DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen_US
dc.contributor.authorCurien, Pierre Louisen_US
dc.contributor.authorMilićević, Marinaen_US
dc.contributor.authorObradović, Jovanaen_US
dc.contributor.authorPetrić, Zoranen_US
dc.contributor.authorZekić, Mladenen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2020-06-15T11:03:39Z-
dc.date.available2020-06-15T11:03:39Z-
dc.date.issued2020-10-01-
dc.identifier.issn0168-0072-
dc.description.abstractA formal sequent system dealing with Menelaus' configurations is introduced in this paper. The axiomatic sequents of the system stem from 2-cycles of Δ-complexes. The Euclidean and projective interpretations of the sequents are defined and a soundness result is proved. This system is decidable and its provable sequents deliver incidence results. A cyclic operad structure tied to this system is presented by generators and relations.en_US
dc.publisherElsevieren_US
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.subjectCeva-Menelaus proof | Connected sum | Cyclic operad | Incidence theorem | Sequent system | Simplicial homologyen_US
dc.titleProofs and surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apal.2020.102845-
dc.identifier.scopus2-s2.0-85085876124-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage102845-
dc.relation.issue9-
dc.relation.volume171-
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2836-7958-
crisitem.author.orcid0000-0001-7407-4668-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 16, 2022

Page view(s)

82
checked on Sep 15, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.