Authors: Jovanović, Božidar 
Fedorov, Yuri N.
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Discrete Geodesic Flows on Stiefel Manifolds
Journal: Proceedings of the Steklov Institute of Mathematics
Volume: 310
First page: 163
Last page: 174
Issue Date: 4-Dec-2020
Rank: M22
ISSN: 0081-5438
DOI: 10.1134/S0081543820050132
Abstract: 
We study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds Vn,r. In particular, for n=3 and r=2, after the identification V3,2≅SO(3), we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator I=(1,1,2). In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on Vn,r.
Publisher: Springer Link

Show full item record

SCOPUSTM   
Citations

1
checked on Nov 27, 2022

Page view(s)

35
checked on Nov 27, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.