DC FieldValueLanguage
dc.contributor.authorBerenhaut, Kennethen
dc.contributor.authorFoley, Johnen
dc.contributor.authorStević, Stevoen
dc.date.accessioned2020-05-01T20:13:44Z-
dc.date.available2020-05-01T20:13:44Z-
dc.date.issued2006-09-01en
dc.identifier.issn0893-9659en
dc.description.abstractThis note provides new quantitative bounds for the recursive equation yn + 1 = A + frac(yn, yn - k), n = 0, 1, ..., where y- k, y- k + 1, ..., y- 1, y0, A ∈ (0, ∞) and k ∈ {2, 3, 4, ...}. Issues regarding exponential convergence of solutions are also considered. In particular, it is shown that exponential convergence holds for all (A, k) for which global asymptotic stability was proven in [R.M. Abu-Saris, R. DeVault, Global stability of yn + 1 = A + frac(yn, yn - k), Appl. Math. Lett. 16 (2) (2003) 173-178].en
dc.publisherElsevier-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectDifference equation | Explicit bounds | Exponential convergence | Stabilityen
dc.titleQuantitative bounds for the recursive sequence yn + 1 = A + frac(yn, yn - k)en
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2005.09.009en
dc.identifier.scopus2-s2.0-33746918702en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage983en
dc.relation.lastpage989en
dc.relation.issue9en
dc.relation.volume19en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

23
checked on Nov 28, 2022

Page view(s)

18
checked on Nov 28, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.