DC FieldValueLanguage
dc.contributor.authorVučković, Bojanen
dc.date.accessioned2020-05-01T20:14:01Z-
dc.date.available2020-05-01T20:14:01Z-
dc.date.issued2018-05-01en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/1851-
dc.description.abstractAn adjacent vertex distinguishing total k-coloring of a graph G is a proper total k-coloring of G such that any pair of adjacent vertices have different sets of colors. The minimum number k needed for such a total coloring of G is denoted by χa′′(G). In this paper we prove that χa′′(G)≤2Δ(G)−1 if Δ(G)≥4, and χa′′(G)≤⌈[Formula presented]⌉ in general. This improves a result in Huang et al. (2012) which states that χa′′(G)≤2Δ(G) for any graph with Δ(G)≥3.en
dc.publisherElsevier-
dc.relationDevelopment of new information and communication technologies, based on advanced mathematical methods, with applications in medicine, telecommunications, power systems, protection of national heritage and education-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectAdjacent vertex distinguishing total coloring | Maximum degreeen
dc.titleAn improved upper bound on the adjacent vertex distinguishing total chromatic number of graphsen
dc.typeArticleen
dc.identifier.doi10.1016/j.disc.2017.10.011en
dc.identifier.scopus2-s2.0-85033788536en
dc.relation.firstpage1472en
dc.relation.lastpage1478en
dc.relation.issue5en
dc.relation.volume341en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/044006e.php-
crisitem.project.fundingProgramNATIONAL HEART, LUNG, AND BLOOD INSTITUTE-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NIH/NATIONAL HEART, LUNG, AND BLOOD INSTITUTE/5R01HL044006-04-
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 1, 2023

Page view(s)

26
checked on Dec 1, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.