DC FieldValueLanguage
dc.contributor.authorCzédli, Gáboren
dc.contributor.authorErné, Marcelen
dc.contributor.authorŠešelja, Branimiren
dc.contributor.authorTepavčević, Andrejaen
dc.date.accessioned2020-04-12T18:10:40Z-
dc.date.available2020-04-12T18:10:40Z-
dc.date.issued2009-09-01en
dc.identifier.issn0002-5240en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/406-
dc.description.abstractOur aim is to investigate groups and their weak congruence lattices in the abstract setting of lattices L with (local) closure operators C in the categorical sense, where L is regarded as a small category and C is a family of closure maps on the principal ideals of L. A useful tool for structural investigations of such lattices with closure is the so-called characteristic triangle, a certain substructure of the square L2. For example, a purely order-theoretical investigation of the characteristic triangle shows that the Dedekind groups (alias Hamiltonian groups) are precisely those with modular weak congruence lattices; similar results are obtained for other classes of algebras.en
dc.publisherSpringer Link-
dc.relationNFSR of Hungary (OTKA), Grant No. T 049433 and K 60148-
dc.relationProvincial Secretariat for Science and Technological Development, Grant “Lattice methods and applications”-
dc.relationAlgebarske strukture i metode za procesiranje informacija, 144011-
dc.relation.ispartofAlgebra Universalisen
dc.subjectAlgebraic lattice | Characteristic triangle | Continuous closure | Dedekind group | Diagram | Normal subgroup | Weak congruence latticeen
dc.titleCharacteristic triangles of closure operators with applications in general algebraen
dc.typeArticleen
dc.identifier.doi10.1007/s00012-010-0059-2en
dc.identifier.scopus2-s2.0-77954660608en
dc.relation.firstpage399en
dc.relation.lastpage418en
dc.relation.issue4en
dc.relation.volume62en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5716-604X-
Show simple item record

SCOPUSTM   
Citations

12
checked on Jan 29, 2023

Page view(s)

19
checked on Jan 30, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.