DC FieldValueLanguage
dc.contributor.authorCheng, Taoen_US
dc.contributor.authorFeng, Lihuaen_US
dc.contributor.authorLiu, Weijunen_US
dc.contributor.authorLu, Luen_US
dc.contributor.authorStevanović, Draganen_US
dc.date.accessioned2020-06-05T11:26:31Z-
dc.date.available2020-06-05T11:26:31Z-
dc.date.issued2020-04-27-
dc.identifier.issn0308-1087-
dc.description.abstractIn this paper, we focus on the dihedral groups and the dicyclic groups, and consider their corresponding integral Cayley graphs. We obtain the sufficient conditions for the integrality of the distance powers ᴦD of the Cayley graph ᴦ = X(D2n, S) (resp. ᴦ = X(D4n, S)) (n ≥ 3)) for a set of nonnegative integers D. In particular, for a prime p, we show that if ᴦ = X(D2p, S) (resp. ᴦ = X(D4p, S)) is integral, then the distance powers of ᴦ = X(D2p, S) (resp. ᴦ = X(D4p, S)) are integral Cayley graphs.en_US
dc.publisherTaylor & Francisen_US
dc.relation.ispartofLinear and Multilinear Algebraen_US
dc.subject05C25 | 05C50 | dicyclic groups | dihedral groups | Distance powers | integral Cayley graphen_US
dc.titleDistance powers of integral Cayley graphs over dihedral groups and dicyclic groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2020.1758609-
dc.identifier.scopus2-s2.0-85084257395-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.description.rankM21-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 2, 2022

Page view(s)

26
checked on Oct 3, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.