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Abstract

We introduce and study the Chaplygin systems with gyroscopic forces. This natural
class of nonholonomic systems has not been treated before. We put a special emphasis
on the important subclass of such systems with magnetic forces. The existence of an
invariant measure and the problem of Hamiltonization are studied, both within the
Lagrangian and the almost-Hamiltonian framework. In addition, we introduce prob-
lems of rolling of a ball with the gyroscope without slipping and twisting over a plane
and over a sphere in R” as examples of gyroscopic SO (n)-Chaplygin systems. We
describe an invariant measure and provide examples of S O (n —2)-symmetric systems
(ball with gyroscope) that allow the Chaplygin Hamiltonization. In the case of addi-
tional SO (2)-symmetry, we prove that the obtained magnetic geodesic flows on the
sphere S"~! are integrable. In particular, we introduce the generalized Demchenko
case in R", where the inertia operator of the system is proportional to the identity oper-
ator. The reduced systems are automatically Hamiltonian and represent the magnetic
geodesic flows on the spheres $”~! endowed with the round-sphere metric, under the
influence of a homogeneous magnetic field. The magnetic geodesic flow problem on
the two-dimensional sphere is well known, but for n > 3 was not studied before. We
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perform explicit integrations in elliptic functions of the systems forn =3 and n = 4
and provide the case study of the solutions in both situations.
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1 Introduction
1.1 Nonholonomic Lagrangian Systems with Gyroscopic Forces

The main aim of this paper is to introduce and study a general setting for Chaplygin
systems with gyroscopic forces, with a special emphasis on the important subclass
of the Chaplygin systems with magnetic forces. This class of nonholonomic systems,
although quite natural, has not been treated before.

In his first PhD thesis, Vasilije Demchenko (Demchenko (1924); Dragovi¢ et al.
(2023)), studied the rolling of a ball with a gyroscope without slipping over a sphere in
IR3, by using the Voronec equations (Voronec 1901; Woronetz 1911, 1912). Inspired
by this thesis, we consider the rolling of a ball with a gyroscope without slipping and
twisting over a sphere in R”. This will provide us with examples of gyroscopic SO (n)-
Chaplygin systems that reduce to integrable magnetic geodesic flows on a sphere §” 1.

Let (Q, G) be a Riemannian manifold. Consider a Lagrangian nonholonomic sys-
tem (Q, L1, D), where the constraints define a nonintegrable distribution D on Q.
The constraints are homogeneous and do not depend on time. The Lagrangian, along
with the difference of the kinetic and potential energy, contains an additional term,
which is linear in velocities:

1
Li(q.9) = 5(G@). 9) + (A.4) = V(g).
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Here and throughout the text, (-, -) denotes the parring between appropriate dual spaces,
while A is a one-form on Q. The metric G is also considered as a mapping TQ —
T*Q.

A smooth path ¢(t) € Q, t € A is called admissible if the velocity ¢ (¢) belongs
to Dy for all 1 € A. An admissible path g(t) is a motion of the natural mechanical
nonholonomic system (Q, L1, D) if it satisfies the Lagrange-d’ Alembert equations

oL d oL
sLy = (=L - 220 50} =0, forall 8q € Dy. (L.1)
aq dt 9q

Equation (1.1) are equivalent to the equations

0L = _8 - ——8 3q | =F(q,dq), forall 8q € D, (1.2)
= s = s , fora s .
aq dt 9q 1

where L is the part of the Lagrangian L which does not contain the term linear in
velocities:

. 1 .
L(g.9) = 5(G(@).4) = V(q).
Here the additional force F(q, ¢q) is defined as the exact two-form
F = dA,

where A is the one-form from the linear in velocities term of the Lagrangian L. We
will subsequently consider a more general class of systems where an additional force
is given as a two-form which is neither exact nor even closed.

Systems with an additional force defined by a closed two-form F and without
nonholonomic constraints are very well studied. The corresponding Hamiltonian flows
are usually called magnetic flows or twisted flows. For the problem of integrability of
magnetic flows, see, e.g., Bolotin and Kozlov (2017), Bolsinov and Jovanovi¢ (2008),
Taimanov (206), Magazev et al. (2008) and Saksida (2002). Following tradition, we
introduce

Definition 1.1 Let F be a 2-form on Q. We refer to a system (Q, L, F, D) as a natural
mechanical nonholonomic system with gyroscopic forces. The additional gyroscopic
force F(q, §q) is called magnetic if the form F is closed,

dF =0,

and in this case we say that the system (Q, L,F,D) is a natural mechanical
nonholonomic system with a magnetic force.

The equations of motion of a natural mechanical nonholonomic system with a
gyroscopic force (Q, L, F, D) are given in (1.2).

@ Springer
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Starting from the notion of G-Chaplygin systems for nonholonomic systems with-
out gyroscopic forces [see Baksa (1975), Stanchenko (1989), Koiller (1992), Bloch
etal. (1996), Cantrijn et al. (2002), Garcia-Naranjo and Marrero (2020)], we introduce
the following.

Definition 1.2 Assume that Q is a principal bundle over S with respect to a free action
of a Lie group G, 7: Q — S = Q/G, and that L and F are G-invariant. Suppose
that D is a principal connection, that is, D is G-invariant, transverse to the orbits of
the G-action, and rank D = dim S. Then we refer to (Q, L, D, G, F) as a gyroscopic
G-Chaplygin system.

Obviously, a gyroscopic G-Chaplygin system (Q, L, D, G, F) is G-invariant and
reduces to the tangent space of the base-manifold S = Q/G.

1.2 Outline and Results of the Paper

In Sect. 2 we consider gyroscopic nonholonomic systems on fiber spaces. In Sect. 3
we employ them to describe a reduction procedure for the gyroscopic G-Chaplygin
systems (Theorem 3.1). The Chaplygin systems have a natural geometrical framework
as connections on principal bundles [see Koiller (1992)]. On the other hand, nonholo-
nomic systems were incorporated into the geometrical framework of the Ehresmann
connections on fiber spaces in Bloch et al. (1996). In this paper, we combine the
approach of Bloch et al. (1996) with the Voronec nonholonomic equations, see Voronec
(1901).

In Sect. 4 we derive the equations of motion of the reduced gyroscopic G-Chaplygin
systems in an almost-Hamiltonian form and study the existence of an invariant measure
(Theorem 4.1). A closely related problem is the Hamiltonization of nonholonomic
systems [see Chaplygin (1911), Stanchenko (1989), Borisov and Mamaev (2001),
Borisov and Mamaev (2008), Balseiro and Garcia-Naranjo (2012), Bolsinov et al.
(2011), Borisov et al. (2014), Bolsinov et al. (2015), Ehlers et al. (2005), Cantrijn
et al. (2002), Fedorov and Jovanovi¢ (2004), Jovanovi¢ (2019), Jovanovi¢ (2018)]. In
Sect. 5 we consider the Chaplygin reducing multiplier and the time reparametrization
of magnetic Chaplygin systems, both within the Lagrangian and the Hamiltonian
framework (see Theorem 5.1).

In Sect. 6 we briefly review the results about integrable nonholonomic problems
of rolling of a ball with the gyroscope, without slipping and twisting, over a plane
and over a sphere in the three-dimensional space. In particular, we present the Dem-
chenko integrable case (Demchenko 1924) and the Zhukovskiy condition for the
system (Zhukovskiy 1893).

In Sect. 7 we introduce the problems of rolling of a ball with a gyroscope, without
slipping and twisting, over a plane and over a sphere in R”. We describe the reduction
(Propositions 7.1,7.2) and an invariant measure (Proposition 7.3) of these new systems.
The obtained systems are examples of gyroscopic SO (n)-Chaplygin systems that
reduce to magnetic flows.

In Sect. 8 we provide examples of SO (n — 2)-symmetric systems (ball with gyro-
scope) that allow the Chaplygin Hamiltonization (Theorem 8.1). We also prove the

@ Springer



Journal of Nonlinear Science (2023) 33:43 Page50f51 43

integrability of the obtained magnetic geodesic flows on a sphere in R”, n > 3 in
the case of SO(2) x SO (n — 2)-symmetry (Theorem 8.2). Note that the phase space
of a nonholonomic system that is integrable after the Chaplygin Hamiltonization is
foliated by d-dimensional invariant tori, where the system is subject to a nonuniform
quasi-periodic motion of the form

(,blzwl/qD((pl,...,(pd),...,gbdde/q)(gol,...,(pd), d)>0, (1.3)

with some d, d < n. In Theorem 8.2 we present two examples of such systems, one
with d = 2 and n = 3 and another one with d = 3 and any n > 3.

Finally, in Sect. 9 we consider the case when the inertia operator for systems is
SO (n)-invariant, i.e., it satisfies the Zhukovskiy condition in R” with an additional
nontwisting condition. We will refer to such systems as the generalized Demchenko
case without twisting in R". The reduced systems are automatically Hamiltonian. They
represent the magnetic geodesic flow on a sphere §"~! endowed with the round-sphere
metric, under a influence of the homogeneous magnetic field placed in the ambient
space R". The magnetic geodesic flow problem on a two-dimensional sphere is well
known [see Saksida (2002)]. However, the magnetic geodesic flow problems forn > 3
have not been studied before. We prove the complete integrability of the system on
the three-dimensional sphere (Theorem 9.3). We conclude the paper with a detailed
analysis of the motion of the generalized Demchenko systems without twisting for
n = 3 and n = 4 in terms of elliptic functions.

2 Nonholonomic Systems with Gyroscopic Forces on Fibred Spaces
2.1 The Voronec Equations

Following Demchenko! (Demchenko 1924; Dragovi¢ et al. 2023); we recall the
Voronec equations for nonholonomic systems (Voronec 1901). We will then employ
them to formulate the reduced equations of gyroscopic Chaplygin systems. Here we
assume that the constraints may be time-dependent and nonhomogeneous.

Letg = (q1, - - -, gn+k) belocal coordinates of the configuration space Q. Consider
a nonholonomic system with kinetic energy 7 = T (¢, q, q), generalized forces Qs =
Qs (t, g, ¢) that correspond to coordinates ¢y, and time-dependent nonhomogeneous
nonholonomic constraints

n
Gutv = Y ailq, D4 +avlq, 0,  v=12,...k @.1)
i=1

Let T, be the kinetic energy T after imposing the constraints (2.1). Let K, be the
partial derivatives of the kinetic energy T with respecttog,,v = 1, 2, ..., k, restricted

I Demchenko’s PhD advisor, Anton Bilimovi¢ (1879-1970), was a distinguished student of Peter
Vasilievich Voronec (1871-1923) and one of the founders of Belgrade’s Mathematical Institute. We note
that some recent results [see Borisov and Tsiganov (2020); Borisov et al. (2021)] are inspired by Bilimovi¢’s
work in nonholonomic mechanics (Bilimovitch 1913a,b, 1914; Bilimovic 1915; Bilimovich 1916).
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to the constrained subspace. We assume that the constraints (2.1) are imposed after
the differentiation and get:

TC(I’ qts - -« Y4ntk> ql’ Tt qu) = T(t’ q, q')|‘in+u:Z;'l:1 ayi(q,t)gi+ay(q.t)’

i i oT .
Ky(t, g1, ... qnsks 41, - qn) = 5z (@ DG,y =3" avi(q.0di+av (q.1)-
dn+v

The equations of motion of the given nonholonomic system can be presented in a
form which does not use the Lagrange multipliers:

d 3T, a u
) .. )
T Q’+Z““'< )+ ZK(ZA i+ a)
2.2)
The derivation of these equations is based on the Lagrange—d’Alembert principle
and follows Voronec (1901). Here i = 1, ..., n. The components AE})) and Ag”) are
functions of the time ¢ and the coordinates ¢1, ..., ¢y+k given by
da k da da k da
(v) vi Vi vj vj
A :<——|— a —)_< + a,; >’
Y aqj ; " aCIn+M agi [LX—:I - a%z+u
k
da,; aay; da da
) vi Vi v v
A = (— + a ) ( a )
! Jat MZ::I ” aCIn-HL ;LZ:I i 3Qn+u
When all considered objects do not depend on the variables g,+,, v=1,2,...,k,

we have a Chaplygin system. Then Eq. (2.2) are called the Chaplygin equations. The
Voronec and the Chaplygin equations, along with the equations of nonholonomic
systems written in terms of quasi-velocities, known as the Euler—Poincaré—Chetayev—
Hamel equations, form core tools in the study of nonholonomic mechanics [see
Neimark and Fufaev (1972), Bloch et al. (1996), de Le6n (2012), Ehlers et al. (2005),
Ehlers and Koiller (2019), Zenkov (2016)].

2.2 The Ehresmann Connections and Systems with Gyroscopic Forces

Consider a natural mechanical nonholonomic system with a gyroscopic force
(Q, L,F, D). After Bloch et al. (1996), we assume that Q has a structure of a fiber
bundle 7: Q — S over a base manifold S and that the distribution D is transverse to
the fibers of 7:

,0=D,®V,, V;,=kerdn(q).
The space V, is called the vertical space at q. The distribution D can be seen as the

kernel of a vector-valued one-form A on Q, which defines the Ehresmann connection,
that satisfies
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(i) Ay: T,Q — V, is a linear mapping, g € Q;
(ii) A isaprojection: A(Xy) = Xy, forall X, € V,.

The distribution D is called the horizontal space of the Ehresmann connection A.
By X" and X" we denote the horizontal and the vertical component of the vector field
X € X(Q). The curvature B of the connection A is a vertical vector-valued two-form
defined by

B(X,Y) = —A(IX", Y.

Let dim Q = n 4+ k and dim § = n. There exist local “adapted” coordinates

q = (q1, -, qn+k) on Q, such that the projection 7: Q — S and the constraints
defining D are given by
TGty Gns Gngls - - -5 Gnk) V> (15 - qn),

n
dnrv = Y ai(@di, v=1,....k

Here (g1, . .., gn) are the local coordinates on S. Then, locally, we also have
k n
A= Za)v s 0’ = dQn+v - Zavidtﬁv
= Yt i=1

0= (Srt) =Y xS el

=1 i=1 v=l i=1

+k 9 v k n 9
= —_— = X _ X N
<Z laql) < n+v Zavt 1) Oty

=1 v=1 i=1

k

B d d
Bl—,— )= B’ , F= Fgdgs ndq.
<3qi 3qj> 2 Y 01 2 Fadas

v=1 1<s<I<n+k

Here Bl.“j (@) = AE;) (q), where AE}J) (g) come from the Voronec equations (2.2) with
homogeneous constraints, which do not depend on time. The generalized forces Q; =
0s(q,q9),s = 1,...,n+ k are the sums of the potential and the gyroscopic forces

n+k

Qs =0y +0f, 0 =-3V/dg, OF=) Fud.

The Voronec equations (2.2) take the form:

%Z;zc - Zaw ZZ z]q/+QF+Zann+w
i

Intv v=1 j= 1 v=1
(2.3)
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(i=1,...,n), where L, is the constrained Lagrangian L. = L(q, q'h) =T.—V.In
a compact form, the equations can be expressed as’:

8L =FL(q.9)(B(q,39)) +F(q,3q) 2.4
for all virtual displacements
n+k

3
8g =) b8qi— €D,
s=1 aqs

Here 6 L. is the variational derivative of the constrained Lagrangian along the variation
8q and FL is the fiber derivative of L:

9L, d oL koL, d oL
0L, = _C___.C’S‘Z = E - — .C dqs,
aq dt 9q — dgs  dt 9g;

d
FL(g, X)(Y) = $|s:OL(q, X +sY), X, YeT,0Q,

k

L
FL(q. §)(B(G.8q)) = :
(@, 9)(B(q,89)) gaq’w

(q.9)B"(q. 8q).

See Bloch et al. (1996) for the case without gyroscopic two-form F.

Note that, even in the case when the two form F is exact F = dA, it is convenient
to use the Lagrangian L and the form of Eq. (2.4), rather then the Lagrangian L with
the term linear in velocities.

Remark 2.1 In the case when the constraints are nonhomogeneous and time dependent
(2.1), the coefficients Ag.)), Afw can be also interpreted as the components of the
curvature of the Ehresmann connection of the fiber bundle 7 : Q x R — § x R [see
Baksa (2012)].

3 The Gyroscopic Chaplygin Systems

In addition to the assumptions from Sect. 2.2, we now assume that the fibration 7 :
Q — § is determined by a free action of a k-dimensional Lie group G on Q, so
that S = Q/G and that the constraint distribution D, the gyroscopic two-form F and
the Lagrangian L = T — V are G-invariant. Then A is a principal connection and
the nonholonomic system (2.4) is G-invariant and reduces to the tangent bundle of
the base manifold S by the identification TS = D/G. More precisely, we use the
following definition.

2 One can compare the form of Eq. (2.4) with the compact form of the Voronec equations obtained from
the Voronec principle, see, e.g., Dragovic et al. (2023).
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Definition 3.1 Let G, V, and F be a G-invariant metric, a potential and a two-form on
Q. The reduced metric g, the reduced potential v, and the reduced two-form f on §
are defined by:

gX. V) =GX". Y, v@)=V(g. X V) =FX" ",
Here X", Y" are the horizontal lifts of X, Y at a point g € 7~ (x) defined by
drl,( X" =X, dnl,tmy=v, X" Y"eD,.

Note that we do not impose any additional assumptions on F. In particular, F does
not need to be of the form F = 7*w, where w is a 2-form on the base manifold S.
Equation (2.4) are G-invariant and they reduce to 7'S

al d ol
8l=—— ——,8x) =JK(x,dx) +f(x,6x) forall éx €TSS, (3.1)
dx  dt ox

where
= 3800, )~ v

is the reduced Lagrangian and the term® JK(-, -) depends on the metric and the cur-
vature of the connection, induced by FL(B(-, -)). The term JK(, -) can be described
as follows. Consider the (0,3)-tensor field ¥ on S defined by

(X, Y, Z)ly =FL(g, X"Y(BY", Z"),,  qen '), (3.2)

where X h, Y", Z" are the horizontal lifts of vector fields X ,Y,Zon S. Then X is
skew-symmetric with respect to the second and the third argument, and

JKX, V)5 =2, X, Y). (3.3)

Remark 3.1 Let us explain the notation for the JK-term. It is obtained from the natural
paring of the momentum mapping of the G-action J : TQ — g* and the curvature
K : TQ x TQ — g of the principal connection A, where g is the Lie algebra of
the Lie group G. Namely, we have a canonical identification of the vertical space
V, with the Lie algebra g. Then the curvature of the Ehresmann connection B is g-
valued and coincides with the curvature K of the principal connection. Also, within
this identification, the fiber derivative FL(q, ¢) in the direction of the vertical vector
& € g =V, becomes the value of the momentum mapping J of the G-action evaluated
at &. In this way the expression (3.2), as the natural paring of the tangent bundle
momentum mapping J and the curvature two-form K, defines a (0, 3)-tensor field ¥
on §. On the other hand, the JK-term defined by (3.3) is a semi-basic 2-form on T'S.

3 Let us note that in Ehlers et al. (2005), the term “JK" is used for the associated semi-basic two-form o
on T*§ given below.
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Definition 3.2 We refer to (S, [, JK, f) as a reduced gyroscopic G-Chaplygin system.
In the case when f is a closed form, we call it a reduced magnetic G-Chaplygin system.

The equations of motion of the reduced gyroscopic G-Chaplygin system
(S,1, JK, f) are described in (3.1).
We summarize the above considerations in the following statement.

Theorem 3.1 The solutions of the gyroscopic G-Chaplygin system (Q, L, D, G, F)
project to solutions of the reduced gyroscopic G-Chaplygin system (S, 1, JK, ). Let
x(t) be a solution of the reduced system (3.1) with the initial conditions x(0) = xo,
X(0) = Xo € Ty, S and let qp € 7~V (x0). Then the horizontal lift q(t) of x(t) through
qo is the solution of the original system (1.2), i.e., (2.4), with the initial conditions
q(0) = xo, (0) = X} € D,

Remark 3.2 If f is an exact magnetic form, e.g., f = da, then Eq. (3.1) are equivalent
to

al4 d 3l .
Slij=|————,8x ) =JK(x,8x) forall é&x e TS, (3.4
ox dt 0x

where the Lagrangian /1, given by

1
h = E(g(fC),fC) + (a, %) — v(x),

has the linear term (a, x).

Remark 3.3 Within the affine connection approach to the Chaplygin reduction, it is
convenient to introduce (1, 2)-tensor fields B and C defined by [see Koiller (1992),
Cantrijn et al. 2002]

X(X,Y,Z2)=gBX,Y), Z2)=g(X,C, 2)).

Gaji¢ and Jovanovi¢ (2019a), the tensor field B was used, while here we work with
the skew-symmetric tensor C. Note that C is equal to the negative gyroscopic tensor
T defined by Garcia-Naranjo (2019a,b).

Note that if F is magnetic, then f is not necessarily magnetic. Indeed, we have
Proposition 3.1 Assume that the form F is closed. Then the reduced form £ is closed
if and only if

F(x", Y" - (X, vV, 2" + F((2", X" - 2, X", ™)
+F(Y", 2" -1y, Z1" X" =0, (3.5)

for all vector fields X, Y, Z on S. In the adapted coordinates ¢ = (q1, . . ., ntk) On
Q described in Sect. 2.2, the condition (3.5) is equivalent to the equations

k
Z (Bi‘}Fp,n-i-u + B;iFj.n+v + B}')pFi,n-ﬁ—u) = O’ I < [ j» p=n. (3-6)

v=1
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In particular, if the curvature B of the Ehresmann connection vanishes (equivalently,
the curvature K of the principal connection vanishes), then f is closed.

Proof Since F is magnetic, we have

dF(X',Y',Z) = X'FY', Z)+ Y FZ, X)+ ZFX,Y)
—F(X,Y1Z)-F(1Z,Xx1Y)-F(IY, Z1X) =0,

for arbitrary vector fields X', Y/, Z" on Q. On the other hand, by using the above
relation and the definition of f that depends on the horizontal distribution D, we get

at(X,Y,2)|, = <Xf(Y, Z)+ YE(Z, X) + ZE(X, Y)

- f(X,Y],2)—£(Z,X],Y) —£(Y, Z], X))

X

- <XhF(Yh, 7"+ Y'R(Z", X" + Z"F(xh, v

— F(X,Y1", Z" —F(z, X", Y - F(Y, Z]", Xh)>

q

= <F([Xh, YM, z" + F(z", XM, vh + R (YT, 24, x

3

— F(X,Y1", Z") —Fqz, x1", Y — ¥y, Z]", Xh)>
q

where X", Y Z" are the horizontal lifts of the vector fields X, Y, Z on S, ¢ €
a7 () is arbitrary. Thus, df = 0 if and only if (3.5) is satisfied. Consider the adapted

coordinates ¢ = (q1, - - -, u+k) on Q described in Sect. 2.2 and take
X 9 Y Z 1<i,j,p=<
= T > = T = 3 =l J,p=n
9qi dq; 3qp
Then the equation df (X, Y, Z) = 0 takes the form (3.6). m]

Remark 3.4 In the special case, when F = 7*w, where w is a two-form on the base
manifold S, Eq. (3.6) are automatically satisfied (F; 4+ = 0,1 <i <n,1 <v <k).
In this special case f = w, and dF = 0 if and only if df = 0.

4 Almost Hamiltonian Description and an Invariant Measure
4.1 Almost Symplectic Manifolds

Recall that an almost symplectic structure is a pair (M, ) of a manifold M and a
nondegenerate 2-form w [see Libermann and Marle (1987)]. Here we do not assume
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that the form w is closed, in contrast to the symplectic case. As in the symplectic
case, since w is nondegenerate, to a given function H one can associate the almost
Hamiltonian vector field X i by the identity

ixyw() =w(Xpy, ) =—dH().

The almost symplectic structure (M, w) is locally conformally symplectic, if in a
neighborhood of each point x on M, there exists a function f different from zero
such that fw is closed. If f is defined globally, then (M, w) is conformally symplectic
(Libermann and Marle 1987).

4.2 Reduced Flows on Cotangent Bundles

Let (x1,...,x,) be local coordinates on § in which the metric g is given by the
quadratic form ) ; j &ijdxi ® dx; and the components of the (1,2)-tensor C are Cf.
(see Remark 3.3). Then the Lagrangian, the gyroscopic two-form and the JK-term
read as follows

. 1 . .
l(x,x):EZgijxixj—v(x), f:Zfijdxi/\dxj,

i<j

JK(X, V)|ri) = 8, C(X. Y) = Y guChXiY .
ki, j

We also introduce the Hamiltonian function

1 1 .
h(x, p) = 5(p. g7 (p) +0(0) = 5 & pipj +v(),

as the usual Legendre transformation of /. Here (pi,..., pn, X1, ..., X,) are the
canonical coordinates of the cotangent bundle 7*S,

pi=0l/0%; =) gij%j,
J

and {g'/} is the inverse of the metric matrix {g; 1. For simplicity, the same symbol
denotes a function on the base manifold f: § — R and its lift to the cotangent bundle
p*f=fop: T*S - R, where p : T*S — S is the canonical projection.

In canonical coordinates Eq. (3.1) takes the form

LR =
fi=o— = 8Up). @.1)
Ipi =
/_
‘ L N )+if()8h 42)
| == i (x, jj(x)—. .
Pi x; i 14 < ij ap;
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Here, the JK-term is given in the form

i x. p) =JK(i,x)
8x,~

Z ct (x)pk— 4.3)

jk=1 Pj

n
D gukCh )| img1(p)
i=g~l(p) ki1 j=1

Let z = (x, p). The reduced Egs. (4.1), (4.2) on the cotangent bundle 7*S can be
written in the almost Hamiltonian form

2= Xred, iX,(R+ 0+ p*f) = —dh, 44)

where € is the canonical symplectic form on 7*S, o is a semi-basic form defined by
the JK term [see Cantrijn et al. (2002), Stanchenko (1989)]:

Q=dpiANdx1+---+dp, Ndxy, 4.5)
n

> Ch@) prdxi Adx;. (4.6)
I<i<j<n k=1

4.3 Invariant Measure

The existence of an invariant measure for nonholomic problems is well studied [see
Fedorov (1988), Veselov and Veselova (1988), Kozlov (1988), Fedorov and Kozlov
(1995), Zenkov and Bloch (2003), Fasso et al. (2019), Jovanovi¢ (2015), Fedorov et al.
(2015)]. We will consider smooth measures of the form u = v Q", where Q" [see
(4.5)] is the standard measure on the cotangent bundle 7*S and v is a nonvanishing
smooth function, called the density of the measure u.

In absence of potential and gyroscopic forces, it was proved in Cantrijn et al. (2002)
that Egs. (4.1), (4.2) have an invariant measure if and only if its density is basic, i.e.,
v = v(x). Then the system with a potential force v(x) also preserves the same measure
[see Stanchenko (1989), Cantrijn et al. (2002)].

For f = 0, the existence of the basic density v = v(x) is equivalent to the condition
that the one-form

0= Zcf )dxi, ie, OX)|y =t CX, ), XeTS, 4.7)

is exact: there exists a function A such that ® = dA. Then the function v(x) =
exp(A(x)) is the density of an invariant measure [see Cantrijn et al. (2002), Garcia-
Naranjo and Marrero (2020)]. The statement formulated in terms of the tensor field
B is given in Cantrijn et al. (2002), while in Garcia-Naranjo and Marrero (2020) it is
formulated in terms of the gyroscopic tensor 7 = —C. An example of a system with a
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potential force and with an invariant nonbasic measure is also given in Garcia-Naranjo
and Marrero (2020).
In the presence of the gyroscopic form f we have a similar situation.

Theorem 4.1 The reduced gyroscopic Chaplygin equations (4.1), (4.2) have an invari-
ant measure . = v Q" with a basic density v(x) if and only if the one-form (4.7) is
exact ® = dA. Then the function v = exp(A(x)) is the density of the invariant measure.

In other words, according to Cantrijn et al. (2002), Garcia-Naranjo and Marrero
(2020), a Chaplygin system with a gyroscopic term possesses a basic invariant measure
if and only if the same Chaplygin system without gyroscopic term preserves the same
basic invariant measure.

Proof The Lie derivative Ly, , () vanishes if and only if the divergence of the vector
field v X,.4 withrespect to the canonical measure equals to zero. By using the identities

d 0dh
= it =0, Cckgll =0,
apiop; Zf”g Z 8
we get:
n
0 oh
divivX = —(v—
V(WX eq) ; ox; <V8Pi>
d
+ Za—p( (— —+ Z cl; (X)Pk_ +qu<x>—))
L
n
= —_— = c/
; (Bx, ! Z i (X)>
Since x; = % is arbitrary for each fixed x, the vector filed X,.4 preserves the

measure v Q" if and only if

9 .
dlny = Zvil—vdxi = Z Cijj(x)dxi =0.

Note that, although the proof is derived in local coordinates, all considered objects are
global and the identity d In v = ® holds globally. O
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5 Chaplygin Hamiltonization for Systems with Magnetic Forces
5.1 Chaplygin Multipliers in the Lagrangian Framework

We consider the reduced Chaplygin systems (3.1) and study the question of their
transformation into a Lagrangian system after a time reparametrization.

Let us consider a time substitution dt = N (x)dt, where N (x) is a differentiable
nonvanishing function on §. Denote x’ = dx/dt = N~ 'x.

We first treat the exact case: f = da (see Remark 3.2). Locally, the one-form a is
given by a = ), a;(x)dx; and

. 1 .. .
li(x, x) = 3 E gijXixj + E a;x; — v(x).
i

The Lagrangians / and /; in the coordinates (x, x”) are denoted /* and /] respectively
and take the form

Fx,x')y == ZNguxx —v(x), (5.1
[(x,x') = 3 Z N2gijxlx’; + " Naj(x)x] — v(x). (5.2)
i
Following Chaplygin (1911), we are looking for a nowhere vanishing function

N (x), called a Chaplygin reducing multiplier such that the reduced Chaplygin system
(3.4)

d ol ol
it S c! 5.3
dr % oxi +k;1 1 (08utiE; (-3)

after a time reparametrization dt = N (x)dt becomes the Lagrangian system

d ar;

———=— i=1,...,n. 5.4
dr 9x]  9x; ! " -4

Equivalently, we can use the Lagrangians / and [*. Let

da;j  da;

f=da= i§<j fijdxi ndxj. fij = 3 = ﬁ
N N
f* =dWNa) = E fhdxi ndxj,  f; Nf,,—i—ala —dig—.
J

i<j

Then, we are looking for a nowhere vanishing function AV (x), such that the reduced
Chaplygin system
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d dl al n n
— k - . .
dt 9%;  0x; + Z Cii (X)grixiX; —i—Zflj(x)xj (5.5)

k,l,j=1 j=1

after a time reparametrization dt = N (x)dr becomes the Lagrangian system with
magnetic forces

dar ., .
Egza_xi—i_ E fijxj, i=1,...,n. (5.6)
l j=I1

Proposition 5.1 Suppose that £ is exact: £ = da. The reduced equations of the Chap-
lygin system with a linear term in velocities (5.3) after a time reparametrization
dt = N (x)dt becomes the Lagrangian system (5.4) if and only if the corresponding
system without the linear term allows the Chaplygin multiplier N'(x) and dN ra = 0,
that is, if

N N
a; 2 = g2 (5.7)
8)6,‘ 3)Cj

Note that conditions (5.7) imply that
f* =dNa) =Nda+dN ra=NT
and
dWNTt) =dN Af=0. (5.8)

Let us now turn to the nonexact case. Thus, we assume now f is not exact. In this
case we set

* = VY. (5.9)

Proposition 5.2 Suppose that £ is not exact. The equations of motion of the reduced
gyroscopic Chaplygin system (5.5) after a time reparametrization dt = Ndt become
the Lagrangian equations with gyroscopic forces (5.6), where f* is given by (5.9) if
and only if the corresponding system without gyroscopic forces allows the Chaplygin
multiplier N'(x).

Propositions 5.1 and 5.2 follow from the derivation given below for the Hamiltonian
setting as indicated in Remark 5.1.

Note that the gyroscopic system (5.6) is magnetic if the form (5.9) is closed. In
particular, if f is closed, but not exact, then the Lagrangian system (5.6) is magnetic
only if the condition (5.8) holds. The condition (5.8) is always satisfied when n = 2.
This is a rather strong condition for n > 3. When n = 3, condition (5.8) reduces to
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the partial differential equation

AN AN AN
f3—+ fsi— + fu— =0.
0x1 0x2 3

Finally, it is important to note that even if we consider the exact case f = da and
the Lagrangians that are linear in velocities, instead of Egs. (5.3) and (5.4) and the
gyroscopic form defined by f* = d(/Na) it is more natural to consider Egs. (5.5) and
(5.6) with £* defined as f* = N'f = N da. In the latter case, for n = 2, the form f* is
magnetic regardless of (5.7).

5.2 Conformally Symplectic Structures
The existence of an invariant measure is closely related to the Hamiltonization problem
for magnetic G-Chaplygin systems. We first consider G-Chaplygin systems without

the gyroscopic term, see Cantrijn et al. (2002), Stanchenko (1989) and Ehlers et al.
(2005). For f = 0, the reduced system (4.4) takes the form

:=x,, ixo (Q+0)=—dh. (5.10)
Suppose that the form 240 is conformally symplectic, i.e., there exists a nonvanishing
function NV, such that d(N (22 + o)) = 0. Since d2 = 0, the last relation can be
rewritten as:
AN AQ+dN Ao + Ndo = 0. (5.11)
After the time rescaling dt = Ndt, Eq. (5.10) reads
Z/ = N_li = N_lxged = X?Ed'

The last relation introduces the rescaled vector field X© ., which is Hamiltonian:

red’

ivo N(Q+0)=—dh.
red

Therefore, the system in the new time becomes the Hamiltonian system with respect

to the symplectic form AV (2 + o). Then, according to the Liouville theorem (Arnold

1974), the Hamiltonian vector field X?e 4 preserves the standard measure N (Q2 +

O.)n — an‘zn
£5{9ed N"Q") = d(i@ed N"Q")) =0.
Thus, for the almost Hamiltonian vector field X 96 q= NX 9 g W€ have
Lyo W'IQ) =dliyo (N"7'QM) =d(izo (N"QM) =0,
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and the flow of X 96 4 breserves the measure " n=lqon,
Now, we consider G-Chaplygin systems with a gyroscopic term.

Proposition 5.3 The function N' = N (x) is a conformal factor for the almost sym-
plectic form Q2+ o + p*f if and only if it is a conformal factor for the almost symplectic
form Q + o and the form £* = Nt is magnetic.

Proof The form Q2 + o + p*f is conformally symplectic with a conformal factor N if
and only if

AN AQ+dN Ao +Ndo +dN A p*f + Np*df = 0. (5.12)

Assume that N' = A/ (x) is basic. Since only two last terms are basic, equation
(5.12) is satisfied if and only if NV'(x) satisfies (5.11) and f* = NT is closed. O

Consider the reduced gyroscopic Chaplygin system (4.4). If N' = A/ (x) is a con-
formal factor for 2 + o + p*f, as above we have that the rescaled vector field X red =
N71X,.q is Hamiltonian and preserves the measure N (Q + o + p*f)" = N"Q".
Thus, the reduced gyroscopic Chaplygin system z = X,.4 preserves the same mea-
sure as in the case of the absence of gyroscopic forces. This is in accordance with
Theorem 4.1.

The existence of a basic conformal factor, as we will see in Sect. 5.3, is equivalent to
the condition that AV is the classical Chaplygin multiplier in the Lagrangian framework
described above.

5.3 Chaplygin Multipliers: From the Lagrangian to the Hamiltonian Framework

In the study of nonholonomic rigid body systems in R” [see Fedorov and Jovanovié¢
(2004), Jovanovi¢ (2010), Jovanovi¢ (2018), Jovanovi¢ (2019)], the Chaplygin time
reparametrization of Lagrangian systems was transported into the Hamiltonian frame-
work via the Legendre transformation. Similarly, consider the time substitution
dt = N (x)dt and the Lagrangian function [*(x, x”) givenin (5.1). Then the conjugate
momenta are

pi = 0I*/ox] = N* > gijx),

J

and the corresponding Hamiltonian is

I R
W p) =5 ) 18 Biby+ ).
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The following diagram commutes:

R Vs I
TS, i) 224 7o x)

pesth) | |=Aa (5.13)

e N i
T*S{x, p} =8 T*S{x, p}.

Let € be the canonical symplectic form on T*S with respect to the coordinates
(x, p). Then

Q=>"dpindxi =NQ+dN A0, 0=pidx+...pudx,, Q=db.
i

(5.14)

Thus, & and h* represent the same Hamiltonian function on 7*S§ written in two
coordinate systems. These coordinate systems are related by the noncanonical change
of variables

(x, p) > (x, p) = (x, N'p). (5.15)

Assume that the two-form £* = AT is closed on S.

By using the commutative diagram (5.13), we get that the function N is a Chap-
lygin reducing multiplier for the reduced gyroscopic Chaplygin system (5.5) (see
Sect. 5.1) if and only if the almost Hamiltonian equations (4.1), (4.2), after the time
reparametrization dt = N (x)dt and the coordinate transformation (5.15) become the
Hamiltonian equations

/

oh*
X =
bApi

. o R ORT
x,p), p= 8Xi<x,p>+N;ﬁ,<x>3ﬁj<x,p> (5.16)

with respect to the twisted symplectic form

Q+p* "= dpi Adxi + N fijdxi Adx;. (5.17)
i

i<j

Let AV be a nonvanishing function and consider the time reparametrization dt =
N (x)dt. Eq. (5.16) in the original time ¢ after the coordinate transformation (5.15)
takes the form
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) an*t 5 o N
fi = NG P = NN 875 =) 8 p). (5.18)
1 . .
J J
B oh* - oh* .
pi= =Ny p) +N2;f,~,-(x>a(x, p) (5.19)
1 dglk _ . 1 aN k-~ OV "
=—N<2—N2_Za—xipjpk Zg’ pjpk+a—xi—Zfijg-’ Pk)

Jk
_—N< Zaag PiDk _Na Zg P]Pk+__2ﬁjgjkpk)
Jj.k

Eqs (4 1) and (5 18) coincide. From p; = N p;, we get 13, Npi +Npi, that is
= N~1(p; — N'p;). Therefore, using Eq. (5.19), we obtain

i 8g’
pi = ——Z —pipkt 5 /v P ng"p,pk (5.20)
aJ\/
Z +Zfljg Pk
=—%(x, Zg]kpjpk——z g *pipi +> ) fizg pi
Bxl- /\/8 Xi i N ik
L ON aN . - ah
= N Rk dy L )2
(x p)+1§1 (,ax o )g pkpz+j§f,,<x>ap]

Equations (4.2), (4.3), and (5.20) imply that the reduced gyroscopic Chaplygin
system (4.1), (4.2) after the time reparametrization dt = N (x)dt and the change of
variables (5.15) takes the twisted canonical form (5.16) if and only if we have the
equality of the quadratic forms in momenta:

i kN AN ,
Z Cl g’ pepr = Z N (fax 5f§)g”pkm, i=1,...,n
J

k=1 k=1
5.21)

In the invariant form, (5.21) can be written as the condition on JK force term (4.3):
M(x, p) =N~ (p, g~ (pdN = N1 @N, g7 (P, (5.22)

Remark 5.1 Note that Egs. (5.16)—(5.20) are valid without assumption that the form

* = NT is closed, i.e., when Q + p*f* [see (5.17)] is an almost symplectic
form as well. In this way, according to the commutative diagram (5.13), they imply
Propositions 5.1 and 5.2.
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It is clear that the sufficient conditions for the identities (5.21) are:

c{;(x)=/\/—1<3’?%f—5kiv

: , i, j,k=1,...,n. 5.23
J 8)61‘ ! 3Xj> bJ " ( )

Thus, if the (1, 2)-tensor field C defined in Remark 3.3 satisfies (5.23), A is a
Chaplygin reducing multiplier for the reduced gyroscopic G-Chaplygin system (4.1),
(4.2), e.g., (5.5). Then the (1, 2)-tensor C and the two-form o in the invariant form
can be written as

CX,Y)=N"'XWN)Y - Ny X, (5.24)
o =N"dN Arb. (5.25)

Moreover, from (5.14), (5.17), and (5.25), we obtain that the form Q + o + p*f
is conformally symplectic with A/ a conformal factor being a Chaplygin reducing
multiplier:

Q+ p** = N(Q+0 + p*f).

In the terminology of Garcia-Naranjo (2019a,b), Eqgs. (5.23) and (5.24) mean that
the gyroscopic tensor 7 = —C is ¢-simple, where ¢ = In N Following Garcia-
Naranjo, we say that a (1, 2)-tensor C is In A -simple if (5.24) holds.

Garcia-Naranjo and Marrero (2020) the following inverse statement is proved: if a
two-form Q + o is conformally symplectic with a basic conformal factor N (x), then
the gyroscopic tensor 7 is In NV-simple. Now, based on the above considerations, we
can reformulate and extend Theorem 3.21 from Garcia-Naranjo and Marrero (2020)
on ¢-simple Chaplygin systems as follows:

Theorem 5.1 (i) Assume that two-form £* = Nt is closed on S. The conditions (a)-
(c) listed below are equivalent. The conditions (d) and (e) are equivalent, while
(e) implies (c):

(a) thereduced gyroscopic Chaplygin system (5.5) after the time reparametrization
dt = N (x)dt takes the form of the magnetic Lagrangian system (5.6);

(b) the reduced gyroscopic Chaplygin system (4.1), (4.2) after the time
reparametrization dt = N (x)dt and the change of variables (5.15) takes
the twisted canonical form (5.16);

(c) the JK force term (4.3) on T*S has the form (5.22);

(d) the almost symplectic form Q + o + p*f is conformally symplectic with the
base conformal factor N'(x) and o is given by (5.25);

(e) the (1, 2)-tensor C is In N-simple, that is, it is given by (5.24).

(ii) IfN (x) is a Chaplygin multiplier, then the reduced equations of motion (4.1), (4.2)
possess the base invariant measure

NI, (5.26)
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(iii) Ifn = 2, then the statement (ii) can be inverted: if the reduced equations of motion
(4.1), (4.2) possess the base invariant measure

Nx)dpy Adpy Adxy Adxy,

then, after the time reparametrizationdt = N (x)dt the reduced equations become
the usual Hamiltonian equations on T*S with respect to the twisted symplectic
form (5.17). For n = 2, all items (a)—(e) are equivalent.

Theorem 5.1 relates the classical Chaplygin Hamiltonization [items (a)—(c) see
Chaplygin (1911), Fedorov and Jovanovi¢ (2004)] and the Chaplygin Hamiltonization
within the framework of almost symplectic forms and the gyroscopic tensor field C
[items (d) and (e), see Cantrijn et al. (2002), Garcia-Naranjo and Marrero (2020)].

For the Veselova problem on SO (n) [see Fedorov and Jovanovi¢ (2004)], it is

proved in Garcia-Naranjo and Marrero (2020) that (c) implies (d) as well. A similar
statement can be proved for the nonholonomic problem of a ball rolling over a sphere
considered in Jovanovi¢ (2018).
Remark 5.2 Note that (5.21) implies that the symmetric parts of the tensors
P C{‘j (x)g/! and Y 5_; N7 (81]‘%{ - 8;‘%>ng are equal, but the conditions
(5.21)and (5.23),i.e., the items (c) and (e) of Theorem 5.1 do not need to be equivalent.
For example, one can have C and o different from zero, but with ix,,o = 0. Then
IT = 0 and X,.4 is a Hamiltonian vector field with respect to the magnetic symplectic
form € + p*f. Thus, the constant A” = 1 can be chosen as a Chaplygin multiplier.
As a result, the right-hand side of (5.23) is zero, while the left-hand side of (5.23) is
different from zero.

Further, from Theorem 5.1 it follows that if a Chaplygin system without gyroscopic
force allows Hamiltonization with a basic multiplier A/, and if M'f is closed, then the
system with reduced gyroscopic force f also allows Hamiltonization and vice versa:
if a Chaplygin system with gyroscopic force f allows Hamiltonization with a basic
multiplier A/ (either in the sense that V is a conformal factor for the almost symplectic
form Q + o + p*f and according to Proposition 5.3 NT is closed, or in the sense of
the classical Hamiltonization where AT is also closed) then the system without the
gyroscopic force f allows Hamiltonization as well.

For n = 2, Eq. (5.5) are

d 9l al

L0 N S 5.7

dt 3)'61 0x1 + (X)xz ( )
2

d 0l ol . k .

FTETS = Py S(x)xy, Sx) = E Clr(x)grxi + fi2(x). (5.28)

k=1

Item (iii) of Theorem 5.1 is given in Borisov et al. (2005) and Bolsinov et al. (2015),
where the Lagrangian systems of the form (5.27), (5.28), for f12(x) # 0 are called
generalized Chaplygin systems.
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vv

Fig. 1 Rolling of the ball B with center Op over the sphere S with center O: three scenarios

6 Chaplygin Ball with a Gyroscope Rolling Over a Plane and Over a
Sphere

6.1 Chaplygin Ball with a Gyroscope Rolling without Slipping

One of the most famous solvable problems in nonholonomic mechanics describes
rolling without slipping of a balanced, dynamically nonsymmetric ball over a hor-
izontal plane (Chaplygin 1903). After Chaplygin (1903), a balanced, dynamically
nonsymmetric ball is called the Chaplygin ball, see Kozlov (2002), Arnold et al.
(1989), Borisov et al. (2005), Borisov and Mamaev (2008), Borisov and Mamaev
(2001), Balseiro and Garcia-Naranjo (2012), Borisov et al. (2014) and Bolsinov et al.
(2015).

Let O, a,m, 1 = diag(A, B, C), be the center, radius, mass and the inertia operator
of a ball B. There are three possible configurations in the problem of rolling without
slipping of the Chaplygin ball B over a fixed sphere S of the radius b:

(i) rolling of B over the outer surface of S and S is outside B (see the leftmost part of
Fig. 1);
(ii) rolling of B over the inner surface of S (b > a)(see the central part of Fig. 1);
(ii1) rolling of B over the outer surface of S and S is within B; in this case b < a and
the rolling ball B is a spherical shell (see the rightmost part of Fig. 1).

Lete = b/(b &+ a), where we take “+” for the case (i) and “—” in the cases (ii) and
(iii) and let D = ma?. The equations of motion in the frame attached to the ball can
be written in the form

li:lzx&, )'7=8)7x5), 6.1)

where w is the angular velocity of the ball, k = I& + D& — D(®, 7)7 is the angular
momentum of the ball with respect to the point of contact, and y is the unit normal to
the sphere S at the contact point.

When b tends to infinity, then ¢ tends to 1 and 7 tends to the unit vector that is
constant in the fixed reference frame. This way, for ¢ = 1, we obtain the equations of
motion of the Chaplygin ball rolling over the plane orthogonal to .

An invariant measure of the system was derived by Chaplygin for ¢ = 1 (Chaplygin
1903), and by Yaroshchuk for ¢ # 1 (Yaroshchuk 1992). Remarkably, for ¢ = —1,
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which is the case (iii) above with a = 2b, the problem is integrable [see Borisov and
Fedorov (1995), Borisov et al. (2008), Borisov and Mamaev (2013)].

Next, we assume that a gyroscope is placed in a ball B such that the mass center
of the system coincides with the geometric center Op of the ball. The addition of a
gyroscope to the problem is equivalent to the addition of a constant angular momentum
¥ directed along the axis of the gyroscope to k (Bobilev 1892; Zhukovskiy 1893):

d (- S - 5 - -
d—t<k+/<>=(k+ic)xw, y =¢y X o. (6.2)

As above, k = [& + D& — D{(®, )y, where D = a®> m, m is the mass of the system
(ball with gyroscope), I is a new inertia operator that is described below [see (6.3)]
together with the momentum & for the Bobilev symmetric case.

Markeev proved that the equations of motion for the rolling over the plane (¢ = 1)
can be resolved in quadratures (Markeev 1985). The analysis of the bifurcation diagram
and the topology of the phase space of the Markeev case are studied in Moskvin (2009)
and Zhila (2020), respectively.

There are two famous classical cases of the system (6.2) for ¢ = 1 where the
quadratures are given in elliptic functions. These cases were studied by Bobilev (1892)
and Zhukovskiy (1893).

In the Bobilev case the central ellipsoid of inertia of the ball B is rotationally
symmetric and the gyroscope axis coincides to the axis of symmetry. Let Op€;€,€3
and Opé|€,€; be the moving frames attached to the ball B and the gyroscope in
which the inertia operator has the forms I} = (A, A1, C1) and [ = (A3, Az, C2),
respectively. Itis assumed that the axis of the gyroscope is fixed with respect to the ball
and coincides with the axis of symmetry of the inertia ellipsoid of the ball (€3 = ¢€})
and that the forces applied to the gyroscope do not induce torque about the axis of the
gyroscope. Thus, the gyroscope rotates with a constant angular velocity w’ about the
axis of symmetry. Then the operator I and the momentum & in (6.2) for the Bobilev
case are given by:

I = diag(A, A, C) = diag(A; + A2, A1 + A2, C1) and ¥ = Crw}é3. (6.3)

In the Zhukovskiy case there is an additional assumption, (called the Zhukovskiy
condition):

Ci=A; + A, (6.4)

that is, it is assumed that I is proportional to the identity matrix E = diag(1, 1, 1).

Demchenko used the Zhukovskiy condition to integrate the problem of rolling of
the gyroscopic ball over a sphere (Demchenko 1924) [see also Dragovic et al. (2023)].
The integrability of the problem of rolling of the gyroscopic ball over a sphere with the
Bobilev conditions (6.3) can be found in Borisov et al. (2005). The question about the
existence of an integrable case for a dynamically nonsymmetric ball with a gyroscope
rolling over a sphere is still open. Another natural extension of the problem of the ball
rolling over a sphere is recently given in Dragovi¢ et al. (2023, 2022).
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6.2 Chaplygin Ball with a Gyroscope Rolling without Slipping and Twisting

One can consider the additional nonholonomic constraint (@, ) = 0 describing no-
twisting condition: the ball B does not rotate around the normal at the contact point
and is called a rubber Chaplygin ball. Then the momentum with respect to the contact
point can be expressed as k = 1o, I = I + DE. The gyroscopic equations take the
form

%<*+z)=(f(+z)xa+w, V=67 x &, 6.5)
where the Lagrange multiplier is given by A = — (7, I"1((k + %) x ®))/(7,I"').

The system has an invariant measure with the same density as in the absence of a
gyroscope [see Ehlers et al. (2005) for ¢ = 1 and Ehlers and Koiller (2007) for ¢ # 1].
As in the Markeev integrable case, for ¢ = 1, the system is integrable according to the
Euler-Jacobi theorem. This is proved in Borisov et al. (2005) for the Veselova prob-
lem with a gyroscope, which is described by the same system of equations. Borisov,
Bizyaev, and Mamaev also pointed out the integrability of Eq. (6.5) for ¢ # 1 in the
case of the dynamical symmetry A = B if the gyroscope is oriented in the direction
of the axis of the dynamical symmetry, which gives the Bobilev conditions (6.3) [see
Table 2 in Borisov et al. (2013)]. Borisov and Mamaev proved the integrability of the
problem without the gyroscope, for ¢ = —1 (Borisov and Mamaev 2007), providing
analogy with the nonrubber rolling.

The system of a Chaplygin ball with a gyroscope rolling without slipping and
twisting over a sphere deserves to be studied in more detail. In order to describe its
reduction and Hamiltonization, we will consider a general problem in R".

7 The Rolling of a Gyroscopic Ball without Slipping and Twisting in R"
7.1 Rolling of a Ball without Slipping and Twisting Over a Sphere

The aim of this Section is to generalize the considerations from Sect. 6 from R3 to
R”", for any n > 3. We start with the situation without gyroscopic or magnetic forces,
following Jovanovi¢ (2018) and Gaji¢ and Jovanovi¢ (2019a,b). We consider in this
Subsection the rolling without slipping and twisting of an n-dimensional ball B of
radius a over the (n — 1)-dimensional fixed sphere S of radius b. There are three
possible scenarios, in a full analogy with the three configurations described at the
beginning of Sect. 6.1 for n = 3, recall Fig. 1.

Consider the space frame R” (x) with the origin O at the center of the fixed sphere
S and the moving frame R"(X) with the origin Op at the center of the rolling ball B.
The mapping from the moving to the space frame is given by x = gX + r, where
g € SO(n) is arotation matrix and r = O Og is the position vector of the ball center
Og in the space frame. The configuration space Q is the direct product of the Lie
group SO (n) and the sphere S = {r € R" | (r,r) = (b & a)?}.
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Remark 7.1 Here and below, we take the sign “+” for the case (i) and the case “—” for
the cases (ii) and (iii) of the three possible scenarios in analogy with the three cases
from the beginning of Sect. 6.1.

Let = g~ !¢ be the angular velocity of the ball in the moving frame, m be the
mass of the ball, and I : so(n) — so(n) the inertia operator. We additionally assume
that the ball is balanced, i.e., its geometric center coincides with the mass center. We
will call such a system a Chaplygin ball in R". Then the Lagrangian of the system is
given by

1 1
L(g,r,w,T) = E(Ha),w) + Em(i’, ), (7.1)

where now (-, -) is the invariant scalar product proportional to the Killing form on
so(n) ({(-,+) = —% tr(- o -)) and the Euclidean scalar product in R", respectively.

The direction m / IE)L\I of the contact point A in the frame attached to the ball is
given by the unit vector y = ﬁ g~ 'r. It is invariant with respect to the diagonal left
SO (n)-action: g - (g, r) = (gg, &r), g € SO (n). The action defines S O (n)-bundle

SOn) —— Q0 =5S0(n) xS (7.2)

"1 = Q/50(n)

with the submersion 7 given by y = (g, r) = ﬁg‘lr.

The contact point A of the ball in the moving frame is X4 = —(Zay). The condition
that the ball is rolling without slipping is that the velocity x4 of the contact point in
the space frame is equal to zero

d

0=%y=—

(gXA + r> = Fagy +i=TFa(gg Hgy + 1.

This leads to the constraint ¥ = +5;7-Qr, where Q@ = Ad;w = g is the

angular velocity in the space frame. On the other hand, the condition of no twisting
at the contact point can be written as the condition on Q2: 2 € r A R”. The same
condition can be written in terms of w: w € y A R". For more details, see Jovanovié
(2018). The constraints determine the distribution

Dr) = {(a), 1) € T(qnSOn) X S|F = :i:baTa(Adg w)r, ® € g_lr /\R”}

of rank (n — 1), a principal connection of the bundle (7.2). The Lagrangian L from
(7.1)is S O (n)-invariant as well. Thus, an n-dimensional Chaplygin ball rolling without
slipping and twisting over a fixed sphere in R” is a § O (n)-Chaplygin system. It reduces
to the tangent bundle 7S"~! = D/SO (n).
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As in the three-dimensional case, we set ¢ = b/(b + a). The horizontal lift
V"(gr) = (@, V) is given by:

1
U):_y/\)}7
&

d 1
V=¢=( ia)a(g)/) = ia)<1 - g)g)%

The reduced Lagrangian / and the (0, 3)-tensor field X are [see Jovanovi¢ (2018)]

) 1 .. 1 . ) 1 .
ly,y)= Eg(y, Y) = —Etr(l(y Ay)o(y Ay)) = —@ﬂ(y AVIV, V),
(7.3)
2¢e — 1 2¢ — 1
(X, Y, 2)|, = =5 tr((y A X)o (Y A Z)) = 3 Iy AX)Y,Z), (1.4)

where, as in the three-dimension, I =T+ D - Ids,(,) and D = ma?. We have

81_11(/\.). al 1I(A.)
87/ - 82 V y y’ 8)/ - 82 V V Va
. 2e — 1 .
JK(y,8y) = —5—({Iy Ay)y,dy) (1.5)

Therefore, the reduced Chaplygin equations (3.1) without gyroscopic forces are:

. 1 d . l1—¢ L. _
6l — JK(7.67) = <?2£(“V A y)y) My APPy) =0, sy € TS

(7.6)

Remark 7.2 Note that if the radii of the sphere and the ball are equal, then ¢ = 1/2.
Then, the curvature of D vanishes and ¥ = 0 (Jovanovi¢ 2018). For n = 3, see
Ehlers and Koiller (2007) and Borisov et al. (2014). Also, if I is proportional to the
identity operator then ¥ = 0. Then the JK-term vanishes although the curvature of
D is different from zero. Under these conditions, the reduced system is Hamiltonian
without any time reparametrization.

7.2 Gyroscopic Ball
Now, we want to consider the gyroscopic Chaplygin ball in R" and to study how the
addition of a gyroscopic term is going to modify the reduced equations of motion
(7.6). Eq. (6.5) without the gyroscope have an analog in in R":

k=[k ol+i, y=—coy. (7.7)

Here k = Iw and the Lagrange multiplier Ay € (R" A y)* is determined from the
condition that € R" A y [see Jovanovi¢ (2018)].
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Let us notice that Eq. (7.6) alternatively can be derived directly by the substitution
ofw = éy Ay inEq. (7.7). Eq. (7.7) are also a convenient starting point for gyroscopic
generalizations. With a suitable modification of I for the gyroscopic ball, the analogue
of the equation (6.5) in R" is

k=[k o]+ 0l +1, 7=—toy, (7.8)
where now x € so(n) is a fixed matrix, k = Iw = lw + Dw, D = a’m, and m is the
mass of the system (ball with gyroscope).

After the substitution w = %y Ay, and taking the scalar product with éy A Sy,
Eq. (7.8) take the form

1 . 1 ) . 1 .
(SIy AY) = SOy AP,y AVLY ASY)= (KK, ¥ AVL Y ASY), (19)
& I3 £

where we used that Ag is orthogonal to y A R". Now, since

K,y Ayl=&y) Ay —(ky) Ay
and (XAY,ZAT)=(X,ZWY,T)— (X, T)Y,Z),

we get the right-hand side of (7.9):

1
ths = a_2<<KV’ YUY, 8y) — kv, Sy )y, v) — kv, ¥y )y, dy) + (ky, Sy v, V))

r .
= —(ky,dy).
€
Similarly, the left-hand side of (7.9) is given by
1 .. 1 N .
Ihs = (= 10 A7)y = 10y A7) 8y) = =81 + JK(7. 87,

where the second equality follows from (7.6). Therefore, from (7.9) we obtain

Proposition 7.1 The reduced equations of motion of a gyroscopic ball rolling without
slipping and twisting over a sphere are given by

1 1
8 = JK(7.67) = (510 A )y = 51y A9)7.8y) =17, 6)  (1.10)

where the gyroscopic term is given by f(y, §y) = Siz()), K8y).

Note that the gyroscopic two-form f

1
f=8—22;<,-jdy,-/\dyj. (7.11)

i<j
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is exact magnetic: f = da, where
1
a= E ZK,’j]/id)/j.
ij

Thus, the reduced equations of motion of a gyroscopic ball rolling without slip-
ping and twisting over a sphere (7.10) can be rewritten in the equivalent form (see
Remark 3.2):

8l = JK(y, 8y).

where the Lagrangian /g is

1 1
Ly,y)=—Ty Ap)y, — (Y, k).
1. y) =50y AVY.¥) + 55 k7)
Remark 7.3 As in the three-dimensional case, when b tends to infinity, & tends to 1, y
tends to the unit vector that is constant in the fixed reference frame and we obtain the
equations of motion of the Chaplygin ball with a gyroscope rolling without slipping
and twisting over the plane orthogonal to y.

Remark 7.4 In addition, let us note that for ¢ = 1 the system (7.8) with k = 0
represents also the Veselova problem with the left-invariant metric on SO (n) defined
by the operator I [see Veselov and Veselova (1988); Fedorov and Jovanovi¢ (2004)].
In this way, the system (7.8) for ¢ = 1 can be seen as a Veselova problem with the
addition of a gyroscope.

Note that the Veselova problem is an example of an LR system. These are non-
holonomic systems with left-invariant metrics and right-invariant constraints on Lie
groups (Veselov and Veselova 1988; Fedorov and Jovanovi¢ 2004). One can consider
LR systems with gyroscopic forces and their reduction to homogeneous spaces as well.
Along with the gyroscopic Chaplygin reduction, it is interesting to consider the sym-
plectic reduction of the corresponding Hamiltonian magnetic systems on Lie groups
by using a general framework for the reduction of the systems with symmetries on
magnetic cotangent bundles given in Kowalzig et al. (2005). The reduction problems
based on Kowalzig et al. (2005) will be consider elsewhere.

7.3 Invariant Measure
We are going to describe the reduced magnetic flow (7.10) and its invariant measure

on the cotangent bundle of a sphere $”~!. Consider the Legendre transformation of
the Lagrangian / given by (7.3).

1
p=-=80) =Sl Apy. (7.12)
Y &
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Since I(y A y) is skew-symmetric, we get (y, p) = 0. Thus, the point (p, y)
belongs to the cotangent bundle of a sphere realized as a symplectic submanifold in
the symplectic linear space (R**{y, p}, dp1 Ady; + - - - +dp, Ady,) defined by the
equations:

pr=(v.v)=1 = (y.p)=0. (7.13)

Lety =g l(p) =X y (P, v) be the inverse of the Legendre transformation (7.12),
which is unique on the subvariety (7.13). Then

1
h(y. p) = 5(Xy (v p). p) (7.14)

is the Hamiltonian function of the reduced system. From (7.6) and (7.10), we have

1—e¢ 1
1 A X)Xy 87) = — Xy k8).

-+
Therefore,

. € 1
p= Iy ANX,)X, +8—2KX}, + uny,

&3
where w is the multiplier determined from the condition that (y, p) is tangent to
T*sm 1

(v.p)+(r.p)=0.

Proposition 7.2 The reduced equations of the rolling of a ball with a gyroscope over
a sphere without slipping and twisting on T*S" ! are

e 1
Iy A X)X, + =«Xy +py, (7.15)

J):X)/(y9p)s p:Xp(V’p):

&3 g2
where
(-1 1
=" (I(y AXy)) Xyo v) —2h(y, p) + 8—2(Xy, KY). (7.16)
Let
w=dpi Ady1+ - +dpy ANdyy g1 (7.17)

be the canonical symplectic form on 7*$" !,
From Theorem 4.1 and the formula for an invariant measure without magnetic term
[see Jovanovié¢ (2018)], we have:
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Proposition 7.3 The reduced equations of the rolling of a ball with a gyroscope over
a sphere without slipping and twisting (7.15) have an invariant measure v(y)w" ™!,
where w is from (7.17) and v is defined by:

v(y) = (detT|gnn, )% . (7.18)

8 Hamiltonization and Integrability
8.1 Hamiltonization of the SO(n — 2)-Invariant Case

As already mentioned above, the existence of an invariant measure of a nonholonomic
system is closely related to the problem of its Hamiltonization. In this section we
provide a class of examples of SO (n — 2)-symmetric systems (ball with gyroscope)
that allow a Chaplygin Hamiltonization.

Consider the inertia operators

I(e; nej) = (aja; — D)e; nej ie, L(XAY)=AXAAY, 8.1)
parameterized by A = diag(ay, ..., a,), where [eq, ..., e,] is the standard basis of

R”. The formulas for the reduced Lagrangian / (7.3), the Hamiltonian 4 (7.14), and
the density of an invariant measure v (7.18) take the form:

1
(v 7) = 55 (17, ) Ay y) = by 7)), (8.2)
2 A_l
hy, p) = %% 8.3)
v(y) = const - (Ay, y)%"’z_”, (8.4)

[see Jovanovié (2015, 2018)]. Moreover, the function A'(y) = e(Ay, y)%s_l is a
Chaplygin multiplier: under the time substitution dt = N '(y)dt, the reduced system
(7.6) with k = 0 becomes the geodesic flow of the metric

ds}.. = (v. A)" 72 ((Ady. dy)(Ay. y) = (Ay.dy)?) 8.5)

defined by the Lagrangian [see Jovanovi¢ (2018)]

1
Py =10 D=y = 50 AY) 2 (Y 7)Y v) = Ay y)).
(8.6)

Remark 8.1 Note that for n = 3 all symmetric operators I have the form (8.1) in a
basis formed by its eigenvectors. Namely, after the standard identification R = so(3)
(Arnold 1974), for the given inertia operator [ = diag(A, B, C): R3 — R3 for the
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gyroscopic ball and the parameter D = ma?, the operator I : so(3) — so(3) has the
form (8.1), with:

A A
A+D'B+D ' C+D

A:diag( ) A =/(A+ D)(B + D)(C + D).

(8.7)

The above Hamiltonization recovers the procedure of reduction and Hamiltoniza-
tion for a three-dimensional ball without gyroscope from Ehlers and Koiller (2007).
We would recall that Borisov and Mamaev proved the integrability of the three-
dimensional ball without gyroscope and the spherical shell for a specific ratio between
the radii: the case (iii) from Sect. 6.1, where a = 2b, i.e., ¢ = —1, see Borisov
and Mamaev (2007). The n-dimensional reduced system of a ball without gyroscope
rolling over a sphere (7.6) with the inertia operator I given by (8.1) is also integrable
for ¢ = —1; the integrability remains for such systems for an arbitrary ¢, if the matrix
A has only two distinct parameters (Gaji¢ and Jovanovi¢ 2019a,b).

Now, we turn to the systems with gyroscopic force. If

2 /(1
dWNT) = g (Z — 1) (Ay, y)2e <Zakykdyk) A (Zlqjd)/i /\d)/j>
i<j

= OlT*S”’l (88)

then the reduced gyroscopic system is Hamiltonizable as well. This follows from
Theorem 5.1.

For n = 3, equation (8.8) is satisfied for an arbitrary gyroscopic term «. The
following statement provides a class of examples, based on the SO (n — 2)-symmetry,
which satisfy equation (8.8), thus are Hamiltonizable, for every n > 3.

Theorem 8.1 Assume that the gyroscopic termf from (7.11) is given by k = ke A€y,
ie.,

f= K—lzzdyl Ady,
&

and the inertia operator of the system ball with gyroscope is given by (8.1), where
a3 =as =---=ay:

A = diag(a;, a3, a3, ..., a3).
Then the function N'(y) = 8./4()/)%_1, with
Ay) = a3 + (a1 — a3)y{ + (a2 — a3)y3, (8.9)

is a Chaplygin multiplier. Under the time substitution dt = N (y)dt and the change
of momenta p = N (y)p, the reduced system (7.15) becomes the magnetic geodesic
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flow of the metric (8.5) with respect to the twisted symplectic form given by

- ~ ~ K 1 _
WA N E=dp Adyr+--+dpn Adyn + %A(y)zls Ly A dyalpegnt.
(8.10)

Remark 8.2 The function (8.9) satisfies A(y) = (Ay, y) for (y, y) = 1. We use the
function A to simplify some equations below. For example, the Hamiltonian of the
magnetic geodesic flow of the metric (8.5) in the coordinates (y, p) can be written as

h*(y, p) = —A(V) P AT ). (8.11)

8.2 Integrability of the SO(2) x SO(n — 2)-Invariant Case

In this section we want to impose additional symmetry with respect to SO (n — 2)-
symmetry considered in Sect. 8.1, and in particular in Theorem 8.1, this additional
symmetry will imply integrability.

As mentioned above, the cotangent bundle 7*S"~! is realized within R?" by the

constraints (7.13). In the new coordinates (y, p) = (y, e A(y) %l p), the constraints
become

1 S
Si={ry)=1 ¢5=_AW) "%y, p)=0. (8.12)
Instead of (8.12), we equivalently use the constraints

vi={v)=1 Y= (p,y)=0. (8.13)

The magnetic Poisson bracket on the cotangent bundle 7*S"~! ¢ R?*"{y, p} can
be described by the Dirac construction as follows:

{F,G}q ={F,G} — F, G, o} — {F, ¥2}"{G, lﬁl}K

{V1, Y}«
where
3F G  OF 3G
{F,GY ={F,G}* + A( >—1( —~—~>
dp10py  9p2 0P
and

n
0F 0G  0F 0G
(F.61P =3 (S5 20 - 2250
=\ dpi  9pi i

is the canonical Poisson bracket on R%" {y, p}, [see Arnold et al. (1989)]. Considered
on R*{y, p} without the subset {y = 0}, the bracket {-, -}4 is degenerate with two
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Casimir functions i1 and v». The symplectic leaf given by (8.13) is exactly the
cotangent bundle 7*$"~! endowed with the twisted symplectic form (8.10).

It is convenient to derive the equations of the magnetic Hamiltonian flows with
respect to the Dirac bracket {-, -}4 using the Lagrange multipliers and the magnetic
Hamiltonian flows with respect to the magnetic bracket {-, -}* [e.g., see Arnold et al.
(1989)]. Let

H =h"— Ay — Ay,

The magnetic Hamiltonian flow generated by the Hamiltonian (8.11) with respect
to the Dirac bracket {-, -}4 is given by

, 0H

1 -

v'=55= AW AT S — aay, (8.14)

- oH

= oy + KIZA(V)ZE e Aex(y)) (8.15)
1 —¢

A(V)“(P’ AT P)((al —a3)yie; + (a2 — aa))/zez> + 20y +A2p
+ 2 Ay ((A(y)l—iﬂ — hayer — (A T 2L - }»27/1)62),
& aj ajg

where the Lagrange multipliers A and A, are determined from the condition that the
functions 11 and v, are integrals of the flow.

From now on we consider the system (8.14), (8.15) restricted to the symplectic leaf
(8.13), that is, we consider the magnetic geodesic flow of the metric (8.5).

Let us impose now the additional symmetry. Suppose: a; = a» # as. Both the
Hamiltonian (8.11) and the magnetic two-form (8.10) are invariant with respect to
the action of the group SO (2) x SO (n — 2). We first consider the case k12 = 0: the
corresponding first integrals are linear and given as follows:

) =yipr—wp. B =vip;—vyipi. 3<i<j<n

Such first integrals are sometimes called Noether integrals as their existence follow
from the Emmy Noether theorem. Let us now consider a general case x12 # O:
straightforward calculations show that ®;; = dD?j, 3 <i < j < nremain to be first
integrals for k12 # 0. Moreover,

d K12 K12 d 1
(I)O — 25 / 4 = — —_— 2 ).
5P = A "l + revp) s (A(V) )

Thus, the first integrals for x> 7# 0 are

D13 = y1p2 — ¥2P1 + - -/4()/)2‘ ®;;=vyipj —vyjpi,» 3<i<j=<n
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These first integrals are the components of the momentum mapping of the SO (2) x
SO (n — 2)-action with respect to the twisted symplectic form (8.10).

Theorem 8.2 For a; = ay # a3 the magnetic geodesic flow of the metric dsi .
defined by the Hamiltonian (8.11) with respect to the twisted symplectic form (8.10)
is completely integrable.

(1) Ifn = 3 the system is Liouville integrable. Generic invariant manifolds are two-
dimensional Lagrangian tori, the common level sets of h* and ®1,.
(i) Ifn = 4 the system is Liouville integrable. Generic invariant manifolds are three-
dimensional Lagrangian tori, the common level sets of h*, @17, and P3g4.
(iii) If n = 5 the system is integrable in the noncommutative sense. Generic invariant
manifolds are three-dimensional isotropic tori, the common level sets of h*, @13,
and ®;j,3 <i < j=<n.

Proof For n = 3 the statement is clear. For n = 4, the Hamiltonian system (8.14)
possesses three independent integrals h*, @15, ®34, in involution:

{h*, ®12}q =0, {h*, P34}g =0, (P12, P34}a =0.

Thus, the Hamiltonian system (8.14), (8.15) is completely integrable according to the
Arnold-Liouville theorem.

For n > 4, generic common level sets of all integrals are three-dimensional
tori as well. Indeed, consider the natural embedding T*S?® < T*S"! induced
by the embedding spanfe;, ey, e3,es} C R”". Let us set P = (p3, p4, ..., Pn)s
I'=(y3,v4, ..., yn)- Then p = (p1, p2, P), ¥ = (y1, y2, ).

The system (8.14), (8.15) is invariant with respect to the SO (n — 2)-action

R(y, p) = (y1, 2, RT, p1, p2, RP), R € SO(n—2).

Also, as we already mentioned, the integrals ®;;,3 <i < j < n are components of
the corresponding momentum mapping

(y,p)— T AP.

For any point ¢g = (yo, po) € T*S"!, there exists a matrix Ry € SO(n — 2),
such thatdy = Ry(yp, po) belongs to T*S 3. Since the system is invariant with respect
to the SO (n — 2)-action, the solution ¢(7) = (y(t), p(r)) with the initial condition
¢(0) = (y(0), p(0)) = ¢ is mapped to the solution d(t) = R(y(t), p(r)) with the
initial condition

d(0) = Ro(y(0), 5(0)) = Ro(vo, po) = do € T*S°.
The solutions ¢(7) and d(t) have the same energy, h*(cg) = h*(dg), while the cor-
responding values of the momenta are different: the momentum of ¢(7) is transformed

to the momentum of d(t) by the adjoint mapping

Lo APy —> Ro(To APo)RS = ®3a(do)es A e,
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where ¢o = (y0,1, ¥0,2, L0, Po.1, Po,2, Po).

One can easily verify that the solution d(t) belongs T*S3, that is, it is a solution
of the problem for n = 4. Therefore, generically, d(7) is a quasi-periodic trajectory
over a three-dimensional invariant torus 7y C T*S?, the connected component of the
level set

h* =h*(dg), P12 = Pi2(dp),  P3s = P3a(do).

All other components of the momentum mapping ®;;,3 <i < j <n,(, j) #(3,4)
are equal to zero.

Note that a point d € 7*S"~! belongs to 7*S> if and only if ®;i(d) =0,3 <
i <j<n,(i,]j) # (3,4). Thus, the original trajectory ¢(t) = Ro_l(d(‘l,')) is quasi-
periodic over the three-dimensional invariant torus 7 = R ! (7o), which is also the
connected component of the level set

h* =h*(co) = h*(dg), P12 = P12(ep), P;j = Pjj(cg), 3<i<j=<n.

The integrability of the system is a particular example of so-called noncom-
mutative integrability. Namely, since the common level sets of the integrals are
three-dimensional, and the Hamiltonian system (8.14), (8.15) has three independent
first integrals h*, d>’1‘2, and Z3§i< j<n (®; j)z, that commute with all integrals, the
system is completely integrable according the Nekhoroshev—Mishchenko—Fomenko
theorem on noncommutative integrability foralln > 4[e.g., see Arnold etal. (1989)].00

Note that in the original phase space T*S"~!{y, p}, the first integrals have the form

K12
ay —as

A(y)2,

.
O1p =eAly)2%" (y1p2 — y2p1) +
and
1 . .
@iy =AW= yipj —vip), 3<i<j=n

In the original time, the system over a regular invariant torus 7 has the form (1.3),
where ® = N 71| 7.

Remark 8.3 For n = 3, within the standard isomorphism between Lie algebras
(so(3), [+, -]) and (R3, x) given by

aij = —€ijkak, i, j, k=123 (8.16)

[see Arnold (1974)], Eq. (7.8) with the inertia operator defined by (8.1), A =
diag(ai, a1, a3), and k = k12e1 A ey correspond to Eq. (6.5) defined by the Bobilev
conditions (6.3) with ¥ = —«1,€3 and I and A related by (8.7) (see Sect. 6.2 and
Remark 8.1). Then, along with the Liouville integrability after the Hamiltonization
described in Theorem 8.2, the system is also integrable according to the Euler-Jacobi
theorem.
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9 Generalized Demchenko Case without Twisting in R"
9.1 Definition of the System

As above, we will consider the rolling of a gyroscopic ball B without slipping and
twisting in R”, now with an additional symmetry of the system. The additional sym-
metry is analogous to the Zhukovskiy condition (6.4) in dimension n = 3. Recall that
adding a gyroscopic term does not change formulas for curvature of the distribution D,
JK term (7.5) and ¥ term (7.4). For the curvature K of D see Lemma 7 in Jovanovié
(2018):

26 — 1 _
Kol 8) = =5 Adg@ A &), &1.6 € TaenS" ™.

Since the reduced gyroscopic form f is exact magnetic for an arbitrary « € so(n),

KZZijeiAej, (9-1)

i<j

if the JK-term in (3.1) vanishes, then the reduced gyroscopic G-Chaplygin system
(3.1) is automatically Hamiltonian without any time reparametrization.

We provide two situations when such conditions are satisfied, for the rolling of
a gyroscopic Chaplygin ball without slipping and twisting over a sphere $"~! (see
Remark 7.2). The first situation: if the radii of the sphere and the ball are equal,
which is equivalent to the condition ¢ = 1/2, then the curvature K of D vanishes
(the constraints are holonomic). Since the JK-term is given by the coupling of the
curvature K with the momentum mapping of the SO (n)-action on the configuration
space (7.2) (see Remark 3.1), we have JK = 0. The second situation we get when the
inertia operator I of the system, that is, the modified inertia operator I, is proportional
to the identity operator. Then the coupling between the curvature and the momentum
mapping vanishes, see (7.5), although the curvature of D is different from zero. Let
us remind that the curvature of the distribution measure the nonholonomicity of the
constraints: it is zero if and only if the constraints are holonomic.

These two situations do not require a time reparametrization for a Hamiltonization:
the reduced Eq. (7.15) are Hamiltonian with respect to the symplectic form w + p*f,
where w is the canonical symplectic form (7.17).

For n = 3, the condition that the inertia operator I is proportional to the identity
operator is equivalent to the Zhukovskiy condition (6.4). One gets the case of motion
of a gyroscopic ball considered by Demchenko (1924), see also Dragovic et al. (2023)
and Sect. 9.2 below, under an additional nontwisting condition. This motivates us to
introduce the following definition of a generalized Demchenko case without twisting
in higher dimensions.

Definition 9.1 We say that the ball with a gyroscope satisfies the Zhukovskiy condition

if the inertia operator I of the system is proportional to the identity operator. The
generalized Demchenko case without twisting in R", n > 3, is a system of a balanced
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n-dimensional gyroscopic ball satisfying the Zhukovskiy condition, rolling without
slipping and twisting over a fixed (n — 1)-dimensional sphere.

As before, we consider the cotangent bundle 7*S"~! ¢ R?*{y, p} realized by the
constraints (7.13), w is the canonical symplectic form on T*$"~! given with (7.17)
and p is the canonical projection p : T*S"~! — §"~! Now, the magnetic Poisson
brackets on R?*{y, p} without the set {y = 0} are defined by:

{Fv ¢1 }K{Gv ¢2}K - {Fs ¢2}K{G7 ¢1 }K

F,G)y ={F,G) —
{ =1 } {P1, P2}*

) 9.2)

where

oF 0G 0F oG 1 doF 0G
ol ) e
- d0y; Opi  dp; Ay £ ¥ dpi dp;

and ¢, ¢, are given in (7.13). The symplectic leaf given by (7.13) is the cotangent
bundle 7*$"~! endowed with the twisted symplectic form w + p*f.

Let the modified inertia operator I = I + DIds,,) (D = ma?) be equal to the
identity operator on so(n) multiplied by a constant 7. For example, we can take I
given by (8.1) with A = diag(y/7, ..., /7). Then the reduced Hamiltonian takes the
form

82

h=——(p.p). 9.3)

By taking H = h — A1¢1 — Ax¢h2, we obtain the magnetic Hamiltonian flow of the
Hamiltonian (9.3) with respect to the Dirac bracket (9.2)

)
Yy =——=—p— Ay, 94
ap T
. oH 1 oH 1 Ao
Iy ¢ ap T 3

Here, from the condition that ¢; and ¢, are first integrals of the flow, the Lagrange
multipliers can be calculated to get

Ypoey) —Z(p.p) e p.y)

Al = s .
! 20y, v) T (r,y)

Proposition 9.1 The equations of motion of the n-dimensional generalized Demchenko
case without twisting are:

Tw = [k, w] + Ao, y = —cwy, 9.6)
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where k € so(n) is a fixed skew-symmetric matrix (9.1) and the Lagrange multiplier
ro € (R™ A y)L is determined from the condition that @ € R" A y. The equations of
motion reduce to the magnetic geodesic flow of the Hamiltonian (9.3) with respect to
the bracket (9.2)

. &2 | 1 g2
y=—p, P=—-kp+uy, p=—-(p,ky)— —
T T T T

{p, P, 9.7

restricted to the cotangent bundle of the sphere (7.13).

The proof follows from (7.8), Egs. (9.4) and (9.5) restricted to (7.13), and
Proposition 7.2.

When ¢ = 1, we obtain the equations of motion of a gyroscopic ball rolling without
slipping and twisting over the plane orthogonal to y, such that the inertia operator I
of the system is proportional to the identity operator. In dimension n = 3 this is the
Zhukovskiy problem with an additional nontwisting condition (see Sect. 6).

Let us note that integrable magnetic Hamiltonian systems on S were studied in
Saksida (2002), using their relation to a special Neumann system on S>. In particular,
the reduced problem (9.7) for n = 3 was described there by using the Cartan model of
the sphere S? within the group SU (2). Although the systems (9.7) are quite natural as
they are described by the round metric on a sphere with a magnetic field defined by a
constant two-form in the ambient space, they have not been studied before for n > 3.

Since I (and equivalently I) is proportional to the identity matrix, we can consider,
without loss of generality, the system in a suitable orthonormal basis [ey, ..., e,] of
R”", such that the skew-symmetric matrix (9.1) takes the form

K = K12€1 N ey + Kk3sez Neq—+ -+ K2n/2]—1,2[n/2]1€2[n/2]—1 N €2[n/2]-

9.2 Three-Dimensional Demchenko Case without Twisting

In his PhD thesis (Demchenko 1924) [see also Dragovi¢ et al. (2023)] Demchenko
studied the rolling of a ball with a gyroscope without slipping over a fixed sphere in
RR3. He assumed that the ball is dynamically axially symmetric, that axis of gyroscope
coincide with symmetry axis of the ball, and that the inertia operators of the ball and
the gyroscope satisfy the Zhukovskiy condition (6.4), that is, the inertia operator of
the system is proportional to the identity matrix: [ = diag(A, A, A).

The equations of motion are [see (6.2)]

YX B,y =P X d, (9.8)

Ly

where k = (A + ma2)@ — ma*(@, 7)7. Demchenko solved the system via elliptic
functions.

Now, we add the no-twisting condition on the Demchenko rolling, e.g., we addi-
tionally assume that the angular velocity @ belongs to the common tangent plane of
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the ball and the sphere in their contact point. The equations of motion are [see (6.5)]
k=R xd+AP, 7=¢F xa, 9.9)

where k = (A + ma®)d = (A + ma®)wy, (A + ma®)wy, (A + ma*)ws)) and A is
the Lagrange multiplier of the constraint (&, ) = 0,

A=—{(y,k X D).

After the identification (8.16), the matrix system (9.6), for n = 3, becomes the
system (9.9) in the vector notation, where the matrix multiplier A¢ corresponds to Ay,
y = 7, and the parameter 7 is equal to A 4+ ma?® (see Remark 8.1).

The reduced equations of motion (9.7) on T*S2, for k = k12€] A €2, become

. & .1

Y1 = —P1, Pl = —Ki2p2+ Uy,
T T

. gl . 1

V2= —p2, P2=——Knpi+ Uy,
T T
&2

V3 = P P3 = Uys,

2
K12 &
7 T(pn/z—pm)—?(pf+p§+l7§), (9.10)

They are Hamiltonian with respect to the Poisson structure (9.2) and the Hamiltonian
is

2

P
h— 24 20 2y
o (p1 + p5 + p3)

Theorem 9.1 The reduced equations of the Demchenko case without twisting (9.10)
are Liouville integrable on T*S* with the first integrals h, ®, where

K12 , o 2
Sy, p)=vip2—v2p1 + @(7/1 +v3).

Proof follows by a direct calculation.
The reduced system (9.10) can be solved in elliptic quadratures.

Theorem 9.2 The reduced equations of the three-dimensional Demchenko case with-
out twisting (9.10) can be explicitly integrated via elliptic functions and their
degenerations.

Proof Instead on the cotangent bundle 7*S*{y, p}, we will equivalently integrate the
system on the tangent bundle 7 S?{y, y'}. Let us introduce polar coordinates r, ¢ by

Y1 =Frcose, y» =rsing.
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From the condition (y, y) = 1, it follows that % + )/32 = 1, while (y,y) = 0is
identically satisfied. By differentiating r% + y32 = 1 with respect to time, one gets
2 12 a2
Vi = 1520

In the new coordinates, using the last relation, the first integrals can be rewritten as:

2.2
T . . r<r
h=2—82<r2+r2q)2+1_r2>, 9.11)
T . K
® =¥+ ﬁr? 9.12)

Note that T > 0. We also assume & > 0 since 7 = 0 corresponds to the equilibrium
positions.
From (9.12), we get

2620 — K12r2

h = , 9.13
¢ 2772 G-13)
and, by plugging into (9.11), it follows
2 2 442
2 (€ Kiy , & ®°1 5
r- = <?(2hT+K’12‘b)—4—TZV —7’3>(1—r )
Introducing u = r2, one derives
i’ = Q3(u),
IC122 2 452 44 P2
Q3(u) == —w—D(u"— —2(2/17,' +xPu + —
T ki ki
2
= 2w — D —u)w—u). 9.14)
T

Thus, 2 can be expressed as an elliptic function (or its degenerations) of time.
Using y32 =1 — r2, one gets y3, and from (9.13) one finds ¢ after an integration. 0

Notice that the polynomial Q3 (9.14) always has u = 1 as a root. Observe also:

442
03(0) = ——5— <0.
T

From Vieta’s formulas, it follows that uju> > 0, or in other words, the remaining
two roots uy, ur of Q3 are of the same sign. Having in mind that 0 < u < 1, the real
solutions, for u; < us, corresponds to the following cases:

(A) 0 < u; < up < 1; Case (A) happens when the discriminant of the polynomial
0>(u) = (u—u1)(u —uy) is greater than zero, the minimum of Q () is between
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0 and 1, and Q> (1) > 0. This yields conditions:

ht + k2@ > 0,

K
2ht +K12q) < E,

2 K
2hf+K]2q)—8 o < 4?

(B) 0 <u; <1 < uy. Case (B) happens when Q>(1) < 0, that is

2

K
2hT 4+ k1p® — 2P > 12
+ K12 262

In both cases r belongs to an annulus:

Case (A) Jui <r <./uz; CaseB) Ju; <r=<l.

When the discriminant of the polynomial Q3 (9.14) vanishes, the corresponding
elliptic functions degenerate. It happens if #; = u», or when one of the roots uy, us
is equal to 1. Direct calculations show that the discriminant of the polynomial Q3
vanishes when

2

K12

ht + k129 =0, or 2ht +k;2® — 2d = =5
4e

The first case corresponds to the condition that the discriminant of O is zero, and the
second case corresponds to Q2(1) = 0.

9.3 The Generalized Demchenko Case without Twisting in R*. A Qualitative
Analysis of the Solutions

In dimension four, the equations of motion of generalized Demchenko case without
twisting reduce to Hamiltonian equations with respect to the Poisson structure (9.2)
on the cotangent bundle 7%$3 C R*{y, p} of the three-dimensional sphere realized

by (y,y)=1,(y, p) = 0. Let
K = K12€1 N\ €2 4+ K34€3 A €4.

Eq. (9.7) are:
. & |
Y1 = —PpP1, Pl = —Knp2-+ uyi,

T T
. € . 1
V2 = ?pz, p2 = _;KIZPI + uy2,
. . 1
V3 = ?P3, p3 = ;K34P4 + nys,
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.8 . 1
Va4 = ?P4, p4 = —;K34P3 + wya,

1 g2
n= ;(m(pnfz — pavi) + k34(p3ys — pm)) - ?(p% +p3+ 3+ pd).
(9.15)

The Hamiltonian is

2
£
h= (Pt + 03+ p3+ ).

Theorem 9.3 The reduced equations of generalized Demchenko case forn = 4 (9.15)
are Liouville integrable on T*S> with the three first integrals h, ®12, and ®34 in
involution, where

Ki2 o 2
Dp(p,¥) =y1p2 —v2p1 + E(Jﬁ +v3),

K34 o 2
P3a(p.y) =vipa—vaps+ 55 (s +vi).

The proof follows by a direct calculation.

It is well known that the question of integrability for a Hamiltonian system is distinct
from the problem of its explicit integration.

The reduced equations of generalized Demchenko case without twisting in R* can
be solved via elliptic functions by quadratures, similarly to their three-dimensional
counterpart, see Theorem 9.2 above.

Theorem 9.4 The reduced equations of generalized Demchenko case without twist-
ing for n = 4 (9.15) can be explicitly integrated via elliptic functions and their
degenerations.

Proof As in dimension n = 3, instead on the cotangent bundle T7*S?{y, p}, we will
integrate the system on the tangent bundle 7'S3{y, y}. Let us introduce new coordinates

P1, P3, P1, ¥3 by
Y1 =p1COSQ1, Y2 =p18iN@Q1, ¥3=p3C08¢3, Y4= p3Sin@3.

From the condition (y, y) = 1 it follows that /O12 + pg = 1, while (y, y) = 0is
identically satisfied. In the new coordinates the first integrals become

T/, . . .
505 (61 + 019t + 63 + 362)
T 5. K12 »
D12 = —pig1 + —5 01
2=2 P11 262 P1
T 5. K34 -
P34 = — + —=p3. 9.16
34 82 103()03 282 :03 ( )
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Since the first integrals @1, and ®34 depend on p1, ¢ and p3, ¢3 respectively, @1
can be expressed as a function of p; and values of these first integrals; similarly, ¢3
can be expressed as a function of p3 and values of these first integrals:

) 26201 — k12p? 2634 — k3403
pr=———F"1 g3=" "3 (9.17)

2r,012 21,03?

By differentiating the relation ,012 + ,o% = 1 with respect to time, we get

Using (9.17), the last equality, and the expression for the first integral i from (9.16),
one obtains

262h B (262 @34 — k34 + k3407)? 1= o} (2e2® 15 — k1207)?

2 2
pi = =pD 472 /012 472
Introducing u = p12, it follows
i? = P3(u). (9.18)

Here, P; is a polynomial in u of the degree not greater than three:

P3(u) := a0u3 + a1u2 + aru + az,

where
Ky — "324 4t o,
ao = —27 a3 = — 2 9
T T
8¢2h k34 5 K122 4e2k1, D1
ap = — -5 (2eTPy —Kk34) — 5 - ——
T T T T
42
= 8s2h (267 P34 — k3a)? N 462k12® 12 | deter
T 72 72 72

Therefore, from equation (9.18), integrating, one gets /ol2 as an elliptic function or
a degeneration of an elliptic function, depending on the degree and composition of
zeros of the polynomial P3(u). We get p3 from the algebraic equation ,032 =1- p12.
Finally, the variables ¢1, ¢3 can be obtained by quadratures from (9.17). O

Let us express the variable ,of in terms of the Weierstrass g-function in a generic
case: k%, # k2, and the polynomial P3(u) has all roots distinct. Introducing z such
that
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equation (9.18) takes the form
P2 =42 — gz — g3, 9.19)

where

Q
—1

apay apaiar af a3a3
T b g3 = —

£2= q 216 16

1

[\

By integration of (9.19), we get

= +(t — 1p).

[t [
) 483 — g2 — g3 i 483 — g2 — g3

Finally, using the Weierstrass g-function [see for example Akhiezer (1990)], one
obtains

1=pAx 1 —10)), z0=pA).

Now, we are going to provide a qualitative analysis of the solutions of the
generalized Demchenko case without twisting in R*, obtained in Theorem 9.4.

Case A. Let us consider first the case /c122 * K324. Then P3(u) is a degree three
polynomial. The coordinates p1, ¢1 and p3, @3 are polar coordinates on the projections
of the sphere (y, y) = 1 to the coordinate planes Oeje; and Oeseq, respectively.
Hence, p; and p3, and consequently u can take values between 0 and 1.

Since

484<D%2
P3(0) = — 3 <0,
T
and
442
Py(l) = ——3* <0,
T

one concludes that on interval (0, 1) the polynomial P3(u) has (i) no real roots; (ii)
two distinct real roots; or (iii) one double real root.

(i) If the number of real roots is zero, then the polynomial P3(u) takes negative values
on the whole interval (0, 1). Thus, the case (i) does not correspond to a real motion.

(i1) In the case (ii) when the polynomial P3(u) has two distinct real roots u; < up on
the interval (0, 1), the projection of a trajectory to the Oeje; and Oezes planes
belong, respectively, to the annuli

Jur < p1 < Juz and \/1—u§§p3=\/1—p12§\/1—u%
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OC

Fig.2 Thecaseu; <ii < up

OO0

Fig.3 The cases i = up (left) and & = uy (right)

Fig.4 The case when i does not
belong to the interval [uy, u3]

There are three types of the trajectories in this case. Let

282CI>12

K34

0=
If & belongs to (11, up) then ¢ changes the sign and trajectories are presented
in Fig. 2. If & is equal to u; or up, then the trajectories are presented in Fig. 3.
Otherwise, the trajectories are presented in Fig. 4.
(iii) The case of a double root | = u; corresponds to the stationary motion
p1 = const, @1 = a1t + @10,

p3 =+/1— p? = const, @3 =ast+ e,
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Fig.5 A case that does not
correspond to a possible motion.

where

262®15 — kpouy 262®3y — k3a(l — uy)
Z—ZCOVZS[, a3 = = const.

2tuy 2t(1 —uy)

o]

From the equations of motion (9.15) it follows that the constants o1 and «3 should
satisfy:

2 2
Kipop — k3403 + T() —a3) =0.

Since the roots u# and u; of the polynomial P3(u) coincide, the discriminant of
the polynomial P3(u) is equal to zero.

As we mentioned, in the case when ¢| changes the sign, the trajectories are presented
in Fig.2. In both cases, if we consider ¢; as a function on the universal covering of
S, it is an unbounded function of time: in one case it goes to plus infinity, while in
the other case it goes to minus infinity, when ¢ goes to infinity.

We come to a natural question: is there any case when @1 is a bounded or, in
particular, a periodic function of time?

In other words, are there conditions which would generate Fig. Sas a limit case of
those presented in Fig. 2. The answer is negative, as one concludes from the following:

Proposition 9.2 If k1 # 0, then ¢ is unbounded function of time.
Proof From (9.17) we have

282¢’12 K12

3 '
¢ 2tu 2T

Since 17 # 0, the second addend is a constant, while the first one is periodic in time.
So ¢; is unbounded function of time. O

Case B. In the case k34 = +k12, the coefficient of u3 in the polynomial P3(u) is
zero. Hence P3(u) is at most a quadratic polynomial in «. Qualitative pictures of the
trajectories are the same as before. They are presented in Figs. 2, 3, and 4 with an
important difference: now the solutions are not elliptic functions of time.
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In the case when u| = uj, the discriminant of the polynomial P3; vanishes. This
leads to the stationary motion

p1 = const, p3=,/1—pi=const, ¢ =ait+g@o, ¢3=oast+ex.

Asin the case A, the constants o1 and «3 are not independent. If k12 = k34 we have
o] =a3,0ro] +o3 = k12/7. Whenk3g = —kqo,theno) = —a3 orop +a3 = k12/7.

Remark 9.1 Let us remark that in the dynamics of the Lagrange top in absence of
gravity there exist a situation similar to the one mentioned before Proposition 9.2 (see
Fig. 5). This system can also be seen as a symmetric Euler top. There is a stationary
motion about the axis of symmetry that is in a nonvertical position. In other words,
the system of equations admits the following particular solution: the nutation angle
0 = 6y € (0, m/2) is a constant different from zero, the precession angle ¢ is constant,
and the angle of intrinsic rotation ¥ is a linear function of time. If in an initial moment
of time one chooses 6 close to 6, then the nutation and precession will be periodic
functions of time, and the axis of symmetry will uniformly rotate about the vector of
angular momentum, which is fixed in the space. See Arnold (1974) for more details.

What is going on in with the Lagrange top with the presence of gravity? Can the
precession angle be a periodic function on the universal covering of S!?

It may look like the mentioned stationary solution exists in the presence of gravity
as well. The three first integrals (the energy integral, the projection of the angular
momentum on the vertical axis, the projection of the angular momentum on the axis
of symmetry) are constant functions on the solution. However, from the equations of
motion one gets that the stationary motion about the axis of symmetry is possible only
when 6 = 0 or 6 = &. Based on that, one can speculate that a solution of the Lagrange
top with the presence of gravity having the precession angle as a bounded or periodic
function of time does not exist. A rigorous proof of that observation was provided
by Hadamard (1895). Although the Lagrange top was widely studied since then, with
dozens of volumes devoted to it, this Hadamard’s result is very hard to find. A nice
exception is a recent short note (Zubelevich and Salnikova 2018).
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