DC FieldValueLanguage
dc.contributor.authorBalińska, Krystynaen
dc.contributor.authorSimić, Slobodanen
dc.date.accessioned2020-05-01T20:12:52Z-
dc.date.available2020-05-01T20:12:52Z-
dc.date.issued2001-06-06en
dc.identifier.issn0012-365Xen
dc.description.abstractA graph is integral if the spectrum (of its adjacency matrix) consists entirely of integers. In this paper, we begin the search of those integral graphs which are nonregular, bipartite and have maximum degree 4. Here, we investigate the structure of these graphs, and provide many properties which facilitate a computer search. Among others, we have shown that any graph in question has not more than 78 vertices.en
dc.publisherElsevier-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectGraph spectrum | Integral graphs | Spectral momentsen
dc.titleThe nonregular, bipartite, integral graphs with maximum degree 4. Part I: Basic propertiesen
dc.typeArticleen
dc.identifier.doi10.1016/S0012-365X(00)00426-Xen
dc.identifier.scopus2-s2.0-0035815954en
dc.relation.firstpage13en
dc.relation.lastpage24en
dc.relation.issue1-3en
dc.relation.volume236en
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Show simple item record

SCOPUSTM   
Citations

20
checked on Nov 27, 2022

Page view(s)

10
checked on Nov 28, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.