DC FieldValueLanguage
dc.contributor.authorVučković, Bojanen
dc.date.accessioned2020-05-01T20:14:01Z-
dc.date.available2020-05-01T20:14:01Z-
dc.date.issued2018-03-01en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1852-
dc.description.abstractLet G be a graph without isolated edges, and let c:E(G)→{1,…,k} be a coloring of the edges, where adjacent edges may be colored the same. The color code of a vertex v is the ordered k-tuple (a1,a2,…,ak), where ai is the number of edges incident with v that are colored i. If every two adjacent vertices of G have different color codes, such a coloring is called multi-set neighbor distinguishing. In this paper, we prove that three colors are sufficient to produce a multi-set neighbor distinguishing edge coloring for every graph without isolated edges.en
dc.publisherElsevier-
dc.relationDevelopment of new information and communication technologies, based on advanced mathematical methods, with applications in medicine, telecommunications, power systems, protection of national heritage and education-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectMulti-set neighbor distinguishing edge coloringen
dc.titleMulti-set neighbor distinguishing 3-edge coloringen
dc.typeArticleen
dc.identifier.doi10.1016/j.disc.2017.12.001en
dc.identifier.scopus2-s2.0-85039148078en
dc.relation.firstpage820en
dc.relation.lastpage824en
dc.relation.issue3en
dc.relation.volume341en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/044006e.php-
crisitem.project.fundingProgramNATIONAL HEART, LUNG, AND BLOOD INSTITUTE-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL HEART, LUNG, AND BLOOD INSTITUTE/5R01HL044006-04-

#### SCOPUSTM Citations

11
checked on Dec 3, 2023

#### Page view(s)

35
checked on Dec 1, 2023