DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren
dc.contributor.authorShramchenko, Vasilisaen
dc.date.accessioned2020-05-16T17:02:12Z-
dc.date.available2020-05-16T17:02:12Z-
dc.date.issued2017-10-02en
dc.identifier.issn1402-9251en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2634-
dc.description.abstractWe construct algebro-geometric upper triangular solutions of rank two Schlesinger systems. Using these solutions we derive two families of solutions to the sixth Painlevé equation with parameters (1/8, ‒1/8, 1/8, 3=8) expressed in simple forms using periods of differentials on elliptic curves. Similarly for every integer n different from 0 and ‒1 we obtain one family of solutions to the sixth Painlevé equation with parameters (Figure presented.).en
dc.publisherTaylor & Francis-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationNSF, Grant 1444147-
dc.relation.ispartofJournal of Nonlinear Mathematical Physicsen
dc.subjecthyperelliptic curves | Painlevé equations | Schlesinger systemsen
dc.titleNote on algebro-geometric solutions to triangular Schlesinger systemsen
dc.typeArticleen
dc.identifier.doi10.1080/14029251.2017.1375692en
dc.identifier.scopus2-s2.0-85029360270en
dc.relation.firstpage571en
dc.relation.lastpage583en
dc.relation.issue4en
dc.relation.volume24en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 2, 2023

Page view(s)

16
checked on Dec 1, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.