DC FieldValueLanguage
dc.contributor.authorDragović, Brankoen
dc.contributor.authorMissarov, Mukadasen
dc.date.accessioned2020-12-11T13:04:43Z-
dc.date.available2020-12-11T13:04:43Z-
dc.date.issued2020-04-01en
dc.identifier.issn2070-0466en
dc.description.abstractWe investigate probabilistic properties of random triangles in the space of finite sequences with the Hamming metrics. As a triangle is understood any triple of points with distances between them. Probability measure is given by the classical way. In particular, it is shown that randomly chosen triangle is approximately equilateral with high probability. We also introduce a quantity that characterizes degree of “equilaterality” of triangles in the metric space in average.en
dc.publisherSpringer Link-
dc.relation.ispartofP-Adic Numbers, Ultrametric Analysis, and Applicationsen
dc.subjectHamming distance | random triangles | space of sequencesen
dc.titleRandom Triangles in a Metric Space of Sequencesen
dc.typeArticleen
dc.identifier.doi10.1134/S2070046620020077en
dc.identifier.scopus2-s2.0-85084521014en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage171en
dc.relation.lastpage175en
dc.relation.issue2en
dc.relation.volume12en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-5818-0150-
Show simple item record

Page view(s)

22
checked on Nov 28, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.