Authors: Belardo, Francesco
Li Marzi, Enzo
Simić, Slobodan 
Wang, Jianfeng
Affiliations: Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: On the index of necklaces
Journal: Graphs and Combinatorics
Volume: 26
Issue: 2
First page: 163
Last page: 172
Issue Date: 1-Mar-2010
Rank: M23
ISSN: 0911-0119
DOI: 10.1007/s00373-010-0910-4
Abstract: 
We consider the following two classes of simple graphs: open necklaces and closed necklaces, consisting of a finite number of cliques of fixed orders arranged in path-like pattern and cycle-like pattern, respectively. In these two classes we determine those graphs whose index (the largest eigenvalue of the adjacency matrix) is maximal.
Keywords: Adjacency spectrum | Caterpillars | Largest eigenvalue | Line graphs | Signless Laplacian spectrum | Unicyclic graphs
Publisher: Springer Link

Show full item record

SCOPUSTM   
Citations

3
checked on Aug 19, 2022

Page view(s)

9
checked on Aug 18, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.