DC FieldValueLanguage
dc.contributor.authorBožin, Vladimiren
dc.contributor.authorKarapetrović, Bobanen
dc.date.accessioned2020-04-26T19:36:36Z-
dc.date.available2020-04-26T19:36:36Z-
dc.date.issued2018-01-15en
dc.identifier.issn0022-1236en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/600-
dc.description.abstractIt is well known that the Hilbert matrix operator H is a bounded operator from the Bergman space Ap into Ap if and only if 2<p<∞. In [5] it was shown that the norm of the Hilbert matrix operator H on the Bergman space Ap is equal to [Formula presented], when 4≤p<∞, and it was also conjectured that ‖H‖Ap→Ap=[Formula presented], when 2<p<4. In this paper we prove this conjecture.en
dc.publisherElsevier-
dc.relationAnalysis and algebra with applications-
dc.relation.ispartofJournal of Functional Analysisen
dc.subjectBergman spaces | Hilbert matrixen
dc.titleNorm of the Hilbert matrix on Bergman spacesen
dc.typeArticleen
dc.identifier.doi10.1016/j.jfa.2017.08.005en
dc.identifier.scopus2-s2.0-85028300382en
dc.relation.firstpage525en
dc.relation.lastpage543en
dc.relation.issue2en
dc.relation.volume274en
dc.description.rankM21a-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Show simple item record

SCOPUSTM   
Citations

10
checked on Dec 8, 2023

Page view(s)

29
checked on Dec 7, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.