DC FieldValueLanguage
dc.contributor.authorFedorov, Yuri N.en_US
dc.contributor.authorJovanović, Božidaren_US
dc.date.accessioned2021-11-17T13:32:11Z-
dc.date.available2021-11-17T13:32:11Z-
dc.date.issued2021-
dc.identifier.isbn978-86-909973-8-1-
dc.description.abstractThe Neumann system on a sphere is one of the basic classical examples of completely integrable systems. In this talk we give a review on the results concerning natural integrable generalizations of the Neumann systems to Stiefel manifolds [1,2,3,4]. Two Lax pairs for the systems are presented. A -matrix Lax representation enables us to prove non-commutative integrabilty of the Neumann systems, while a -matrix Lax representation implies a generalization of the Chasles theorem relating the trajectories of the systems and common linear spaces tangent to confocal quadrics. Also, by applying the second Lax representation we describe algebraic geometric properties of the systems. We show that generic complex invariant manifolds are open subsets of Prym varieties on which the flow is linear.en_US
dc.publisherSerbian Society of Mechanicsen_US
dc.titleClassical Neumann System on Stiefel Manifolds: Integrability, Geometric and Algebraic Aspects, and Linearizationen_US
dc.typeConference Paperen_US
dc.relation.conferenceThe 8th International Congress of Serbian Society of Mechanics, Kragujevac, Serbia, June 28-30, 2021en_US
dc.relation.publicationICSSM 21 Proceedingsen_US
dc.identifier.urlhttp://www.ssm.kg.ac.rs/congress_2021/-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage673-
dc.relation.lastpage688-
dc.description.rankM31-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

Page view(s)

41
checked on Nov 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.