DC FieldValueLanguage
dc.contributor.authorFarah, Ilijasen_US
dc.contributor.authorRørdam, Mikaelen_US
dc.date.accessioned2020-05-27T16:15:55Z-
dc.date.available2020-05-27T16:15:55Z-
dc.date.issued2016-11-25-
dc.identifier.issn1867-5778-
dc.description.abstractWe show that the class of C*-algebras with stable rank greater than a given positive integer is axiomatizable in logic of metric structures. As a consequence we show that the stable rank is continuous with respect to forming ultrapowers of C*-algebras, and that stable rank is Kadison-Kastler stable.en_US
dc.publisherUniversität Münsteren_US
dc.relation.ispartofMünster Journal of Mathematicsen_US
dc.titleAxiomatizability of the stable rank of C*-algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.17879/33249445432-
dc.identifier.urlhttp://arxiv.org/abs/1611.08462v2-
dc.relation.firstpage269-
dc.relation.lastpage275-
dc.relation.issue2-
dc.relation.volume10-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-7703-6931-
Show simple item record

Page view(s)

22
checked on Oct 4, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.