DC FieldValueLanguage
dc.contributor.authorBiyikoglu, Turkeren
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorStanić, Zoranen
dc.date.accessioned2020-05-01T20:12:48Z-
dc.date.available2020-05-01T20:12:48Z-
dc.date.issued2011-07-01en
dc.identifier.issn0381-7032en
dc.description.abstractA cograph is a P4-free graph. We first give a short proof of the fact that 0 (-1) belongs to the spectrum of a connected cograph (with at least two vertices) if and only if it contains duplicate (resp. coduplicate) vertices. As a consequence, we next prove that the polynomial reconstruction of graphs whose vertex-deleted subgraphs have the second largest eigenvalue not exceeding √5-1/2 is unique.en
dc.publisherCharles Babbage Research Centre-
dc.relation.ispartofArs Combinatoriaen
dc.subjectσ-graph | Characteristic polynomial | Cograph | Eigenvalues | Polynomial reconstructionen
dc.titleSome notes on spectra of cographsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-79959471030en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage421en
dc.relation.lastpage434en
dc.relation.volume100en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 27, 2022

Page view(s)

11
checked on Nov 28, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.