DC FieldValueLanguage
dc.contributor.authorMarinković, Bojanen
dc.contributor.authorOgnjanović, Zoranen
dc.contributor.authorDoder, Draganen
dc.contributor.authorPerović, Aleksandaren
dc.date.accessioned2020-02-18T20:06:27Z-
dc.date.available2020-02-18T20:06:27Z-
dc.date.issued2014-01-01en
dc.identifier.issn1570-8683en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/36-
dc.description.abstractPrimarily guided with the idea to express zero-time transitions by means of temporal propositional language, we have developed a temporal logic where the time flow is isomorphic to ordinal ω2 (concatenation of ω copies of ω). If we think of ω2 as lexicographically ordered ω×ω, then any particular zero-time transition can be represented by states whose indices are all elements of some {n}×ω. In order to express non-infinitesimal transitions, we have introduced a new unary temporal operator [ω] (ω-jump), whose effect on the time flow is the same as the effect of α→α+ω in ω2. In terms of lexicographically ordered ω×ω , [ω]φ is satisfied in 〈i,j〉-th time instant iff φ is satisfied in 〈i+1,0〉-th time instant. Moreover, in order to formally capture the natural semantics of the until operator U, we have introduced a local variant u of the until operator. More precisely, φuψ is satisfied in 〈i,j〉-th time instant iff ψ is satisfied in 〈i,j+k〉-th time instant for some nonnegative integer k, and φ is satisfied in 〈i,j+l〉-th time instant for all 0≤lt≤k. As in many of our previous publications, the leitmotif is the usage of infinitary inference rules in order to achieve the strong completeness.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Applied Logicen
dc.subjectAxiomatization | Decidability | Strong completeness | Temporal logic | Zero time transitionsen
dc.titleA propositional linear time logic with time flow isomorphic to ω2en
dc.typeArticleen
dc.identifier.doi10.1016/j.jal.2014.03.002en
dc.identifier.scopus2-s2.0-84899519832en
dc.relation.firstpage208-
dc.relation.lastpage229-
dc.relation.volume12-
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-9533-0330-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

SCOPUSTM   
Citations

11
checked on Jan 29, 2023

Page view(s)

28
checked on Jan 30, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.