dt

∂l

∂ ẋ2
= ∂l

∂x2
− S(x)ẋ1, S(x) =

2∑
k,l=1

Ck
12(x)gkl ẋl + f12(x). (5.28)

Item (iii) of Theorem 5.1 is given in Borisov et al. (2005) and Bolsinov et al. (2015),
where the Lagrangian systems of the form (5.27), (5.28), for f12(x) �= 0 are called
generalized Chaplygin systems.
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Fig. 1 Rolling of the ball B with center OB over the sphere S with center O: three scenarios

6 Chaplygin Ball with a Gyroscope Rolling Over a Plane and Over a
Sphere

6.1 Chaplygin Ball with a Gyroscope Rolling without Slipping

One of the most famous solvable problems in nonholonomic mechanics describes
rolling without slipping of a balanced, dynamically nonsymmetric ball over a hor-
izontal plane (Chaplygin 1903). After Chaplygin (1903), a balanced, dynamically
nonsymmetric ball is called the Chaplygin ball, see Kozlov (2002), Arnold et al.
(1989), Borisov et al. (2005), Borisov and Mamaev (2008), Borisov and Mamaev
(2001), Balseiro and Garcia-Naranjo (2012), Borisov et al. (2014) and Bolsinov et al.
(2015).

Let OB, a,m, I = diag(A, B, C), be the center, radius, mass and the inertia operator
of a ball B. There are three possible configurations in the problem of rolling without
slipping of the Chaplygin ball B over a fixed sphere S of the radius b:

(i) rolling of B over the outer surface of S and S is outside B (see the leftmost part of
Fig. 1);

(ii) rolling of B over the inner surface of S (b > a)(see the central part of Fig. 1);
(iii) rolling of B over the outer surface of S and S is within B; in this case b < a and

the rolling ball B is a spherical shell (see the rightmost part of Fig. 1).

Let ε = b/(b ± a), where we take “+” for the case (i) and “−” in the cases (ii) and
(iii) and let D = ma2. The equations of motion in the frame attached to the ball can
be written in the form

�̇k = �k × �ω, �̇γ = ε �γ × �ω, (6.1)

where ω is the angular velocity of the ball, �k = I �ω + D �ω − D〈 �ω, �γ 〉 �γ is the angular
momentum of the ball with respect to the point of contact, and γ is the unit normal to
the sphere S at the contact point.

When b tends to infinity, then ε tends to 1 and �γ tends to the unit vector that is
constant in the fixed reference frame. This way, for ε = 1, we obtain the equations of
motion of the Chaplygin ball rolling over the plane orthogonal to �γ .

An invariant measure of the systemwas derived by Chaplygin for ε = 1 (Chaplygin
1903), and by Yaroshchuk for ε �= 1 (Yaroshchuk 1992). Remarkably, for ε = −1,
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which is the case (iii) above with a = 2b, the problem is integrable [see Borisov and
Fedorov (1995), Borisov et al. (2008), Borisov and Mamaev (2013)].

Next, we assume that a gyroscope is placed in a ball B such that the mass center
of the system coincides with the geometric center OB of the ball. The addition of a
gyroscope to the problem is equivalent to the addition of a constant angularmomentum
�κ directed along the axis of the gyroscope to �k (Bobilev 1892; Zhukovskiy 1893):

d

dt

(
�k + �κ

)
= (�k + �κ) × �ω, �̇γ = ε �γ × �ω. (6.2)

As above, �k = I �ω + D �ω − D〈 �ω, �γ 〉 �γ , where D = a2 m, m is the mass of the system
(ball with gyroscope), I is a new inertia operator that is described below [see (6.3)]
together with the momentum �κ for the Bobilev symmetric case.

Markeev proved that the equations of motion for the rolling over the plane (ε = 1)
can be resolved in quadratures (Markeev 1985). The analysis of the bifurcation diagram
and the topology of the phase space of theMarkeev case are studied inMoskvin (2009)
and Zhila (2020), respectively.

There are two famous classical cases of the system (6.2) for ε = 1 where the
quadratures are given in elliptic functions. These cases were studied by Bobilev (1892)
and Zhukovskiy (1893).

In the Bobilev case the central ellipsoid of inertia of the ball B is rotationally
symmetric and the gyroscope axis coincides to the axis of symmetry. Let OB�e1�e2�e3
and OB�e′

1�e′
2�e′

3 be the moving frames attached to the ball B and the gyroscope in
which the inertia operator has the forms I1 = (A1, A1, C1) and I2 = (A2, A2, C2),
respectively. It is assumed that the axis of the gyroscope is fixed with respect to the ball
and coincides with the axis of symmetry of the inertia ellipsoid of the ball (�e3 = �e′

3)
and that the forces applied to the gyroscope do not induce torque about the axis of the
gyroscope. Thus, the gyroscope rotates with a constant angular velocity ω′

3 about the
axis of symmetry. Then the operator I and the momentum �κ in (6.2) for the Bobilev
case are given by:

I = diag(A, A, C) = diag(A1 + A2, A1 + A2, C1) and �κ = C2ω
′
3�e3. (6.3)

In the Zhukovskiy case there is an additional assumption, (called the Zhukovskiy
condition):

C1 = A1 + A2, (6.4)

that is, it is assumed that I is proportional to the identity matrix E = diag(1, 1, 1).
Demchenko used the Zhukovskiy condition to integrate the problem of rolling of

the gyroscopic ball over a sphere (Demchenko 1924) [see also Dragović et al. (2023)].
The integrability of the problem of rolling of the gyroscopic ball over a sphere with the
Bobilev conditions (6.3) can be found in Borisov et al. (2005). The question about the
existence of an integrable case for a dynamically nonsymmetric ball with a gyroscope
rolling over a sphere is still open. Another natural extension of the problem of the ball
rolling over a sphere is recently given in Dragović et al. (2023, 2022).
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6.2 Chaplygin Ball with a Gyroscope Rolling without Slipping and Twisting

One can consider the additional nonholonomic constraint 〈 �ω, �γ 〉 = 0 describing no-
twisting condition: the ball B does not rotate around the normal at the contact point
and is called a rubber Chaplygin ball. Then the momentum with respect to the contact
point can be expressed as �k = I �ω, I = I + DE. The gyroscopic equations take the
form

d

dt

(
�k + �κ

)
= (�k + �κ) × �ω + λ �γ , �̇γ = ε �γ × �ω, (6.5)

where the Lagrange multiplier is given by λ = −〈�γ , I−1((�k + �κ) × �ω)〉/〈 �γ , I−1 �γ 〉.
The system has an invariant measure with the same density as in the absence of a

gyroscope [see Ehlers et al. (2005) for ε = 1 and Ehlers and Koiller (2007) for ε �= 1].
As in the Markeev integrable case, for ε = 1, the system is integrable according to the
Euler-Jacobi theorem. This is proved in Borisov et al. (2005) for the Veselova prob-
lem with a gyroscope, which is described by the same system of equations. Borisov,
Bizyaev, and Mamaev also pointed out the integrability of Eq. (6.5) for ε �= 1 in the
case of the dynamical symmetry A = B if the gyroscope is oriented in the direction
of the axis of the dynamical symmetry, which gives the Bobilev conditions (6.3) [see
Table 2 in Borisov et al. (2013)]. Borisov and Mamaev proved the integrability of the
problem without the gyroscope, for ε = −1 (Borisov and Mamaev 2007), providing
analogy with the nonrubber rolling.

The system of a Chaplygin ball with a gyroscope rolling without slipping and
twisting over a sphere deserves to be studied in more detail. In order to describe its
reduction and Hamiltonization, we will consider a general problem in R

n .

7 The Rolling of a Gyroscopic Ball without Slipping and Twisting inR
n

7.1 Rolling of a Ball without Slipping and Twisting Over a Sphere

The aim of this Section is to generalize the considerations from Sect. 6 from R
3 to

R
n , for any n > 3. We start with the situation without gyroscopic or magnetic forces,

following Jovanović (2018) and Gajić and Jovanović (2019a, b). We consider in this
Subsection the rolling without slipping and twisting of an n-dimensional ball B of
radius a over the (n − 1)-dimensional fixed sphere S of radius b. There are three
possible scenarios, in a full analogy with the three configurations described at the
beginning of Sect. 6.1 for n = 3, recall Fig. 1.

Consider the space frame Rn(x) with the origin O at the center of the fixed sphere
S and the moving frame Rn(X) with the origin OB at the center of the rolling ball B.
The mapping from the moving to the space frame is given by x = gX + r, where
g ∈ SO(n) is a rotation matrix and r = −−→

O OB is the position vector of the ball center
OB in the space frame. The configuration space Q is the direct product of the Lie
group SO(n) and the sphere S = {r ∈ R

n | (r, r) = (b ± a)2}.
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Remark 7.1 Here and below, we take the sign “+” for the case (i) and the case “−” for
the cases (ii) and (iii) of the three possible scenarios in analogy with the three cases
from the beginning of Sect. 6.1.

Let ω = g−1ġ be the angular velocity of the ball in the moving frame, m be the
mass of the ball, and I : so(n) → so(n) the inertia operator. We additionally assume
that the ball is balanced, i.e., its geometric center coincides with the mass center. We
will call such a system a Chaplygin ball in R

n . Then the Lagrangian of the system is
given by

L(g, r, ω, ṙ) = 1

2
〈Iω,ω〉 + 1

2
m〈ṙ, ṙ〉, (7.1)

where now 〈·, ·〉 is the invariant scalar product proportional to the Killing form on
so(n) (〈·, ·〉 = − 1

2 tr(· ◦ ·)) and the Euclidean scalar product in Rn , respectively.

The direction
−→
O A/|−→O A| of the contact point A in the frame attached to the ball is

given by the unit vector γ = 1
b±a g−1r. It is invariant with respect to the diagonal left

SO(n)-action: g̃ · (g, r) = (g̃g, g̃r), g̃ ∈ SO(n). The action defines SO(n)-bundle

SO(n) Q = SO(n) × S

π

Sn−1 = Q/SO(n)

(7.2)

with the submersion π given by γ = π(g, r) = 1
b±a g−1r.

The contact point A of the ball in themoving frame isXA = −(±aγ ). The condition
that the ball is rolling without slipping is that the velocity ẋA of the contact point in
the space frame is equal to zero

0 = ẋA = d

dt

(
gXA + r

)
= ∓aġγ + ṙ = ∓a(ġg−1)gγ + ṙ.

This leads to the constraint ṙ = ± a
b±a �r, where � = Adg ω = ġg−1 is the

angular velocity in the space frame. On the other hand, the condition of no twisting
at the contact point can be written as the condition on �: � ∈ r ∧ R

n . The same
condition can be written in terms of ω: ω ∈ γ ∧ R

n . For more details, see Jovanović
(2018). The constraints determine the distribution

D(g,r) =
{
(ω, ṙ) ∈ T(g,r)SO(n) × S | ṙ = ± a

b ± a
(Adg ω)r, ω ∈ g−1r ∧ R

n
}

of rank (n − 1), a principal connection of the bundle (7.2). The Lagrangian L from
(7.1) is SO(n)-invariant aswell. Thus, ann-dimensionalChaplyginball rollingwithout
slipping and twisting over a fixed sphere inRn is a SO(n)-Chaplygin system. It reduces
to the tangent bundle T Sn−1 ∼= D/SO(n).
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As in the three-dimensional case, we set ε = b/(b ± a). The horizontal lift
γ̇ h |(g,r) = (ω,V) is given by:

ω = 1

ε
γ ∧ γ̇ ,

V = ṙ = (b ± a)
d

dt
(gγ ) = (b ± a)

(
1 − 1

ε

)
gγ̇ .

The reduced Lagrangian l and the (0, 3)-tensor field 
 are [see Jovanović (2018)]

l(γ, γ̇ ) = 1

2
g(γ̇ , γ̇ ) = − 1

4ε2
tr(I(γ ∧ γ̇ ) ◦ (γ ∧ γ̇ )) = − 1

2ε2
〈I(γ ∧ γ̇ )γ, γ̇ 〉,

(7.3)


(X , Y , Z)|γ = 2ε − 1

2ε3
tr(I(γ ∧ X) ◦ (Y ∧ Z)) = 2ε − 1

ε3
〈I(γ ∧ X)Y , Z〉, (7.4)

where, as in the three-dimension, I = I + D · Idso(n) and D = ma2. We have

∂l

∂γ
= 1

ε2
I(γ ∧ γ̇ )γ̇ ,

∂l

∂γ̇
= − 1

ε2
I(γ ∧ γ̇ )γ,

JK(γ̇ , δγ ) = 2ε − 1

ε3
〈I(γ ∧ γ̇ )γ̇ , δγ 〉 (7.5)

Therefore, the reduced Chaplygin equations (3.1) without gyroscopic forces are:

δl − JK(γ̇ , δγ ) =
〈 1

ε2
d

dt

(
I(γ ∧ γ̇ )γ

)
+ 1 − ε

ε3
I(γ ∧ γ̇ )γ̇ , δγ

〉
= 0, δγ ∈ Tγ Sn−1.

(7.6)

Remark 7.2 Note that if the radii of the sphere and the ball are equal, then ε = 1/2.
Then, the curvature of D vanishes and 
 ≡ 0 (Jovanović 2018). For n = 3, see
Ehlers and Koiller (2007) and Borisov et al. (2014). Also, if I is proportional to the
identity operator then 
 ≡ 0. Then the JK-term vanishes although the curvature of
D is different from zero. Under these conditions, the reduced system is Hamiltonian
without any time reparametrization.

7.2 Gyroscopic Ball

Now, we want to consider the gyroscopic Chaplygin ball in R
n and to study how the

addition of a gyroscopic term is going to modify the reduced equations of motion
(7.6). Eq. (6.5) without the gyroscope have an analog in in Rn :

k̇ = [k, ω] + λ0, γ̇ = −εωγ. (7.7)

Here k = Iω and the Lagrange multiplier λ0 ∈ (Rn ∧ γ )⊥ is determined from the
condition that ω ∈ R

n ∧ γ [see Jovanović (2018)].
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Let us notice that Eq. (7.6) alternatively can be derived directly by the substitution
ofω = 1

ε
γ ∧γ̇ in Eq. (7.7). Eq. (7.7) are also a convenient starting point for gyroscopic

generalizations. With a suitable modification of I for the gyroscopic ball, the analogue
of the equation (6.5) in Rn is

k̇ = [k, ω] + [κ, ω] + λ0, γ̇ = −εωγ, (7.8)

where now κ ∈ so(n) is a fixed matrix, k = Iω = Iω + Dω, D = a2m, and m is the
mass of the system (ball with gyroscope).

After the substitution ω = 1
ε
γ ∧ γ̇ , and taking the scalar product with 1

ε
γ ∧ δγ ,

Eq. (7.8) take the form

〈 1
ε2

I(γ ∧ γ̈ ) − 1

ε3
[I(γ ∧ γ̇ ), γ ∧ γ̇ ], γ ∧ δγ

〉 = 1

ε2
〈[κ, γ ∧ γ̇ ], γ ∧ δγ 〉, (7.9)

where we used that λ0 is orthogonal to γ ∧ R
n . Now, since

[κ, γ ∧ γ̇ ] = (κγ ) ∧ γ̇ − (κγ̇ ) ∧ γ

and 〈X ∧ Y , Z ∧ T 〉 = 〈X , Z〉〈Y , T 〉 − 〈X , T 〉〈Y , Z〉,

we get the right-hand side of (7.9):

rhs = 1

ε2

(
〈κγ, γ 〉〈γ̇ , δγ 〉 − 〈κγ, δγ 〉〈γ̇ , γ 〉 − 〈κγ̇ , γ 〉〈γ, δγ 〉 + 〈κγ̇ , δγ 〉〈γ, γ 〉

)

= 1

ε2
〈κγ̇ , δγ 〉.

Similarly, the left-hand side of (7.9) is given by

lhs =
〈
− 1

ε2
I(γ ∧ γ̈ )γ − 1

ε3
I(γ ∧ γ̇ )γ̇ , δγ

〉
= −δl + JK(γ̇ , δγ ),

where the second equality follows from (7.6). Therefore, from (7.9) we obtain

Proposition 7.1 The reduced equations of motion of a gyroscopic ball rolling without
slipping and twisting over a sphere are given by

δl − JK(γ̇ , δγ ) =
〈 1
ε2

I(γ ∧ γ̈ )γ − 1

ε3
I(γ ∧ γ̇ )γ̇ , δγ

〉
= f(γ̇ , δγ ) (7.10)

where the gyroscopic term is given by f(γ̇ , δγ ) = 1
ε2

〈γ̇ , κδγ 〉.
Note that the gyroscopic two-form f

f = 1

ε2

∑
i< j

κi j dγi ∧ dγ j . (7.11)
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is exact magnetic: f = da, where

a = 1

2ε2
∑

i j

κi jγi dγ j .

Thus, the reduced equations of motion of a gyroscopic ball rolling without slip-
ping and twisting over a sphere (7.10) can be rewritten in the equivalent form (see
Remark 3.2):

δl1 = JK(γ̇ , δγ ),

where the Lagrangian l1 is

l1(γ̇ , γ ) = 1

2ε2
〈I(γ ∧ γ̇ )γ̇ , γ 〉 + 1

2ε2
〈γ, κγ̇ 〉.

Remark 7.3 As in the three-dimensional case, when b tends to infinity, ε tends to 1, γ
tends to the unit vector that is constant in the fixed reference frame and we obtain the
equations of motion of the Chaplygin ball with a gyroscope rolling without slipping
and twisting over the plane orthogonal to γ .

Remark 7.4 In addition, let us note that for ε = 1 the system (7.8) with κ = 0
represents also the Veselova problem with the left-invariant metric on SO(n) defined
by the operator I [see Veselov and Veselova (1988); Fedorov and Jovanović (2004)].
In this way, the system (7.8) for ε = 1 can be seen as a Veselova problem with the
addition of a gyroscope.

Note that the Veselova problem is an example of an LR system. These are non-
holonomic systems with left-invariant metrics and right-invariant constraints on Lie
groups (Veselov and Veselova 1988; Fedorov and Jovanović 2004). One can consider
LR systemswith gyroscopic forces and their reduction to homogeneous spaces aswell.
Along with the gyroscopic Chaplygin reduction, it is interesting to consider the sym-
plectic reduction of the corresponding Hamiltonian magnetic systems on Lie groups
by using a general framework for the reduction of the systems with symmetries on
magnetic cotangent bundles given in Kowalzig et al. (2005). The reduction problems
based on Kowalzig et al. (2005) will be consider elsewhere.

7.3 Invariant Measure

We are going to describe the reduced magnetic flow (7.10) and its invariant measure
on the cotangent bundle of a sphere Sn−1. Consider the Legendre transformation of
the Lagrangian l given by (7.3).

p = ∂l

∂γ̇
= g(γ̇ ) = − 1

ε2
I(γ ∧ γ̇ )γ . (7.12)
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Since I(γ ∧ γ̇ ) is skew-symmetric, we get 〈γ, p〉 = 0. Thus, the point (p, γ )

belongs to the cotangent bundle of a sphere realized as a symplectic submanifold in
the symplectic linear space (R2n{γ, p}, dp1 ∧ dγ1 + · · · + dpn ∧ dγn) defined by the
equations:

φ1 = 〈γ, γ 〉 = 1, φ2 = 〈γ, p〉 = 0. (7.13)

Let γ̇ = g−1(p) = Xγ (p, γ ) be the inverse of the Legendre transformation (7.12),
which is unique on the subvariety (7.13). Then

h(γ, p) = 1

2
〈Xγ (γ, p), p〉 (7.14)

is the Hamiltonian function of the reduced system. From (7.6) and (7.10), we have

〈
− ṗ + 1 − ε

ε3
I(γ ∧ Xγ )Xγ , δγ

〉
= 1

ε2
〈Xγ , κδγ 〉.

Therefore,

ṗ = 1 − ε

ε3
I(γ ∧ Xγ )Xγ + 1

ε2
κ Xγ + μγ,

where μ is the multiplier determined from the condition that (γ̇ , ṗ) is tangent to
T ∗Sn−1:

〈γ̇ , p〉 + 〈γ, ṗ〉 = 0.

Proposition 7.2 The reduced equations of the rolling of a ball with a gyroscope over
a sphere without slipping and twisting on T ∗Sn−1 are

γ̇ = Xγ (γ, p), ṗ = X p(γ, p) = 1 − ε

ε3
I(γ ∧ Xγ )Xγ + 1

ε2
κ Xγ + μγ, (7.15)

where

μ = (ε − 1)

ε3
〈(I (

γ ∧ Xγ

))
Xγ , γ 〉 − 2h(γ, p) + 1

ε2
〈Xγ , κγ 〉. (7.16)

Let

w = dp1 ∧ dγ1 + · · · + dpn ∧ dγn |T ∗Sn−1 (7.17)

be the canonical symplectic form on T ∗Sn−1.
From Theorem 4.1 and the formula for an invariant measure without magnetic term

[see Jovanović (2018)], we have:
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Proposition 7.3 The reduced equations of the rolling of a ball with a gyroscope over
a sphere without slipping and twisting (7.15) have an invariant measure ν(γ )wn−1,
where w is from (7.17) and ν is defined by:

ν(γ ) := (det I|Rn∧γ )
1
2ε −1. (7.18)

8 Hamiltonization and Integrability

8.1 Hamiltonization of the SO(n− 2)-Invariant Case

As already mentioned above, the existence of an invariant measure of a nonholonomic
system is closely related to the problem of its Hamiltonization. In this section we
provide a class of examples of SO(n − 2)-symmetric systems (ball with gyroscope)
that allow a Chaplygin Hamiltonization.

Consider the inertia operators

I(ei ∧ e j ) = (ai a j − D)ei ∧ e j i.e., I(X ∧ Y ) = AX ∧ AY, (8.1)

parameterized by A = diag(a1, . . . , an), where [e1, . . . , en] is the standard basis of
R

n . The formulas for the reduced Lagrangian l (7.3), the Hamiltonian h (7.14), and
the density of an invariant measure ν (7.18) take the form:

l(γ, γ̇ ) = 1

2ε2

(
〈Aγ̇ , γ̇ 〉〈Aγ, γ 〉 − 〈Aγ, γ̇ 〉2

)
, (8.2)

h(γ, p) = ε2

2

〈p,A−1 p〉
〈γ,Aγ 〉 , (8.3)

ν(γ ) = const · 〈Aγ, γ 〉 n−2
2ε +2−n, (8.4)

[see Jovanović (2015, 2018)]. Moreover, the function N (γ ) = ε〈Aγ, γ 〉 1
2ε −1 is a

Chaplygin multiplier: under the time substitution dτ = N (γ )dt , the reduced system
(7.6) with κ = 0 becomes the geodesic flow of the metric

ds2A,ε = (γ, Aγ )
1
ε
−2

(
(Adγ, dγ )(Aγ, γ ) − (Aγ, dγ )2

)
(8.5)

defined by the Lagrangian [see Jovanović (2018)]

l∗(γ, γ ′) = l(γ, γ̇ )|γ̇=N (γ )γ ′ = 1

2
〈γ,Aγ 〉 1

ε
−2

(
〈Aγ ′, γ ′〉〈Aγ, γ 〉 − 〈Aγ, γ ′〉2

)
.

(8.6)

Remark 8.1 Note that for n = 3 all symmetric operators I have the form (8.1) in a
basis formed by its eigenvectors. Namely, after the standard identificationR3 ∼= so(3)
(Arnold 1974), for the given inertia operator I = diag(A, B, C) : R3 → R

3 for the
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gyroscopic ball and the parameter D = ma2, the operator I : so(3) → so(3) has the
form (8.1), with:

A = diag

(
�

A + D
,

�

B + D
,

�

C + D

)
, � = √

(A + D)(B + D)(C + D).

(8.7)

The above Hamiltonization recovers the procedure of reduction and Hamiltoniza-
tion for a three-dimensional ball without gyroscope from Ehlers and Koiller (2007).
We would recall that Borisov and Mamaev proved the integrability of the three-
dimensional ball without gyroscope and the spherical shell for a specific ratio between
the radii: the case (iii) from Sect. 6.1, where a = 2b, i.e., ε = −1, see Borisov
and Mamaev (2007). The n-dimensional reduced system of a ball without gyroscope
rolling over a sphere (7.6) with the inertia operator I given by (8.1) is also integrable
for ε = −1; the integrability remains for such systems for an arbitrary ε, if the matrix
A has only two distinct parameters (Gajić and Jovanović 2019a, b).

Now, we turn to the systems with gyroscopic force. If

d(N f) = 2

ε

(
1

2ε
− 1

)
〈Aγ, γ 〉 1

2ε −2
( ∑

k

akγkdγk

)
∧

( ∑
i< j

κi j dγi ∧ dγ j

)

= 0|T ∗Sn−1 (8.8)

then the reduced gyroscopic system is Hamiltonizable as well. This follows from
Theorem 5.1.

For n = 3, equation (8.8) is satisfied for an arbitrary gyroscopic term κ . The
following statement provides a class of examples, based on the SO(n − 2)-symmetry,
which satisfy equation (8.8), thus are Hamiltonizable, for every n ≥ 3.

Theorem 8.1 Assume that the gyroscopic term f from (7.11) is given by κ = κ12e1∧e2,
i.e.,

f = κ12

ε2
dγ1 ∧ dγ2

and the inertia operator of the system ball with gyroscope is given by (8.1), where
a3 = a4 = · · · = an:

A = diag(a1, a2, a3, . . . , a3).

Then the function N (γ ) = εA(γ )
1
2ε −1, with

A(γ ) = a3 + (a1 − a3)γ
2
1 + (a2 − a3)γ

2
2 , (8.9)

is a Chaplygin multiplier. Under the time substitution dτ = N (γ )dt and the change
of momenta p̃ = N (γ )p, the reduced system (7.15) becomes the magnetic geodesic
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flow of the metric (8.5) with respect to the twisted symplectic form given by

w̃ + Nρ∗f = d p̃ ∧ dγ1 + · · · + d p̃n ∧ dγn + κ12

ε
A(γ )

1
2ε −1dγ1 ∧ dγ2|T ∗Sn−1 .

(8.10)

Remark 8.2 The function (8.9) satisfies A(γ ) = 〈Aγ, γ 〉 for 〈γ, γ 〉 = 1. We use the
function A to simplify some equations below. For example, the Hamiltonian of the
magnetic geodesic flow of the metric (8.5) in the coordinates (γ, p̃) can be written as

h∗(γ, p̃) = 1

2
A(γ )1−

1
ε 〈 p̃,A−1 p̃〉. (8.11)

8.2 Integrability of the SO(2) × SO(n− 2)-Invariant Case

In this section we want to impose additional symmetry with respect to SO(n − 2)-
symmetry considered in Sect. 8.1, and in particular in Theorem 8.1, this additional
symmetry will imply integrability.

As mentioned above, the cotangent bundle T ∗Sn−1 is realized within R
2n by the

constraints (7.13). In the new coordinates (γ, p̃) = (γ, εA(γ )
1
2ε −1 p), the constraints

become

φ∗
1 = 〈γ, γ 〉 = 1, φ∗

2 = 1

ε
A(γ )1−

1
2ε 〈γ, p̃〉 = 0. (8.12)

Instead of (8.12), we equivalently use the constraints

ψ1 = 〈γ, γ 〉 = 1, ψ2 = 〈 p̃, γ 〉 = 0. (8.13)

The magnetic Poisson bracket on the cotangent bundle T ∗Sn−1 ⊂ R
2n{γ, p̃} can

be described by the Dirac construction as follows:

{F, G}d = {F, G}κ − {F, ψ1}κ{G, ψ2}κ − {F, ψ2}κ {G, ψ1}κ
{ψ1, ψ2}κ ,

where

{F, G}κ = {F, G}0 + κ12

ε
A(γ )

1
2ε −1

(
∂ F

∂ p̃1

∂G

∂ p̃2
− ∂ F

∂ p̃2

∂G

∂ p̃1

)

and

{F, G}0 =
n∑

i=1

(
∂ F

∂γi

∂G

∂ p̃i
− ∂ F

∂ p̃i

∂G

∂γi

)

is the canonical Poisson bracket on R2n{γ, p̃}, [see Arnold et al. (1989)]. Considered
on R

2n{γ, p̃} without the subset {γ = 0}, the bracket {·, ·}d is degenerate with two
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Casimir functions ψ1 and ψ2. The symplectic leaf given by (8.13) is exactly the
cotangent bundle T ∗Sn−1 endowed with the twisted symplectic form (8.10).

It is convenient to derive the equations of the magnetic Hamiltonian flows with
respect to the Dirac bracket {·, ·}d using the Lagrange multipliers and the magnetic
Hamiltonian flows with respect to the magnetic bracket {·, ·}κ [e.g., see Arnold et al.
(1989)]. Let

H = h∗ − λ1ψ1 − λ2ψ2.

The magnetic Hamiltonian flow generated by the Hamiltonian (8.11) with respect
to the Dirac bracket {·, ·}d is given by

γ ′ = ∂ H

∂ p̃
= A(γ )1−

1
ε A

−1 p̃ − λ2γ, (8.14)

p̃′ = −∂ H

∂γ
+ κ12

ε
A(γ )

1
2ε −1e1 ∧ e2(γ ′) (8.15)

= 1 − ε

ε
A(γ )−

1
ε 〈 p̃,A−1 p̃〉

(
(a1 − a3)γ1e1 + (a2 − a3)γ2e2

)
+ 2λ1γ + λ2 p̃

+ κ12

ε
A(γ )

1
2ε −1

(
(A(γ )1−

1
ε

p̃2
a2

− λ2γ2)e1 − (A(γ )1−
1
ε

p̃1
a1

− λ2γ1)e2

)
,

where the Lagrange multipliers λ1 and λ2 are determined from the condition that the
functions ψ1 and ψ2 are integrals of the flow.

From now on we consider the system (8.14), (8.15) restricted to the symplectic leaf
(8.13), that is, we consider the magnetic geodesic flow of the metric (8.5).

Let us impose now the additional symmetry. Suppose: a1 = a2 �= a3. Both the
Hamiltonian (8.11) and the magnetic two-form (8.10) are invariant with respect to
the action of the group SO(2) × SO(n − 2). We first consider the case κ12 = 0: the
corresponding first integrals are linear and given as follows:

�0
12 = γ1 p̃2 − γ2 p̃1, �0

i j = γi p̃ j − γ j p̃i , 3 ≤ i < j ≤ n.

Such first integrals are sometimes called Noether integrals as their existence follow
from the Emmy Noether theorem. Let us now consider a general case κ12 �= 0:
straightforward calculations show that �i j = �0

i j , 3 ≤ i < j ≤ n remain to be first
integrals for κ12 �= 0. Moreover,

d

dτ
�0

12 = −κ12

ε
A(γ )

1
2ε −1(γ1γ

′
1 + γ2γ

′
2) = − κ12

a1 − a3

d

dτ

(
A(γ )

1
2ε

)
.

Thus, the first integrals for κ12 �= 0 are

�12 = γ1 p̃2 − γ2 p̃1 + κ12

a1 − a3
A(γ )

1
2ε , �i j = γi p̃ j − γ j p̃i , 3 ≤ i < j ≤ n.
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These first integrals are the components of the momentum mapping of the SO(2) ×
SO(n − 2)-action with respect to the twisted symplectic form (8.10).

Theorem 8.2 For a1 = a2 �= a3 the magnetic geodesic flow of the metric ds2
A,ε

defined by the Hamiltonian (8.11) with respect to the twisted symplectic form (8.10)
is completely integrable.

(i) If n = 3 the system is Liouville integrable. Generic invariant manifolds are two-
dimensional Lagrangian tori, the common level sets of h∗ and �12.

(ii) If n = 4 the system is Liouville integrable. Generic invariant manifolds are three-
dimensional Lagrangian tori, the common level sets of h∗, �12, and �34.

(iii) If n ≥ 5 the system is integrable in the noncommutative sense. Generic invariant
manifolds are three-dimensional isotropic tori, the common level sets of h∗, �12,
and �i j , 3 ≤ i < j ≤ n.

Proof For n = 3 the statement is clear. For n = 4, the Hamiltonian system (8.14)
possesses three independent integrals h∗, �12, �34, in involution:

{h∗,�12}d = 0, {h∗,�34}d = 0, {�12,�34}d = 0.

Thus, the Hamiltonian system (8.14), (8.15) is completely integrable according to the
Arnold–Liouville theorem.

For n > 4, generic common level sets of all integrals are three-dimensional
tori as well. Indeed, consider the natural embedding T ∗S3 ⊂ T ∗Sn−1 induced
by the embedding span{e1, e2, e3, e4} ⊂ R

n . Let us set P = ( p̃3, p̃4, . . . , p̃n),
� = (γ3, γ4, . . . , γn). Then p̃ = ( p̃1, p̃2,P), γ = (γ1, γ2, �).

The system (8.14), (8.15) is invariant with respect to the SO(n − 2)-action

R(γ, p̃) = (γ1, γ2, R�, p̃1, p̃2, RP), R ∈ SO(n − 2).

Also, as we already mentioned, the integrals �i j , 3 ≤ i < j ≤ n are components of
the corresponding momentum mapping

(γ, p̃) �−→ � ∧ P.

For any point c0 = (γ0, p̃0) ∈ T ∗Sn−1, there exists a matrix R0 ∈ SO(n − 2),
such that d0 = R0(γ0, p̃0) belongs to T ∗S3. Since the system is invariant with respect
to the SO(n − 2)-action, the solution c(τ ) = (γ (τ ), p̃(τ )) with the initial condition
c(0) = (γ (0), p̃(0)) = c0 is mapped to the solution d(τ ) = R(γ (τ ), p̃(τ )) with the
initial condition

d(0) = R0(γ (0), p̃(0)) = R0(γ0, p̃0) = d0 ∈ T ∗S3.

The solutions c(τ ) and d(τ ) have the same energy, h∗(c0) = h∗(d0), while the cor-
responding values of the momenta are different: the momentum of c(τ ) is transformed
to the momentum of d(τ ) by the adjoint mapping

�0 ∧ P0 �−→ R0(�0 ∧ P0)RT
0 = �34(d0)e3 ∧ e4,
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where c0 = (γ0,1, γ0,2, �0, p̃0,1, p̃0,2,P0).
One can easily verify that the solution d(τ ) belongs T ∗S3, that is, it is a solution

of the problem for n = 4. Therefore, generically, d(τ ) is a quasi-periodic trajectory
over a three-dimensional invariant torus T0 ⊂ T ∗S3, the connected component of the
level set

h∗ = h∗(d0), �12 = �12(d0), �34 = �34(d0).

All other components of the momentum mapping �i j , 3 ≤ i < j ≤ n, (i, j) �= (3, 4)
are equal to zero.

Note that a point d ∈ T ∗Sn−1 belongs to T ∗S3 if and only if �i j (d) = 0, 3 ≤
i < j ≤ n, (i, j) �= (3, 4). Thus, the original trajectory c(τ ) = R−1

0 (d(τ )) is quasi-
periodic over the three-dimensional invariant torus T = R−1

0 (T0), which is also the
connected component of the level set

h∗ = h∗(c0) = h∗(d0), �12 = �12(c0), �i j = �i j (c0), 3 ≤ i < j ≤ n.

The integrability of the system is a particular example of so-called noncom-
mutative integrability. Namely, since the common level sets of the integrals are
three-dimensional, and the Hamiltonian system (8.14), (8.15) has three independent
first integrals h∗, �κ

12, and
∑

3≤i< j≤n(�i j )
2, that commute with all integrals, the

system is completely integrable according the Nekhoroshev–Mishchenko–Fomenko
theoremonnoncommutative integrability for alln > 4 [e.g., seeArnold et al. (1989)].�

Note that in the original phase space T ∗Sn−1{γ, p}, the first integrals have the form

�12 = εA(γ )
1
2ε −1(γ1 p2 − γ2 p1) + κ12

a1 − a3
A(γ )

1
2ε ,

and

�i j = εA(γ )
1
2ε −1(γi p j − γ j pi ), 3 ≤ i < j ≤ n.

In the original time, the system over a regular invariant torus T has the form (1.3),
where � = N−1|T .

Remark 8.3 For n = 3, within the standard isomorphism between Lie algebras
(so(3), [·, ·]) and (R3,×) given by

ai j = −εi jkak, i, j, k = 1, 2, 3 (8.16)

[see Arnold (1974)], Eq. (7.8) with the inertia operator defined by (8.1), A =
diag(a1, a1, a3), and κ = κ12e1 ∧ e2 correspond to Eq. (6.5) defined by the Bobilev
conditions (6.3) with �κ = −κ12�e3 and I and A related by (8.7) (see Sect. 6.2 and
Remark 8.1). Then, along with the Liouville integrability after the Hamiltonization
described in Theorem 8.2, the system is also integrable according to the Euler-Jacobi
theorem.
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9 Generalized Demchenko Case without Twisting inR
n

9.1 Definition of the System

As above, we will consider the rolling of a gyroscopic ball B without slipping and
twisting in R

n , now with an additional symmetry of the system. The additional sym-
metry is analogous to the Zhukovskiy condition (6.4) in dimension n = 3. Recall that
adding a gyroscopic term does not change formulas for curvature of the distributionD,
JK term (7.5) and 
 term (7.4). For the curvature K of D see Lemma 7 in Jovanović
(2018):

K(g,r)(ξ
h
1 , ξ h

2 ) = 2ε − 1

ε2
Adg(ξ1 ∧ ξ2), ξ1, ξ2 ∈ Tπ(g,r)Sn−1.

Since the reduced gyroscopic form f is exact magnetic for an arbitrary κ ∈ so(n),

κ =
∑
i< j

κi jei ∧ e j , (9.1)

if the JK-term in (3.1) vanishes, then the reduced gyroscopic G-Chaplygin system
(3.1) is automatically Hamiltonian without any time reparametrization.

We provide two situations when such conditions are satisfied, for the rolling of
a gyroscopic Chaplygin ball without slipping and twisting over a sphere Sn−1 (see
Remark 7.2). The first situation: if the radii of the sphere and the ball are equal,
which is equivalent to the condition ε = 1/2, then the curvature K of D vanishes
(the constraints are holonomic). Since the JK-term is given by the coupling of the
curvature K with the momentum mapping of the SO(n)-action on the configuration
space (7.2) (see Remark 3.1), we have JK = 0. The second situation we get when the
inertia operator I of the system, that is, the modified inertia operator I, is proportional
to the identity operator. Then the coupling between the curvature and the momentum
mapping vanishes, see (7.5), although the curvature of D is different from zero. Let
us remind that the curvature of the distribution measure the nonholonomicity of the
constraints: it is zero if and only if the constraints are holonomic.

These two situations do not require a time reparametrization for a Hamiltonization:
the reduced Eq. (7.15) are Hamiltonian with respect to the symplectic form w + ρ∗f ,
where w is the canonical symplectic form (7.17).

For n = 3, the condition that the inertia operator I is proportional to the identity
operator is equivalent to the Zhukovskiy condition (6.4). One gets the case of motion
of a gyroscopic ball considered by Demchenko (1924), see also Dragović et al. (2023)
and Sect. 9.2 below, under an additional nontwisting condition. This motivates us to
introduce the following definition of a generalized Demchenko case without twisting
in higher dimensions.

Definition 9.1 We say that the ball with a gyroscope satisfies the Zhukovskiy condition
if the inertia operator I of the system is proportional to the identity operator. The
generalized Demchenko case without twisting in R

n, n ≥ 3, is a system of a balanced
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n-dimensional gyroscopic ball satisfying the Zhukovskiy condition, rolling without
slipping and twisting over a fixed (n − 1)-dimensional sphere.

As before, we consider the cotangent bundle T ∗Sn−1 ⊂ R
2n{γ, p} realized by the

constraints (7.13), w is the canonical symplectic form on T ∗Sn−1 given with (7.17)
and ρ is the canonical projection ρ : T ∗Sn−1 → Sn−1. Now, the magnetic Poisson
brackets on R

2n{γ, p} without the set {γ = 0} are defined by:

{F, G}d = {F, G}κ − {F, φ1}κ{G, φ2}κ − {F, φ2}κ{G, φ1}κ
{φ1, φ2}κ , (9.2)

where

{F, G}κ =
∑

i

(
∂ F

∂γi

∂G

∂ pi
− ∂ F

∂ pi

∂G

∂γi

)
+ 1

ε2

∑
i, j

κi j
∂ F

∂ pi

∂G

∂ p j

and φ1, φ2 are given in (7.13). The symplectic leaf given by (7.13) is the cotangent
bundle T ∗Sn−1 endowed with the twisted symplectic form w + ρ∗f .

Let the modified inertia operator I = I + DIdso(n) (D = ma2) be equal to the
identity operator on so(n) multiplied by a constant τ . For example, we can take I

given by (8.1) with A = diag(
√

τ , . . . ,
√

τ). Then the reduced Hamiltonian takes the
form

h = ε2

2τ
〈p, p〉. (9.3)

By taking H = h − λ1φ1 − λ2φ2, we obtain the magnetic Hamiltonian flow of the
Hamiltonian (9.3) with respect to the Dirac bracket (9.2)

γ̇ =∂ H

∂ p
= ε2

τ
p − λ2γ, (9.4)

ṗ = − ∂ H

∂γ
+ 1

ε2
κ

(
∂ H

∂ p

)
= 2λ1γ + λ2 p + 1

τ
κ p − λ2

ε2
κγ. (9.5)

Here, from the condition that φ1 and φ2 are first integrals of the flow, the Lagrange
multipliers can be calculated to get

λ1 =
1
τ
〈p, κγ 〉 − ε2

τ
〈p, p〉

2〈γ, γ 〉 , λ2 = ε2

τ

〈p, γ 〉
〈γ, γ 〉 .

Proposition 9.1 The equations of motion of the n-dimensional generalized Demchenko
case without twisting are:

τ ω̇ = [κ, ω] + λ0, γ̇ = −εωγ, (9.6)
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where κ ∈ so(n) is a fixed skew-symmetric matrix (9.1) and the Lagrange multiplier
λ0 ∈ (Rn ∧ γ )⊥ is determined from the condition that ω ∈ R

n ∧ γ . The equations of
motion reduce to the magnetic geodesic flow of the Hamiltonian (9.3) with respect to
the bracket (9.2)

γ̇ = ε2

τ
p, ṗ = 1

τ
κ p + μγ, μ = 1

τ
〈p, κγ 〉 − ε2

τ
〈p, p〉, (9.7)

restricted to the cotangent bundle of the sphere (7.13).

The proof follows from (7.8), Eqs. (9.4) and (9.5) restricted to (7.13), and
Proposition 7.2.

When ε = 1, we obtain the equations of motion of a gyroscopic ball rolling without
slipping and twisting over the plane orthogonal to γ , such that the inertia operator I
of the system is proportional to the identity operator. In dimension n = 3 this is the
Zhukovskiy problem with an additional nontwisting condition (see Sect. 6).

Let us note that integrable magnetic Hamiltonian systems on S2 were studied in
Saksida (2002), using their relation to a special Neumann system on S3. In particular,
the reduced problem (9.7) for n = 3 was described there by using the Cartan model of
the sphere S2 within the group SU (2). Although the systems (9.7) are quite natural as
they are described by the round metric on a sphere with a magnetic field defined by a
constant two-form in the ambient space, they have not been studied before for n > 3.

Since I (and equivalently I) is proportional to the identity matrix, we can consider,
without loss of generality, the system in a suitable orthonormal basis [e1, . . . , en] of
R

n , such that the skew-symmetric matrix (9.1) takes the form

κ = κ12e1 ∧ e2 + κ34e3 ∧ e4 + · · · + κ2[n/2]−1,2[n/2]e2[n/2]−1 ∧ e2[n/2].

9.2 Three-Dimensional Demchenko Case without Twisting

In his PhD thesis (Demchenko 1924) [see also Dragović et al. (2023)] Demchenko
studied the rolling of a ball with a gyroscope without slipping over a fixed sphere in
R
3. He assumed that the ball is dynamically axially symmetric, that axis of gyroscope

coincide with symmetry axis of the ball, and that the inertia operators of the ball and
the gyroscope satisfy the Zhukovskiy condition (6.4), that is, the inertia operator of
the system is proportional to the identity matrix: I = diag(A, A, A).

The equations of motion are [see (6.2)]

�̇k = (�k + �κ) × �ω, �̇γ = ε �γ × �ω, (9.8)

where �k = (A + ma2) �ω − ma2〈 �ω, �γ 〉 �γ . Demchenko solved the system via elliptic
functions.

Now, we add the no-twisting condition on the Demchenko rolling, e.g., we addi-
tionally assume that the angular velocity �ω belongs to the common tangent plane of

123



43 Page 40 of 51 Journal of Nonlinear Science (2023) 33 :43

the ball and the sphere in their contact point. The equations of motion are [see (6.5)]

�̇k = �κ × �ω + λ �γ , �γ = ε �γ × �ω, (9.9)

where �k = (A + ma2) �ω = ((A + ma2)ω1, (A + ma2)ω2, (A + ma2)ω3)) and λ is
the Lagrange multiplier of the constraint 〈 �ω, �γ 〉 = 0,

λ = −〈�γ , �κ × �ω〉.

After the identification (8.16), the matrix system (9.6), for n = 3, becomes the
system (9.9) in the vector notation, where the matrix multiplier λ0 corresponds to λ �γ ,
γ ≡ �γ , and the parameter τ is equal to A + ma2 (see Remark 8.1).

The reduced equations of motion (9.7) on T ∗S2, for κ = κ12e1 ∧ e2, become

γ̇1 = ε2

τ
p1, ṗ1 = 1

τ
κ12 p2 + μγ1,

γ̇2 = ε2

τ
p2, ṗ2 = −1

τ
κ12 p1 + μγ2,

γ̇3 = ε2

τ
p3, ṗ3 = μγ3,

μ = κ12

τ
(p1γ2 − p2γ1) − ε2

τ
(p21 + p22 + p23), (9.10)

They are Hamiltonian with respect to the Poisson structure (9.2) and the Hamiltonian
is

h = ε2

2τ
(p21 + p22 + p23).

Theorem 9.1 The reduced equations of the Demchenko case without twisting (9.10)
are Liouville integrable on T ∗S2 with the first integrals h, �, where

�(γ, p) = γ1 p2 − γ2 p1 + κ12

2ε2
(γ 2

1 + γ 2
2 ).

Proof follows by a direct calculation.
The reduced system (9.10) can be solved in elliptic quadratures.

Theorem 9.2 The reduced equations of the three-dimensional Demchenko case with-
out twisting (9.10) can be explicitly integrated via elliptic functions and their
degenerations.

Proof Instead on the cotangent bundle T ∗S2{γ, p}, we will equivalently integrate the
system on the tangent bundle T S2{γ, γ̇ }. Let us introduce polar coordinates r , ϕ by

γ1 = r cosϕ, γ2 = r sin ϕ.
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From the condition 〈γ, γ 〉 = 1, it follows that r2 + γ 2
3 = 1, while 〈γ, γ̇ 〉 = 0 is

identically satisfied. By differentiating r2 + γ 2
3 = 1 with respect to time, one gets

γ̇ 2
3 = r2

1−r2
ṙ2.

In the new coordinates, using the last relation, the first integrals can be rewritten as:

h = τ

2ε2

(
ṙ2 + r2ϕ̇2 + r2ṙ2

1 − r2

)
, (9.11)

� = τ

ε2
r2ϕ̇ + κ12

2ε2
r2. (9.12)

Note that τ > 0. We also assume h > 0 since h = 0 corresponds to the equilibrium
positions.

From (9.12), we get

ϕ̇ = 2ε2� − κ12r2

2τr2
, (9.13)

and, by plugging into (9.11), it follows

ṙ2 =
(

ε2

τ 2
(2hτ + κ12�) − κ2

12

4τ 2
r2 − ε4�2

τ 2

1

r2

)
(1 − r2).

Introducing u = r2, one derives

u̇2 = Q3(u),

Q3(u) := κ2
12

τ 2
(u − 1)

(
u2 − 4ε2

κ2
12

(2hτ + κ12�)u + 4ε4�2

κ2
12

)

= κ2
12

τ 2
(u − 1)(u − u1)(u − u2). (9.14)

Thus, r2 can be expressed as an elliptic function (or its degenerations) of time.
Using γ 2

3 = 1 − r2, one gets γ3, and from (9.13) one finds ϕ after an integration. �
Notice that the polynomial Q3 (9.14) always has u = 1 as a root. Observe also:

Q3(0) = −4ε4�2

τ 2
< 0.

From Vieta’s formulas, it follows that u1u2 > 0, or in other words, the remaining
two roots u1, u2 of Q3 are of the same sign. Having in mind that 0 ≤ u ≤ 1, the real
solutions, for u1 < u2, corresponds to the following cases:

(A) 0 < u1 < u2 < 1; Case (A) happens when the discriminant of the polynomial
Q2(u) = (u −u1)(u −u2) is greater than zero, the minimum of Q2(u) is between
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0 and 1, and Q2(1) > 0. This yields conditions:

hτ + κ12� > 0,

2hτ + κ12� <
κ2
12

2ε2
,

2hτ + κ12� − ε2� <
κ2
12

4ε2

(B) 0 < u1 < 1 < u2. Case (B) happens when Q2(1) < 0, that is

2hτ + κ12� − ε2� >
κ2
12

4ε2

In both cases r belongs to an annulus:

Case (A)
√

u1 ≤ r ≤ √
u2; Case (B)

√
u1 ≤ r ≤ 1.

When the discriminant of the polynomial Q3 (9.14) vanishes, the corresponding
elliptic functions degenerate. It happens if u1 = u2, or when one of the roots u1, u2
is equal to 1. Direct calculations show that the discriminant of the polynomial Q3
vanishes when

hτ + κ12� = 0, or 2hτ + κ12� − ε2� = κ2
12

4ε2
.

The first case corresponds to the condition that the discriminant of Q2 is zero, and the
second case corresponds to Q2(1) = 0.

9.3 The Generalized Demchenko Case without Twisting inR4. A Qualitative
Analysis of the Solutions

In dimension four, the equations of motion of generalized Demchenko case without
twisting reduce to Hamiltonian equations with respect to the Poisson structure (9.2)
on the cotangent bundle T ∗S3 ⊂ R

4{γ, p} of the three-dimensional sphere realized
by 〈γ, γ 〉 = 1, 〈γ, p〉 = 0. Let

κ = κ12e1 ∧ e2 + κ34e3 ∧ e4.

Eq. (9.7) are:

γ̇1 = ε2

τ
p1, ṗ1 = 1

τ
κ12 p2 + μγ1,

γ̇2 = ε2

τ
p2, ṗ2 = −1

τ
κ12 p1 + μγ2,

γ̇3 = ε2

τ
p3, ṗ3 = 1

τ
κ34 p4 + μγ3,
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γ̇4 = ε2

τ
p4, ṗ4 = −1

τ
κ34 p3 + μγ4,

μ = 1

τ

(
κ12(p1γ2 − p2γ1) + κ34(p3γ4 − p4γ3)

)
− ε2

τ
(p21 + p22 + p23 + p24).

(9.15)

The Hamiltonian is

h = ε2

2τ
(p21 + p22 + p23 + p24).

Theorem 9.3 The reduced equations of generalized Demchenko case for n = 4 (9.15)
are Liouville integrable on T ∗S3 with the three first integrals h, �12, and �34 in
involution, where

�12(p, γ ) = γ1 p2 − γ2 p1 + κ12

2ε2
(γ 2

1 + γ 2
2 ),

�34(p, γ ) = γ3 p4 − γ4 p3 + κ34

2ε2
(γ 2

3 + γ 2
4 ).

The proof follows by a direct calculation.
It iswell known that the question of integrability for aHamiltonian system is distinct

from the problem of its explicit integration.
The reduced equations of generalized Demchenko case without twisting in R4 can

be solved via elliptic functions by quadratures, similarly to their three-dimensional
counterpart, see Theorem 9.2 above.

Theorem 9.4 The reduced equations of generalized Demchenko case without twist-
ing for n = 4 (9.15) can be explicitly integrated via elliptic functions and their
degenerations.

Proof As in dimension n = 3, instead on the cotangent bundle T ∗S2{γ, p}, we will
integrate the systemon the tangent bundle T S3{γ, γ̇ }. Let us introduce newcoordinates
ρ1, ρ3, ϕ1, ϕ3 by

γ1 = ρ1 cosϕ1, γ2 = ρ1 sin ϕ1, γ3 = ρ3 cosϕ3, γ4 = ρ3 sin ϕ3.

From the condition 〈γ, γ 〉 = 1 it follows that ρ2
1 + ρ2

3 = 1, while 〈γ, γ̇ 〉 = 0 is
identically satisfied. In the new coordinates the first integrals become

h = τ

2ε2

(
ρ̇2
1 + ρ2

1 ϕ̇
2
1 + ρ̇2

3 + ρ2
3 ϕ̇

2
3

)
,

�12 = τ

ε2
ρ2
1 ϕ̇1 + κ12

2ε2
ρ2
1 ,

�34 = τ

ε2
ρ2
3 ϕ̇3 + κ34

2ε2
ρ2
3 . (9.16)
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Since the first integrals �12 and �34 depend on ρ1, ϕ̇1 and ρ3, ϕ̇3 respectively, ϕ̇1
can be expressed as a function of ρ1 and values of these first integrals; similarly, ϕ̇3
can be expressed as a function of ρ3 and values of these first integrals:

ϕ̇1 = 2ε2�12 − κ12ρ
2
1

2τρ2
1

, ϕ̇3 = 2ε2�34 − κ34ρ
2
3

2τρ2
3

. (9.17)

By differentiating the relation ρ2
1 + ρ2

3 = 1 with respect to time, we get

ρ̇2
3 = ρ2

1

1 − ρ2
1

ρ̇2
1 .

Using (9.17), the last equality, and the expression for the first integral h from (9.16),
one obtains

ρ̇2
1 = (1 − ρ2

1 )
2ε2h

τ
− (2ε2�34 − κ34 + κ34ρ

2
1 )

2

4τ 2
− 1 − ρ2

1

ρ2
1

(2ε2�12 − κ12ρ
2
1 )

2

4τ 2
.

Introducing u = ρ2
1 , it follows

u̇2 = P3(u). (9.18)

Here, P3 is a polynomial in u of the degree not greater than three:

P3(u) := a0u3 + a1u2 + a2u + a3,

where

a0 = κ2
12 − κ2

34

τ 2
, a3 = −4ε4�2

12

τ 2
,

a1 = −8ε2h

τ
− 2κ34

τ 2
(2ε2�34 − κ34) − κ2

12

τ 2
− 4ε2κ12�12

τ 2
,

a2 = 8ε2h

τ
− (2ε2�34 − κ34)

2

τ 2
+ 4ε2κ12�12

τ 2
+ 4ε4�2

12

τ 2
.

Therefore, from equation (9.18), integrating, one gets ρ2
1 as an elliptic function or

a degeneration of an elliptic function, depending on the degree and composition of
zeros of the polynomial P3(u). We get ρ3 from the algebraic equation ρ2

3 = 1 − ρ2
1 .

Finally, the variables ϕ1, ϕ3 can be obtained by quadratures from (9.17). �
Let us express the variable ρ2

1 in terms of the Weierstrass ℘-function in a generic
case: κ2

12 �= κ2
34 and the polynomial P3(u) has all roots distinct. Introducing z such

that

u = 4

a0
z − a1

3a0
,
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equation (9.18) takes the form

ż2 = 4z3 − g2z − g3, (9.19)

where

g2 = a2
1

12
− a0a2

4
, g3 = a0a1a2

4
− a3

1

216
− a2

0a3
16

.

By integration of (9.19), we get

∞∫
z

dξ√
4ξ3 − g2ξ − g3

−
∞∫

z0

dξ√
4ξ3 − g2ξ − g3

= ±(t − t0).

Finally, using the Weierstrass ℘-function [see for example Akhiezer (1990)], one
obtains

z = ℘(A ± (t − t0)), z0 = ℘(A).

Now, we are going to provide a qualitative analysis of the solutions of the
generalized Demchenko case without twisting in R

4, obtained in Theorem 9.4.
Case A. Let us consider first the case κ2

12 �= κ2
34. Then P3(u) is a degree three

polynomial. The coordinates ρ1, ϕ1 and ρ3, ϕ3 are polar coordinates on the projections
of the sphere 〈γ, γ 〉 = 1 to the coordinate planes Oe1e2 and Oe3e4, respectively.
Hence, ρ1 and ρ3, and consequently u can take values between 0 and 1.

Since

P3(0) = −4ε4�2
12

τ 2
< 0,

and

P3(1) = −4ε4�2
34

τ 2
< 0,

one concludes that on interval (0, 1) the polynomial P3(u) has (i) no real roots; (ii)
two distinct real roots; or (iii) one double real root.

(i) If the number of real roots is zero, then the polynomial P3(u) takes negative values
on the whole interval (0, 1). Thus, the case (i) does not correspond to a real motion.

(ii) In the case (ii) when the polynomial P3(u) has two distinct real roots u1 < u2 on
the interval (0, 1), the projection of a trajectory to the Oe1e2 and Oe3e4 planes
belong, respectively, to the annuli

√
u1 ≤ ρ1 ≤ √

u2 and
√
1 − u2

2 ≤ ρ3 =
√
1 − ρ2

1 ≤
√
1 − u2

1.
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Fig. 2 The case u1 < û < u2

Fig. 3 The cases û = u2 (left) and û = u1 (right)

Fig. 4 The case when û does not
belong to the interval [u1, u2]

There are three types of the trajectories in this case. Let

û = 2ε2�12

κ34
.

If û belongs to (u1, u2) then ϕ̇1 changes the sign and trajectories are presented
in Fig. 2 . If û is equal to u1 or u2, then the trajectories are presented in Fig. 3 .
Otherwise, the trajectories are presented in Fig. 4.

(iii) The case of a double root u1 = u2 corresponds to the stationary motion

ρ1 = const, ϕ1 = α1t + ϕ10,

ρ3 =
√
1 − ρ2

1 = const, ϕ3 = α3t + ϕ20,
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Fig. 5 A case that does not
correspond to a possible motion.

where

α1 = 2ε2�12 − κ12u1

2τu1
= const, α3 = 2ε2�34 − κ34(1 − u1)

2τ(1 − u1)
= const .

From the equations of motion (9.15) it follows that the constants α1 and α3 should
satisfy:

κ12α1 − κ34α3 + τ(α2
1 − α2

3) = 0.

Since the roots u1 and u2 of the polynomial P3(u) coincide, the discriminant of
the polynomial P3(u) is equal to zero.

Aswementioned, in the casewhen ϕ̇1 changes the sign, the trajectories are presented
in Fig. 2. In both cases, if we consider ϕ1 as a function on the universal covering of
S1, it is an unbounded function of time: in one case it goes to plus infinity, while in
the other case it goes to minus infinity, when t goes to infinity.

We come to a natural question: is there any case when ϕ1 is a bounded or, in
particular, a periodic function of time?

In other words, are there conditions which would generate Fig. 5as a limit case of
those presented in Fig. 2. The answer is negative, as one concludes from the following:

Proposition 9.2 If κ12 �= 0, then ϕ1 is unbounded function of time.

Proof From (9.17) we have

ϕ̇1 = 2ε2�12

2τu
− κ12

2τ
.

Since κ12 �= 0, the second addend is a constant, while the first one is periodic in time.
So ϕ1 is unbounded function of time. �

Case B. In the case κ34 = ±κ12, the coefficient of u3 in the polynomial P3(u) is
zero. Hence P3(u) is at most a quadratic polynomial in u. Qualitative pictures of the
trajectories are the same as before. They are presented in Figs. 2, 3, and 4 with an
important difference: now the solutions are not elliptic functions of time.
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In the case when u1 = u2, the discriminant of the polynomial P3 vanishes. This
leads to the stationary motion

ρ1 = const, ρ3 =
√
1 − ρ2

1 = const, ϕ1 = α1t + ϕ10, ϕ3 = α3t + ϕ20.

As in the case A, the constants α1 and α3 are not independent. If κ12 = κ34 we have
α1 = α3, or α1+α3 = κ12/τ . When κ34 = −κ12, then α1 = −α3 or α1+α3 = κ12/τ .

Remark 9.1 Let us remark that in the dynamics of the Lagrange top in absence of
gravity there exist a situation similar to the one mentioned before Proposition 9.2 (see
Fig. 5). This system can also be seen as a symmetric Euler top. There is a stationary
motion about the axis of symmetry that is in a nonvertical position. In other words,
the system of equations admits the following particular solution: the nutation angle
θ = θ0 ∈ (0, π/2) is a constant different from zero, the precession angle ϕ is constant,
and the angle of intrinsic rotationψ is a linear function of time. If in an initial moment
of time one chooses θ close to θ0, then the nutation and precession will be periodic
functions of time, and the axis of symmetry will uniformly rotate about the vector of
angular momentum, which is fixed in the space. See Arnold (1974) for more details.

What is going on in with the Lagrange top with the presence of gravity? Can the
precession angle be a periodic function on the universal covering of S1?

It may look like the mentioned stationary solution exists in the presence of gravity
as well. The three first integrals (the energy integral, the projection of the angular
momentum on the vertical axis, the projection of the angular momentum on the axis
of symmetry) are constant functions on the solution. However, from the equations of
motion one gets that the stationary motion about the axis of symmetry is possible only
when θ = 0 or θ = π . Based on that, one can speculate that a solution of the Lagrange
top with the presence of gravity having the precession angle as a bounded or periodic
function of time does not exist. A rigorous proof of that observation was provided
by Hadamard (1895). Although the Lagrange top was widely studied since then, with
dozens of volumes devoted to it, this Hadamard’s result is very hard to find. A nice
exception is a recent short note (Zubelevich and Salnikova 2018).
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Dragović, V., Gajić, B., Jovanović, B.: Spherical and planar ball bearing—nonholonomic systems with an
invariant measure. Regul. Chaotic Dyn. 27, 424–442 (2022). arXiv:2208.03009

Ehlers, K., Koiller, J.: Rubber rolling over a sphere. Regul. Chaotic Dyn. 12, 127–152 (2007).
arXiv:math/0612036

Ehlers, K., Koiller, J.: Cartan meets Chaplygin. Theor. Appl. Mech. 46(1), 15–46 (2019)
Ehlers, K., Koiller, J., Montgomery, R., Rios, P.: Nonholonomic systems via moving frames: Cartan’s equiv-

alence and Chaplygin Hamiltonization. In:Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of Symplectic
and Poisson Geometry, Prog. Math., vol. 232. Birkhäuser, Boston (2005) . arXiv:math-ph/0408005

Fasso, F., Garcia-Naranjo, L.C., Montaldi, J.: Integrability and dynamics of the n-dimensional symmetric
Veselova top. J. Nonlinear Sci. 29, 1205–1246 (2019). arXiv:1804.09090

Fedorov, Yu.N.: The motion of a rigid body in a spherical support. Vestn. Mosk. Univer., Ser. I 5, 91–93
(1988). (in Russian)
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