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Abstract
Optimization involving fuzzy numbers generally, and intuitionistic fuzzy numbers particularly is

more and more an essential part of any computational intelligence method; and might be of interest
in modeling fuzzy control systems, or carrying out a fuzzy sensitivity analysis. The recent literature
includes many research papers related to both theoretical modelling, and practical implementation
of fuzzy decision support systems. Fuzzy optimization is one of the main part in such decision-
making tools.

A realistic solution to a fuzzy optimization problem is always desired, and similarly, a Pareto
optimal solution to a multiple objective optimization problem is always a need. In this paper we
analyze the shortcomings; and eliminate the weaknesses of a solution approach from the literature
proposed by Moges et al. in 2023. Firstly, Moges et al. used an accuracy function to de-fuzzify the
original intuitionistic fuzzy optimization problem; then linearized the obtained crisp problem; and
finally involved fuzzy goals to solve the derived multiple objective linear problem.

We present two faulty key points of their approach, namely the de-fuzzification and linearization
steps; prove the inappropriateness of their results; and propose some improvements. The final aim in
addressing the first key point is to clarify the border between defuzzifications made in accordance to
true theoretical statements, and those made for modeling reasons. The methodological improvement
we propose is related to the second key point and it assures that Pareto optimal solutions - highly
required in multiple objective optimization - are obtained. To illustrate our point of view, we use a
numerical example from the literature, and report better numerical results derived by the improved
methodology.

Keywords: fuzzy mathematical programming, linear fractional programming, multi-objective
optimization, intuitionistic fuzzy numbers.
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1 Introduction
Optimization involving intuitionistic fuzzy numbers is an essential part of many computational

intelligence methods. Such optimization problems can be of interest in modelling fuzzy control systems,
or carrying out a fuzzy sensitivity analysis. On the other side, the nowadays decision-making processes
become more and more complex, since very often conflicting objectives have to be simultaneously
optimized, and the optimization models have to incorporate uncertain information. Finding realistic
solutions to intuitionistic fuzzy multiple objective optimization problems is aiming by many researches.

In the recent literature, one can find many research papers related to both theoretical modelling,
and practical implementation of fuzzy decision support systems. Fuzzy optimization is one of the
main part in such decision-making tools. A general view on the evolution from classic to fuzzy logic
was presented in [15]. Sharma et al. [21] proposed an approach to solving multiple objective bi-level
chance constrained optimization problem in an intuitionistic fuzzy environment. They modelled the
uncertainty within the constraints system of the optimization problem using stochastic programming
approaches. An equivalent crisp problem was constructed, and then solved using a TOPSIS method.

Figueroa-Garcia et al. [8] reviewed the literature and analysed the new trends in the field of
fuzzy linear programming. They concluded that majority of the reviewed papers focused on solving
de-fuzzified variants of the original problems, but there is a clear trend to explore new uncertainty
representations. Valipour and Yaghoobi [25] reviewed the fuzzy linearization approaches used in the
literature to solve multiple objective linear-fractional programming problems. They discussed the
imposibility of finding equivalent linear multiple objective programming problems to linear-fractional
ones even when the mapping between them is continuous.

Rani et al. [19] introduced the intuitionistic fuzzy numbers with non-linear grade functions. They
generalized the classic techniques for solving intuitionistic fuzzy non-linear multiple objective opti-
mization problems. Fuzzy sets [26], and later on intuitionistic fuzzy sets [2] were introduced as tools
to handle the uncertainty. These concepts together with the theory developed around them have found
a wide specter of applications [7]. They were easily and immediately adopted in the optimization and
decision making framework to model uncertainty, perform arithmetic operations on uncertain data,
formulate fuzzy goals and so on. Khan et. al [10] drew a parallel between the basic definitions of fuzzy,
intuitionistic fuzzy and neutrosophic sets and norms, trying to disclose their meaning and establish a
link between them and the classic sets and norms.

Many times, when dealing with fuzzy concepts relying on a simple analogy with crisp numbers can
be misleading. The well known fuzzy arithmetic is widely used due to its power and simplicity, but still
it can also produce meaningless results if it is not applied in a proper manner. Sotoudeh-Anvari [22]
reviewed the main drawbacks and mathematical incorrect assumptions from the literature (published
between 2010 and 2020) on which many fuzzy operations research methodologies rely.

There are many ways to order the intuitionistic fuzzy numbers. Recently, Popa [17] introduced
a new method that ranks the trapezoidal intuitionistic fuzzy numbers by incorporating a parameter
able to describe the attitude of the decision factors. Further on, the new ranking method was applied
to multiple criteria decision making. De and Nandi [5] discussed a new, more accurate, method for
defuzzification and/or computation of ranking indexes of various types of fuzzy sets.

Recently, Rizk-Allah et al. used intuitionistic fuzzy sets for non-linear multiple objective problems
[20]; Nayak and Ojha [16] approached multipe objective non-linear fractional problems via fuzzy goals
and TOPSIS concept; Lin et. al [11] involved trapezoidal intuitionistic fuzzy information in multi-
attribute decision-making. The uncertainty was modeled based on the risk orientation and similarity
measure. A description of applied fuzzy fractional programming can be found in [12] to minimal cost
flow problems; and in [13] to education systems. Optimization involving fuzzy numbers might be of
interest in modeling fuzzy control systems (see for instance [18], where optimization problems were
defined to tune the parameters of the learning functions); or fuzzy sensitivity analysis (see Guerra et.
al [9] who applied it to project financing transactions).

In this paper we analyze the shortcomings of the solution approach to intuitionistic fuzzy multiple
objective linear fractional programming (IFMOLFP) problem introduced in [14]. We proceed by
identifying the incorrectness in the proof of the theorem that stated the equivalence between the
original IFMOLFP problem and the constructed crisp multiple objective linear fractional programming
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(MOLFP) problem. Then, we refer the reader to the results presented in [24] showing that MOLFP
problems cannot be equivalently linearized using the transformation proposed in [3] (that was intended
to be an extension to the well known Charnes-Cooper transformation [4] of a single objective linear
fractional programming (LFP) problem to a linear programming (LP) problem). We also propose
theoretical improvements to the existing solution approach assuring that a Pareto optimal solution is
obtained to the crisp MOLFP problem.

The remaining of the paper is structured as follows: after some preliminaries included in Section 2,
we describe and prove our theoretical findings, and propose methodological improvements in Section
3. In Section 4, we use a numerical example from the literature to illustrate our point of view, and
derive better solutions. Final conclusion and directions for further researches are presented Section 5.

2 Preliminaries
In this section we provide the notation and terminology needed in the sequel. They are related to

the intuitionistic fuzzy sets, accuracy function, crisp and intuitionistic fuzzy multiple objective linear
fractional programming problems.

2.1 The intuitionistic fuzzy sets

ÃI is an intuitionistic fuzzy subset of a the universe X defined as a collection of triples(
x, µ

ÃI (x) , ν
ÃI (x)

)
such that x ∈ X, µ

ÃI (x), ν
ÃI (x) ∈ [0, 1], and 0 ≤ µ

ÃI (x) + ν
ÃI (x) ≤ 1. The value µ

ÃI (x) is the
membership degree of x in ÃI ; ν

ÃI (x) is the non-membership degree of x in ÃI ; µ
ÃI : X → [0, 1] is

the membership function of ÃI in X; and ν
ÃI : X → [0, 1] is the non-membership function of ÃI in

X. For each x ∈ X the value π
ÃI (x) = 1 − µ

ÃI (x) − ν
ÃI (x) is the degree of hesitancy of x ∈ ÃI .

A triangular intuitionistic fuzzy number (IFN) over the universe of real numbers R, ÃI ∈ IFN(R)
is an special intuitionistic fuzzy set of the real numbers universe whose membership and non-membership
functions are defined by:

µÃI (x) =



x − a

a − a
, a ≤ x < a,

1, x = a,
a − x

a − a
, a < x ≤ a,

0, otherwise,

νÃI (x) =



a − x

a − b
, b ≤ x < a,

0, x = a,
x − a

b − a
, a ≤ x < b,

1, otherwise,

where b, a, a, a, b are real numbers, and b ≤ a ≤ a ≤ a ≤ b. Such a triangular IFN is denoted by
ÃI = (a, a, a; b, a, b).

Basic arithmetic operators over triangular IFNs are defined as follows. For any two triangular
IFNs ÃI =

(
a, a, a; b, a, b

)
and C̃I =

(
c, c, c; d, c, d

)
, and any scalar λ ∈ R:

1. Addition: ÃI + C̃I =
(
a + c, a + c, a + c; b + d, a + c, b + d

)
;

2. Subtraction: ÃI − C̃I =
(
a − c, a − c, a − c; b − d, a − c, b − d

)
;

3. Scalar multiplication: λÃI =


(
λa, λa, λa; λb, λa, λb

)
, λ ≥ 0,(

λa, λa, λa; λb, λa, λb
)

, λ < 0;

4. Multiplication: ÃI · C̃I =
(
e, a · c, e; f, a · c, f

)
, where

e = min {a · c, a · c, a · c, a · c} , e = max {a · c, a · c, a · c, a · c} ,

f = min
{

b · d, b · d, b · d, b · d
}

, f = max
{

b · d, b · d, b · d, b · d
}

;
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5. Division: ÃI/C̃I =
(
e, a/c, e; f, a/c, f

)
, under the assumption that either c > 0 or d < 0, where

e = min {a/c, a/c, a/c, a/c} , e = max {a/c, a/c, a/c, a/c} ,

f = min
{

b/d, b/d, b/d, b/d
}

, f = max
{

b/d, b/d, b/d, b/d
}

.

2.2 The accuracy function

The score functions of the membership and non-membership functions of the triangular IFN ÃI =(
a, a, a; b, a, b

)
used in [14] are

Eµ
(
ÃI
)

= a + a + 2a

4 , Sν
(
ÃI
)

= b + b + 2a

4 ,

respectively.
The accuracy function of the same triangular IFN ÃI with respect to a parameter λ ∈ [0, 1] set by

the decision maker is the weighted sum of its score functions, i.e.

Aλ
(
ÃI
)

= λEµ
(
ÃI
)

+ (1 − λ) Sν
(
ÃI
)

.

It is easy to prove that the accuracy function Aλ is linear.
The triangular IFN (a − r, a, a + r; a − s, a, a + s), with 0 ≤ r ≤ s, is called symmetric. The

above defined accuracy function applied to a symmetric triangular IFN selects its element with largest
membership degree, i.e.

Aλ ((a − r, a, a + r; a − s, a, a + s)) = a.

In this case the effect of applying the accuracy function is the trivial defuzzification.
Any accuracy function can be used to rank the IFNs. The following three implications were

used in [14]: (i) Aλ
(
ÃI
)

> Aλ
(
C̃I
)

⇒ ÃI > C̃I ; (ii) Aλ
(
ÃI
)

< Aλ
(
C̃I
)

⇒ ÃI < C̃I ; (iii)
Aλ
(
ÃI
)

= Aλ
(
C̃I
)

⇒ ÃI = C̃I .

2.3 Intuitionistic fuzzy MOLFP problem

The IFMOLFP problem addressed in [14] is a MOLFP problem that uses triangular IFNs as
coefficients of the decision variables in both objective functions and constraints, and also assumes that
some of the constraints are fuzzy. Its general mathematical model is given by

“ max ”
{

ZI (x) =
[
Z̃I

1 (x) , Z̃I
2 (x) , . . . , Z̃I

k (x)
]

|x ∈ X fuzzy
}

, (1)

where b̃I ∈ IFN (R)m, ãI ∈ IFN (R)m×n; Z̃I
i (x̃) =

(
c̃I

i

)T
x + α̃i(

d̃I
i

)T
x + β̃i

= Ñ I
i (x)

D̃I
i (x)

with c̃I
i , d̃I

i ∈ IFN (R)n,

α̃I
i , β̃I

i ∈ IFN (R), for each i = 1, 2, . . . , k;

Xfuzzy =
{

x|ãj
Ix≤̃b̃j

I
, ãp

Ix ≤ b̃I
p, j ∈ J, p ∈ P, x ≥ 0

}
, (2)

with J and P denoting the set of indexes for which the corresponding constraints are fuzzy and crisp,
respectively. It is assumed that all components of the IFNs

(
d̃I

i

)T
x + β̃i are greater than 0 for each

i = 1, 2, . . . k, and the decision variables are crisp.
An intuitionistic fuzzy feasible solution, x∗ ∈ X fuzzy is Pareto optimal to the IFMOLFP problem

(1), if there is no other feasible x ∈ X fuzzy such that Z̃I
i (x) ≥ Z̃I

i (x∗) for each i ∈ {1, . . . , k}, and at
least one strict inequality holds. The comparison of IFNs can be interpreted in various ways, but here
it is presumed that it is defined with respect to the accuracy function Aλ.
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2.4 Crisp MOLFP problem

Moges et al. [14] defined the crisp MOLFP problem

“ max ”
{

[Z1 (x) , Z2 (x) , . . . , Zk (x)] |x ∈ Xcrisp
}

, (3)

where
Xcrisp =

{
x ∈ Rn|ajx≤̃bj , apx ≤ bp, j ∈ J, p ∈ P, x ≥ 0

}
, (4)

b ∈ Rm, a ∈ Rm×n and it still contains some fuzzy constraints; and Zi (x) = cT
i x + αi

dT
i x + βi

= Ni (x)
Di (x) with

ci,di ∈ Rn, αi, βi ∈ R, for each i = 1, 2, . . . , k. It is assumed that dT
i x + βi > 0 for each i = 1, 2, . . . k.

There is no loss of generality because of this assumption.
The operator ” max ” is used with respect to the concept of Pareto optimality. A feasible solution

x∗ ∈ Xcrisp is said to be an efficient solution (or Pareto optimal) to Problem (3) if and only if there
is no x ∈ Xcrisp such that Zi (x) ≥ Zi (x∗) holds for each i ∈ {1, . . . , k}, and at least one of the
inequalities is strict. The feasibility x ∈ Xcrisp has a wider meaning in [14] due to the fuzziness of the
constraints indexed with j ∈ J .

The distance function

D (x∗) = 1
2k

√√√√ k∑
i=1

(
Z ideal

i − Zi (x∗)
)2

(5)

was used in [14] to quantify the quality of the obtained solution x∗, and compare the solutions obtained
by different approaches from the literature. The values Z ideal

i , i = 1, . . . , k, are the ideal values of the
objective functions, i.e.

Z ideal
i = max

{
Zi (x) |x ∈ Xcrisp

}
, i = 1, . . . , k. (6)

We also employ (5) to measure the quality of the derived solutions.

3 Theoretical findings
The solution approach proposed in [14] has two faulty key points. In this section, we analyze

them successively, prove our statements and relate them to relevant results from the literature. In
Subsection 3.3, we propose a methodological improvement to the second key point.

3.1 First key point

Step 2 of the approach proposed in [14] assumes that a crisp MOLFP problem can be formulated
from the original IFMOLFP problem using the above mentioned accuracy function Aλ, assuring that
a Pareto optimal solution to MOLFP problem always yields a Pareto optimal solution to IFMOLFP
problem.

The objective functions of MOLFP problem (3) in [14] are constructed such that

Ni = Aλ
(
Ñ I

i

)
, Di = Aλ

(
D̃I

i

)
, Zi = Aλ

(
Z̃I

i

)
, i = 1, . . . , k, (7)

with Ñ I
i , D̃I

i , and Z̃I
i being the IFNs used to define the objective functions of Problem (1).

The definitions given in (7) for Ni, Di, Zi, i = 1, . . . , k are generally in contradiction to the relations
Z̃I

i (x) = ÑI
i (x)

D̃I
i (x)

and Zi (x) = Ni(x)
Di(x) , i = 1, . . . , k, between the fractional objective functions and their

corresponding numerators and denominators, and the definition of the accuracy function Aλ. Note
that for non-negative IFNs coefficients c̃I

i,d̃
I
i ∈ IFN (R)n and α̃I

i , β̃I
i ∈ IFN (R), and positive decision

variables we can formalize

Z̃I
i = Ñ I

i

D̃I
i

=

(
a, a, a; b, a, b

)
(
c, c, c; d, c, d

) =
(

a

c
,
a

c
,
a

c
; b

d
,
a

c
,

b

d

)
. (8)
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Then, on one side

Zi = Aλ
(
Z̃I

i

)
= Aλ

((
a

c
,
a

c
,
a

c
; b

d
,
a

c
,

b

d

))
= λ

4

(
a

c
+ a

c
+ 2a

c

)
+ 1 − λ

4

(
b

d
+ b

d
+ 2a

c

)
, (9)

and on the other side

Zi = Ni

Di
=

Aλ
(
Ñ I

i

)
Aλ
(
D̃I

i

) =
Aλ
((

a, a, a; b, a, b
))

Aλ
((

c, c, c; d, c, d
)) =

λ
4 (a + a + 2a) + 1−λ

4

(
b + b + 2a

)
λ
4 (c + c + 2c) + 1−λ

4

(
d + d + 2c

) . (10)

It is obvious that the expression given for Zi in (9) cannot be generally equal to the expression given

in (10). In the following, we exemplify the discrepancy between Aλ
(

ÑI

D̃I

)
and Aλ

(
ÑI
)

Aλ
(

D̃I
) for Ñ I =

(2, 4, 5; 1, 4, 6) and D̃I = (1, 2, 4; 1, 2, 5): ÑI

D̃I
= (0.5, 2, 5; 0.2, 2, 6); Aλ

(
Ñ I
)

= 3.75λ + 3.75 (1 − λ) =
3.75; Aλ

(
D̃I
)

= 2.25λ + 2.5 (1 − λ) = 2.5 − 0.25λ. Consequently,

Aλ
(

ÑI
i

)
Aλ
(

D̃I
i

) = 3.75
2.5 − 0.25λ

; Aλ
(

ÑI

D̃I

)
= 2.375λ + 2.55 (1 − λ) = 2.55 − 0.175λ.

The above contradiction is an argument for claiming that the statement of Theorem 3.1 given
in [14] is not correct. Theorem 3.1 [14] affirms that a Pareto-optimal solution to the crisp MOLFP
problem (3) is a Pareto-optimal solution to the IFMOLFP problem (1).

The proof of Theorem 3.1 given in [14] has two flaws: (i) deriving Aλ(Ni(x))
Aλ(Di(x)) ≥ Aλ(Ni(x∗))

Aλ(Di(x∗)) from
Ni(x)
Di(x) ≥ Ni(x∗)

Di(x∗) , instead of deriving Aλ
(

Ni(x)
Di(x)

)
≥ Aλ

(
Ni(x∗)
Di(x∗)

)
; and (ii) concluding �∃x ∈ SI form

�∃x ∈ Sc and Sc ⊆ SI .
The construction of Problem (3) from the intuitionistic fuzzy Problem (1) can be completed only

through the trivial defuzzification, using the core selection criterion, namely replacing each trian-
gular intuitionistic fuzzy coefficient ÃI by its element with largest degree of membership, i.e. us-
ing the most simple accuracy function Acc

((
a, a, a; b, a, b

))
= a. Only in this very particular case

Acc
(

ÑI
i

)
Acc
(

D̃I
i

) = Acc
(

ÑI

D̃I

)
. For their numerical examples, Morges et al. [14] used symmetric triangu-

lar intuitionistic fuzzy numbers ÃI
sym for all coefficients, and further exploited the particular case

Aλ
(
ÃI

sym

)
= Acc

(
ÃI

sym

)
.

We addressed this key point aiming to clarify the border between the defuzzifications made in
accordance to true theoretical statements, and those made for modeling reasons. The second kind of
defuzzification is generally made in accordance to particularities of real-life problems that have to be
solved, by a modeler that has a high level of expertise and is familiar with all problem specifications.
Any mathematical model built do describe a real-life problem has a certain level of inaccuracy, thus
trying to prove its accuracy is a mistaken view point.

3.2 Second key point

Step 3 of the approach proposed in [14] is based on the linearization of the crisp MOLFP problem
using the misleading transformation proposed in [3].

The well known Charnes-Cooper transformation [4] transforms a single objective LFP problem to
an equivalent LP problem, assuring that an optimal solution to the constructed LP problem yields an
optimal solution to the LFP problem. However, the transformation proposed in [3] formally extends
the Charnes-Cooper transformation to the multiple objective case but it is not able to conserve the
Pareto optimality. As it was already proved in [24], a Pareto optimal solution to the multiple objective
LP problem is not necessary a Pareto optimal solution to the MOLFP problem.

As a direct consequence, Theorem 3.2 given in [14] is incorrect, and its proof is inaccurate since
r is used in the transformation as equal to 1

Di(x) for a fixed index i = 1, . . . , k, while it is replaced
discretionary by any 1

Dt(x) , t = 1, . . . , k whenever it is beneficial.
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3.3 Methodological improvement

To overcome the deficiency of the second key point, we propose a procedure able to derive a Pareto
optimal solution to the MOLFP problem exploiting the good characteristics of the Pareto optimal
solution to the MOLFP problem derived using the weighted intuitionistic fuzzy goal programming
adopted in [14].

Starting from the solution derived by Moges et al. [14], the fuzzy constraints and the objective
values are evaluated and then a new family of linear fractional optimization Models (11) is proposed
to derive the desired Pareto optimal solution to the MOLFP problem.

max Nh (x)
Dh (x)

s.t.
ajx ≤ bj , j ∈ J,
apx ≤ bp, p ∈ P,

Ni (x) ≥ Ni(x∗)
Di(x∗)Di (x) , i ∈ {1, 2, . . . , k} \ {h} .

x ≥ 0,

(11)

Models (11) separately use the objective functions of the initial crisp MOLFP problem (3), and they
are solved successively for h = 1, . . . , k in the lexicographic manner. For h = 1, x∗ is the solution
derived by Moges et al.’s procedure [14], and for h > 1, x∗ is the solution derived in Step h − 1. Note
that instead of the fuzzy constraints

ajx≤̃bj , j ∈ J (12)

from Xcrisp, we used their full achievement from,

ajx ≤ bj , j ∈ J, (13)

in Model (11).
In the case of infeasibility, the constraints (13) can be relaxed, inevitably reducing the satisfaction

level of the decision maker. In order to assure that the new derived solution provides the same or
better satisfaction/acceptance degree, and the same or smaller dissatisfaction/rejection degree as x∗,
the constraints (13) should be replaced by

ajx ≤ b∗
j , j ∈ J, (14)

where b∗
j , j ∈ J are the values of the left-hand-side expressions of the fuzzy constraints evaluated at

x∗.
The above methodology is summarized in Algorithm 1. Basically, this algorithm describes the

lexicographic method - well know in multiple objective optimization - adapted to linear fractional
objective functions.

There are two overall advantages of applying the lexicographic procedure of solving Models (11)
successively: (i) the value of the distance function decreases, since the values of all objective functions
either increase or remain the same; and (ii) the derived solution is Pareto optimal, that is highly
required when solving any multiple objective optimization problem.

4 Illustrative example
To illustrate our theoretical statements we recall the Agricultural Land Allocation Problem (ALAP)

solved by Moges et al. in [14]. The ALAP problem introduced in [14] was originally formulated as an
IFMOLFP problem with symmetric triangular IFN coefficients. Applying the accuracy function, each
coefficient was defuzzificated, thus being replaced by its element with maximal membership degree.
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Algorithm 1 Lexicographic improvement
Require: The matrix/vector parameters ã, b̃, c̃, d̃, α̃ and β̃ that are the IFN coefficients of Problem

(1); the set of indexes J and P that make distinction between fuzzy and crisp constraints; the
permutation σ describing the importance of the criteria (i.e. σ (i) is the position of function Zi

with respect to the order of importance); x∗ the solution derived by Moges et al. [14].
1: for k = 1, p do
2: Solve Problem (11) for the index h = σ (k) replacing the constraints

Nσ(j) (x) ≥ Nσ(j)(x∗)
Dσ(j)(x∗)Dσ(j) (x) by zσ(j) (x) ≥ zσ(j), ∀j ∈ {1, 2, . . . , k}.

3: if the problem is infeasible then
4: stop and declare that there is no improved solution.
5: else
6: put the value of the optimal solution in zσ(j) and continue.
7: end if
8: end for

Ensure: The final solution derived for h = σ (p).

Table 1: The defuzzified objective functions derived by Moges et al. [14] to ALAP problem

Z1 (x)
31070.21x1 + 71969x2 + 32350x3 + 13241x4 + 13500x5 + 14148.6x6 + 39834.64x7 + 13445x8 + 31874x9

12847.12x1 + 16520.2x2 + 14325x3 + 10534.97x4 + 10044x5 + 9500x6 + 13254.02x7 + 11265x8 + 11780x9

Z2 (x)
97.5x1 + 115.55x2 + 111.03x3 + 62.64x4

x1 + x2 + x3 + x4

Z3 (x)
72.92x5 + 37.04x6 + 84.76x7 + 44.85x8 + 61.81x9

x5 + x6 + x7 + x8 + x9

As a consequence, Moges et al. [14] solved the following crisp model with several fuzzy constraints:

” max ” {Z1 (x) , Z2 (x) , Z3 (x)}
s.t.

111.03x3≥̃45,

44.85x8≥̃15,
x1 + x2 + x3 + x4 ≤ 3.5,
x5 + x6 + x7 + x8 + x9 ≤ 3.5,

75x1 + 125x2 + 119x3 + 60x4≤̃110,

89x5 + 49x6 + 111x7 + 96x8 + 85x9≤̃110,
x1, x2, x3, x4, x5, x6, x7, x8, x9 ≥ 0,

(15)

where the objective functions Z1, Z2, Z3 are described in Table 1. They derived the solution

x∗ =
(

0.004193, 1.1656683, 2.330139, 0, 2.351677, 0, 0, 0.160962, 0
)

.

to ALAP problem (15).
We construct the particular form of Problem (11) that corresponds to Problem (15) and to its

solution x∗. We set h = 1, and using the values Z2 (x∗) = 112.51917 and Z3 (x∗) = 71.12181 as lower
bounds on the objective functions Z2 and Z3, respectively.

It means that the inequalities

Z2 (x) ≥ 112.51917, Z3 (x) ≥ 71.12181 (16)

further provide the constraints

97.5x1 + 115.55x2 + 111.03x3 + 62.64x4
x1 + x2 + x3 + x4

≥ 112.51917, (17)



https://doi.org/10.15837/ijccc.2024.1.6333 9

and
72.92x5 + 37.04x6 + 84.76x7 + 44.85x8 + 61.81x9

x5 + x6 + x7 + x8 + x9
≥ 71.12181, (18)

to be added to the constraint system.
Since both constraints in (18) can be easily linearized, we proceed with solving the single objective

LFP Problem (19):

max Z1 (x)
s.t.

111.03x3 ≥ 45,
44.85x8 ≥ 15,
x1 + x2 + x3 + x4 ≤ 3.5,
x5 + x6 + x7 + x8 + x9 ≤ 3.5,
75x1 + 125x2 + 119x3 + 60x4 ≤ 110,
89x5 + 49x6 + 111x7 + 96x8 + 85x9 ≤ 110,
97.5x1 + 115.55x2 + 111.03x3 + 62.64x4 ≥ 112.51917 (x1 + x2 + x3 + x4)
72.92x5 + 37.04x6 + 84.76x7 + 44.85x8 + 61.81x9 ≥ 71.12181 (x5 + x6 + x7 + x8 + x9)
x1, x2, x3, x4, x5, x6, x7, x8, x9 ≥ 0,

(19)

and derive the solution

(x∗)1 =
(

0, 0.494158, 0.405296, 0, 0, 0, 0.701739, 0.334448, 0
)

.

We can use (x∗)1 to negate the Pareto optimality of x∗, and show the effectiveness of the methodological
extension that we proposed in Section 3.3., as follows. The values of the objective functions at x∗ and
(x∗)1 are

Z (x∗) =
(

2.47446, 112.51917, 71.12181
)

,

Z
(
(x∗)1

)
=

(
3.00044, 113.51328, 71.87833

)
;

and the fulfillment of the fuzzy constraints for x∗ and (x∗)1 are

ax∗
(
≥̃, ≤̃

)
b : 258.71533317≥̃45, 7.2191457≥̃15, 423.309554≤̃110, 224.751605≤̃110,

a (x∗)1
(
≥̃, ≤̃

)
b : 45.0000149≥̃45, 14.9999928≥̃15, 109.999974≤̃110, 110.000037≤̃110.

It is clear that (x∗)1 yields better values than x∗ for all three objective functions; and fully satisfy
all fuzzy constraints, hence assuring the decision maker’s satisfaction level equal to 1, while x∗ fully
satisfies only the first one. In other words, our solution (x∗)1 dominates x∗, and as a direct consequence
the distance function D (x) is smaller at (x∗)1 than at x∗. The exact values are reported in Table 2.

The solution

x̂ =
(

2.17642, 0.776409, 0.208268, 0, 1.996459, 0, 0, 0.041792, 0
)

,

obtained by applying other two methods (Angelov [1] and Zimmerman [28]) to the same Problem (15)
was reported in [14].

Aiming to obtain a better solution than x̂, we solve Problem (20)

max Z1 (x)
s.t.

111.03x3 ≥ 45,
44.85x8 ≥ 14.5,
x1 + x2 + x3 + x4 ≤ 3.5,
x5 + x6 + x7 + x8 + x9 ≤ 3.5,
75x1 + 125x2 + 119x3 + 60x4 ≤ 110,
89x5 + 49x6 + 111x7 + 96x8 + 85x9 ≤ 110.6,
97.5x1 + 115.55x2 + 111.03x3 + 62.64x4 ≥ 112.51917 (x1 + x2 + x3 + x4)
72.92x5 + 37.04x6 + 84.76x7 + 44.85x8 + 61.81x9 ≥ 72.3445 (x5 + x6 + x7 + x8 + x9)
x1, x2, x3, x4, x5, x6, x7, x8, x9 ≥ 0.

(20)
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Table 2: The values of the objective functions at different solutions obtained in the literature or
derived by solving the new proposed models.

Ideal values Methods [1], [28] Method [14] Our improvements
x - x̂ x∗ (x∗)1 (x∗)2

Z1 (x) 3.3602 2.453591 2.474461 3.000441 3.008005
Z2 (x) 113.9153 102.824749 112.519168 113.513278 113.513278
Z3 (x) 75.533 72.344456 71.121809 71.878329 72.344490
D (x) 0 0.929001 0.785114 0.615712 0.538833

that is similar to Problem (19) but it uses the values Z2
(
x̂
)

and Z3
(
x̂
)
, namely 102.824749 and

72.344456, as bounds to Z2 and Z3, respectively; and the relaxed fuzzy constraints

44.85x8 ≥ 14.55, 89x5 + 49x6 + 111x7 + 96x8 + 85x9 ≤ 110.6,

instead of
44.85x8 ≥ 15, 89x5 + 49x6 + 111x7 + 96x8 + 85x9 ≤ 110,

respectively. In this way we obtain the solution

(x∗)2 =
(

0, 0.494158, 0.405296, 0, 0, 0, 0.715957, 0.3233, 0
)

,

that yields the objective values reported in Table 2. From the point of view of the fuzzy constraints
fulfillment, i.e. from

ax̂
(
≥̃, ≤̃

)
b : 23.123996≥̃45, 1.874371≥̃15, 285.066517≤̃110, 181.696883≤̃110

and

a (x∗)2
(
≥̃, ≤̃

)
b : 45.0000149≥̃45, 14.500005≥̃15, 109.999974≤̃110, 110.508027≤̃110

we conclude that (x∗)2 is better than x̂. It is also better than x∗ and worse than (x∗)1.
A summary of our numerical results compared to the results reported in the literature can be seen

in Table 2. The distances of the obtained results from the ideal values are also reported in the same
table. The graphic representations of their corresponding normalized values (see Table 3) are shown
in Figure 1.

Comparing the solutions derived by our extended methodology we may conclude that (x∗)2 is
better than (x∗)1 since its distance from the ideal values is smaller; but in the same time, (x∗)1 can
be considered better than (x∗)2 since it fully satisfies the crisp constraints.

Figure 1: Comparative graphic representations of the normalized values reported in Table 3
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Table 3: The normalized values of the objective functions at different solutions obtained in the
literature or derived by solving the new proposed models with respect to the ideal values.

Methods [1], [28] Method [14] Our improvements
x x̂ x∗ (x∗)1 (x∗)2

Z1 (x) 0.73 0.74 0.89 0.89
Z2 (x) 0.90 0.99 1.00 1.00
Z3 (x) 0.96 0.94 0.95 0.96

5 Final conclusion
The methodological improvement introduced in Section 3.3 and illustrated in Section 4 is able to

derive a Pareto optimal solution to MOLFP problems, thus overcoming one deficiency of Moges et
al.’s solution approach [14] to IFMOLFP problem, reaching in the same time the general requirement
of any procedure to solve multiple objective optimization problems.

The transformation of an intuitionistic fuzzy problem into an equivalent crisp one using an accuracy
function is still an issue. As pointed out in the end of Section 3.1., such transformation is generally
made by the modeler that has a high level of expertise and is familiar with all problem specifications,
and in accordance to the particularities of real-life problems that have to be solved. Justifications
should be related to modeling reasons, therefore they do not need any theoretical prove of preserving
the equivalence.

To remove the inconsistencies arisen from the defuzzification of optimization problems with fuzzy
coefficients through various ranking functions, the idea of using the extension principle on the level of
the solution concept, and not only to perform fuzzy arithmetic, is advanced, in the recent literature.

Diniz et al. [6] addressed the optimization of fuzzy-valued functions generally providing the frame-
work for a wider use of the extension principle; while Stanojević [23] used the extension principle to
empirically derive the Pareto front of a fully fuzzified MOLFP problem. Applying this general idea
to solve IFMOLFP problems is one direction for further researches in this area. Using new operators
to aggregate the intuitionistic fuzzy quantities recently introduced in the literature; or solving similar
problems using Z-numbers [27] are other possible research directions.
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