DC FieldValueLanguage
dc.contributor.authorLi, Shuchaoen
dc.contributor.authorSimić, Slobodanen
dc.contributor.authorTošič, Dejanen
dc.contributor.authorZhao, Qinen
dc.date.accessioned2020-05-01T20:12:47Z-
dc.date.available2020-05-01T20:12:47Z-
dc.date.issued2011-12-01en
dc.identifier.issn0893-9659en
dc.description.abstractA connected graph of order n is bicyclic if it has n+1 edges. He et al. [C.X. He, J.Y. Shao, J.L. He, On the Laplacian spectral radii of bicyclic graphs, Discrete Math. 308 (2008) 59815995] determined, among the n-vertex bicyclic graphs, the first four largest Laplacian spectral radii together with the corresponding graphs (six in total). It turns that all these graphs have the spectral radius greater than n-1. In this paper, we first identify the remaining n-vertex bicyclic graphs (five in total) whose Laplacian spectral radius is greater than or equal to n-1. The complete ordering of all eleven graphs in question was obtained by determining the next four largest Laplacian spectral radii together with the corresponding graphs.en
dc.publisherElsevier-
dc.relationHubei Key Laboratory of Mathematical Sciences, MOE (CCNU09Y01005)-
dc.relationSerbian Ministry for Science (grant 144015G)-
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectBicyclic graph | Laplacian spectral radius | Spectral orderingen
dc.titleOn ordering bicyclic graphs with respect to the Laplacian spectral radiusen
dc.typeArticleen
dc.identifier.doi10.1016/j.aml.2011.06.023en
dc.identifier.scopus2-s2.0-79961167288en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage2186en
dc.relation.lastpage2192en
dc.relation.issue12en
dc.relation.volume24en
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-

#### SCOPUSTM Citations

7
checked on Nov 27, 2022

#### Page view(s)

12
checked on Nov 28, 2022