DC FieldValueLanguage
dc.contributor.authorVučković, Bojanen
dc.date.accessioned2020-05-01T20:14:01Z-
dc.date.available2020-05-01T20:14:01Z-
dc.date.issued2017-12-01en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1854-
dc.description.abstractA proper edge coloring is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The minimum number of colors needed for a neighbor-distinguishing edge coloring is the neighbor-distinguishing index, denoted by χa′(G). A graph is normal if it contains no isolated edges. Let G be a normal graph, and let Δ(G) and χ′(G) denote the maximum degree and the chromatic index of G, respectively. We modify the previously known techniques of edge-partitioning to prove that χa′(G)≤2χ′(G), which implies that χa′(G)≤2Δ(G)+2. This improves the result in Wang et al. (2015), which states that χa′(G)≤[Formula presented]Δ(G) for any normal graph. We also prove that χa′(G)≤2Δ(G) when Δ(G)=2k, k is an integer with k≥2.en
dc.publisherElsevier-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectEdge-partition | Maximum degree | Neighbor-distinguishing edge coloringen
dc.titleEdge-partitions of graphs and their neighbor-distinguishing indexen
dc.typeArticleen
dc.identifier.doi10.1016/j.disc.2017.07.005en
dc.identifier.scopus2-s2.0-85026557303en
dc.relation.firstpage3092en
dc.relation.lastpage3096en
dc.relation.issue12en
dc.relation.volume340en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-

#### SCOPUSTM Citations

14
checked on Dec 1, 2023

#### Page view(s)

19
checked on Dec 1, 2023