DC FieldValueLanguage
dc.contributor.authorLi, Shuchaoen
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorTošič, Dejanen
dc.contributor.authorZhao, Qinen
dc.date.accessioned2020-05-01T20:12:47Z-
dc.date.available2020-05-01T20:12:47Z-
dc.date.issued2011-12-01en
dc.identifier.issn0893-9659en
dc.description.abstractA connected graph of order n is bicyclic if it has n+1 edges. He et al. [C.X. He, J.Y. Shao, J.L. He, On the Laplacian spectral radii of bicyclic graphs, Discrete Math. 308 (2008) 59815995] determined, among the n-vertex bicyclic graphs, the first four largest Laplacian spectral radii together with the corresponding graphs (six in total). It turns that all these graphs have the spectral radius greater than n-1. In this paper, we first identify the remaining n-vertex bicyclic graphs (five in total) whose Laplacian spectral radius is greater than or equal to n-1. The complete ordering of all eleven graphs in question was obtained by determining the next four largest Laplacian spectral radii together with the corresponding graphs.en
dc.publisherElsevier-
dc.relationHubei Key Laboratory of Mathematical Sciences, MOE (CCNU09Y01005)-
dc.relationSerbian Ministry for Science (grant 144015G)-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectBicyclic graph | Laplacian spectral radius | Spectral orderingen
dc.titleOn ordering bicyclic graphs with respect to the Laplacian spectral radiusen
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2011.06.023en
dc.identifier.scopus2-s2.0-79961167288en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2186en
dc.relation.lastpage2192en
dc.relation.issue12en
dc.relation.volume24en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 27, 2022

Page view(s)

12
checked on Nov 28, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.