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This work presents a proof-theoretical and model-theoretical approach to proba-
bilistic temporal logic. We present two novel logics; each of them extends both the 
language of linear time logic (LTL) and the language of probabilistic logic with poly-
nomial weight formulas. The first logic is designed for reasoning about probabilities 
of temporal events, allowing statements like “the probability that A will hold in 
next moment is at least the probability that B will always hold” and conditional 
probability statements like “probability that A will always hold, given that B holds, 
is at least one half”, where A and B are arbitrary statements. We axiomatize this 
logic, provide corresponding sigma additive semantics and prove that the axiomati-
zation is sound and strongly complete. We show that the satisfiability problem for 
our logic is decidable, by presenting a procedure which runs in polynomial space. 
We also present a logic with much richer language, in which probabilities are not 
attached only to temporal events, but the language allows arbitrary nesting of prob-
ability and temporal operators, allowing statements like “probability that tomorrow 
the chance of rain will be less than 80% is at least a half”. For this logic we prove a 
decidability result.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The study of temporal logics started with the seminal work of Arthur Prior [37]. Temporal logics are 
designed in order to analyze and reason about the way that systems change over time, and have been shown 
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to be useful tools in describing behavior of an agent’s knowledge base, for specification and verification of 
programs, hardware, protocols in distributed systems etc. [10,11]. In many practical situations the temporal 
information is not known with certainty. A typical example is formal representation of information about 
tracking moving objects with GPS systems, in the case in which the locations or the identities of the objects 
are not certainly known [18].

In this work, our focus is on logical formalization of the above mentioned uncertainty about time. Many 
different tools have been developed for representing, and reasoning with, uncertain knowledge. One partic-
ular line of research concerns the formalization in terms of probabilistic logic. After Nilsson [32] presented 
a procedure for probabilistic entailment which, given probabilities of premises, calculates bounds on the 
probabilities of the derived sentences, researchers from the field started investigation about formal systems 
for probabilistic reasoning. Fagin et al. [14] proposed a logic with formulas which can express linear combina-
tions of probabilities, called linear weight formulas, i.e., the formulas of the form a1w(α1) +... +akw(αk) ≥ r, 
where aj ’s and r are rational numbers. They proposed a finitary axiomatization for the logic and proved 
weak completeness (“every consistent formula is satisfiable”), using a small model theorem. In the same 
paper, they also considered a richer probabilistic language, obtained by adding multiplication to the syntax 
(so called polynomial weight formulas), in order to allow representation of conditional probabilities. In order 
to axiomatize that logic, they needed to extend the language even further, allowing variables (intended to 
range over the reals) in the formulas, and first-order quantification over them (so called first-order weight 
formulas).

In this paper, we extend the approach from [14] with polynomial weight formulas (PWFs). We start with 
the propositional linear time logic (LTL) [16] with the “next” operator © and “until” operator U . The 
meaning of the formula ©α is “α holds in the next time instance”, and αUβ we read “α holds in every time 
instance until β holds”. We present two logics that extend both PWF and LTL. In the first logic, we apply 
the probabilistic operator w to the formulas of LTL and define probabilistic formulas using the PWFs in 
order to allow conditional probabilities, like in [14]. In this logic, that we denote by PLLTL, there are two 
types of formulas, LTL formulas and probabilistic formulas, with the requirement that if an LTL formula is 
true in a model, then its probability is equal to 1. The main technical challenge in axiomatizing such a logic 
lies in the fact that the set of models of the formula αUβ can be represented as a countable union of models 
of temporal formulas which are pairwise disjoint. As a consequence, finitely additive semantics is obviously 
not appropriate for such a logic, and we propose σ-additive semantics for the logic. On the other hand, 
expressing σ-additivity with an axiom would require infinite disjunctions, and the resulting logic would 
be undecidable. We show in Section 3.1 that any finitary axiomatic system wouldn’t be complete for the 
σ-additive semantics.

In order to overcome this problem, we axiomatize our language using infinitary rules of inference. Thus, 
in this work the term “infinitary” concerns the meta language only, i.e., the object language is countable and 
formulas are finite, while only proofs are allowed to be infinite. We prove that our axiomatization is sound and 
strongly complete (“every consistent set of formulas is satisfiable”). We prove strong completeness using an 
adaptation of Henkin’s construction. There are several logics which combine time and probability in different 
ways [19,20,23,24,33,39], but, to the best of our knowledge, this is the first complete axiomatization for the 
σ-additive probabilistic semantics. We also prove that the satisfiability problem for our logic is decidable, 
using decidability of LTL and combining a variant of the method of filtration with a reduction to a system of 
inequalities. In addition, we present a decidability procedure which runs in polynomial space, thus showing 
that the problem is not more complex than LTL alone nor PWF alone.

Then we introduce our second logic MPLLTL. It overcomes the limitation of the logic PLLTL, in which 
we could apply probability operators on top of temporal operators, but not the other way around. The 
logic MPLLTL uses non-restricted modal approach to probabilistic temporal logic, where all modalities can 
be nested in an arbitrary way. In this case, the semantics of LTL is naturally generalized in the way that 
all time instances of temporal models (paths) are equipped with probability spaces (over other paths). In 
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addition to nesting of operators, we modify the language in the way that we allow that different agents 
place (possibly different) probabilities on events (following [13]), thus indexing the probability operators wi

with agents. Therefore, the formulas of MPLLTL can express not only probability that expresses agents’
uncertainty about temporal events (which was already expressible in PLLTL), but they can also express 
uncertainty of one agent about uncertainty (possibly about time) of another agent. It seems a quite com-
plex task to provide an axiomatization for σ-additive semantics of such a logic and we left that problem 
for future work, in which we hope we can combine the techniques presented here with those from [26]. On 
the other hand, we proved that the problem of satisfiability of formulas of our logic MPLLTL is decid-
able.

The rest of the paper is organized as follows. In Section 2 we present the syntax and semantics of our 
logic PLLTL in detail. In Section 3 we propose an axiomatization for PLLTL, and we prove some the results 
about the axiomatization. In Section 4 we prove that the axiomatization is strongly complete with respect to 
the proposed class of measurable structures. In Section 5 we show that the satisfiability problem for PLLTL

is decidable in PSPACE. In Section 6, we present the syntax and semantics of our second logic MPLLTL. 
In Section 7 we discuss decidability of MPLLTL. We conclude in Section 8.

2. The logic PLLTL: syntax and semantics

We present the syntax and semantics of the logic for probabilistic reasoning about linear time formulas, 
that we denote by PLLTL. The logic contains two types of formulas: formulas of LTL without probabil-
ities, and the polynomial weight formulas (PWFs) in the style of [14], with weights applied to temporal 
formulas.

In order to give semantics to the formulas of PLLTL, we first briefly review some probability theory [1]. 
We denote by ω the set of all natural numbers, and we accept the convention that 0 ∈ ω. If W �= ∅, then H
is an algebra of subsets of W , if it is a set of subsets of W such that:

(a) W ∈ H,
(b) if A, B ∈ H, then W \A ∈ H and A ∪B ∈ H.

For an algebra H, a function μ : H −→ [0, 1] is a (σ-additive) probability measure, if the following 
conditions hold:

(1) μ(W ) = 1,
(2) μ(

⋃
i∈ω Ai) =

∑
i∈ω μ(Ai), whenever each Ai ∈ H, 

⋃
i∈ω Ai ∈ H and Ai ∩Aj = ∅ for all i �= j.

For W , H and μ described above, the triple 〈W, H, μ〉 is called a probability space. A function μ : H −→
[0, 1] is a finitely additive probability measure, if the condition

(3) μ(A ∪B) = μ(A) + μ(B), whenever A ∩B = ∅,

holds, instead of (2). We also say that an algebra H is a σ-algebra, if 
⋃

i∈ω Ai ∈ H whenever Ai ∈ H for 
every i ∈ ω.

For a finitely additive μ, the condition (2) is equivalent to the condition

(2’) μ(
⋃

i∈ω Ai) = limn→+∞ μ(
⋃n

i=0 Ai).

We will actually use (2’) in the axiomatization of our logic (see the inference rule R6).
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2.1. Syntax

First we introduce LTL formulas. Suppose that P is a nonempty finite set of propositional letters. We 
denote the elements of P with p and q, possibly with subscripts.

Definition 1 (LTL formula). An LTL formula is any formula built from propositional letters from P, using 
the Boolean connectives ¬ and ∧, and the temporal operators © and U .

We use ForLTL for the set of all LTL formulas and denote arbitrary LTL formulas by α, β and γ, possibly 
with subscripts.

Note that in this paper we use ¬ and ∧ as the primitive connectives, while other Boolean connectives 
(→, ∨, ↔) can be introduced as usual. We also define other LTL operators F (sometime) and G (always) 
as abbreviations: Fα is �Uα, and Gα is ¬F¬α. Note that we use the strong version of U , which means 
that if αUβ holds in a path, then β must hold eventually.

Example 1. The expression

©(p ∧ q) → (pU¬q)

is an LTL formula. Its intended meaning is “if both p and q hold in the next moment, then p will hold until 
q becomes false”.

Semantics for LTL formulas consists of the set of paths, where a path is an ω-structure in P, of the form 
σ = s0, s1, s2,. . . Here si, called the i-th time instance of σ, is a subset of P, and p ∈ si means that the 
propositional letter p is true at time i in σ. We denote the set of all paths with Σ. In the rest of the paper, 
we use the following abbreviations:

• σ≥i is the path si, si+1, si+2, . . ., and
• σi is the state si.

The evaluation function v : Σ × ForLTL −→ {0, 1} is defined recursively as follows:

• if p ∈ P, then v(σ, p) = 1 iff p ∈ σ0,
• v(σ, ¬α) = 1 iff v(σ, α) = 0,
• v(σ, α ∧ β) = 1 iff v(σ, α) = 1 and v(σ, β) = 1,
• v(σ, ©α) = 1 iff v(σ≥1, α) = 1,
• v(σ, αUβ) = 1 iff there is some i ∈ ω such that v(σ≥i, β) = 1, and for each j ∈ ω, if 0 ≤ j < i then 

v(σ≥j , α) = 1.

We say that α is true in the path σ, if v(σ, α) = 1.

Remark 1. Note that in the literature, the evaluation of LTL formulas in paths is usually given in terms 
of satisfiability relation |=. We do not follow this notation, because in this paper we use |= to denote 
satisfiability of formulas in PLLTL-structures, that will be defined later. However, in Section 6, where we 
present the logic MPLLTL, we will come back to the usual notation of satisfiability (since MPLLTL does 
not contain two types of formulas).

Now we introduce the probabilistic formulas of PLLTL. First we define the probabilistic terms.
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Definition 2 (Probabilistic term). The set of probabilistic terms Term is defined recursively as follows:

• Term0 = {wi(α) | α ∈ ForLTL} ∪ {0, 1},
• Termn+1 = Termn(F ) ∪ {(f + g), (f · g), (−f) | f , g ∈ Termn}, and
• Term =

∞⋃
n=0

Termn.

We use f , g and h, possibly with indices, to denote probabilistic terms. We use a number of abbreviations 
throughout the paper for readability. For example, we introduce the usual abbreviations, like: f+g is (f +g), 
f +g+h is ((f +g) +h). Similarly, −f is (−f), f −g is (f +(−g)), and so on. In the same way, we can assume 
that the integers are also probabilistic terms, if we adopt the abbreviations 2 is 1 + 1, 3 is 2 + 1,. . . and, 
similarly, 2f is f + f and so on.

Definition 3 (Probabilistic formula). A basic probabilistic formula is any formula of the form f ≥ 0, where 
f is a probabilistic term. The set ForP of probabilistic formulas is the smallest set containing all basic 
probabilistic formulas, closed under Boolean connectives.

We denote by φ, ψ and θ (possibly with indices) the elements of ForP . To simplify notation, we define 
the following abbreviations: f ≥ g is f − g ≥ 0, f ≤ g is g ≥ f , f < g is ¬f ≥ g, f > g is ¬f ≤ g and f = g
is f ≥ g ∧ f ≤ g.

More importantly, we may assume that rational numbers are also terms, since they can be eliminated 
from a formula by clearing the denominator. For example, the formula

2
3 f ≥ 5

7g

is simply an abbreviation for 14f − 15f ≥ 0.

Example 2. The expression

w(p ∨ q) = w(©p) → w(Gq) ≤ 1
2

is a probabilistic formula. Its meaning is “if the probability that either p or q hold in this moment is equal 
to the probability that p will hold in the next moment, then the probability that q will always hold is at 
most one half”.

Similarly, the expression

w(Gp) = 1
2 ∧ 5w(©q ∧Gp) ≥ 3w(Gp)

is a probabilistic formula, which says that “the probability that p will always hold is one half, and the 
conditional probability that q will hold in the next moment if p will always hold is at least 3

5”. Note that 
the second conjunct is a conditional probability statement about temporal events, simply rewritten as a 
probability formula of our language by clearing the denominators.

Definition 4 (Formula). The set For of all formulas of the logic PLLTL is For = ForLTL ∪ ForP .

We denote arbitrary formulas by Φ and Ψ (possibly with subscripts). We denote by ⊥ both φ ∧ ¬φ and 
α ∧ ¬α, letting the context determines the meaning. Similarly, we use � for both LTL and probabilistic 
formulas.
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Example 3. The expression

(p ∨©q) → w(p ∨©q) = 1

is not a formula, since mixing LTL formulas and probabilistic formulas is not allowed, by Definition 4.

2.2. Semantics

The semantics of the logic PLLTL is based on the possible-world approach.

Definition 5 (PLLTL structure). A PLLTL structure is a tuple M = 〈W, H, μ, π〉 where:

• W is a nonempty set of worlds,
• 〈W, H, μ〉 is a probability space, and
• π : W −→ Σ provides for each world w ∈ W a path π(w).

For a PLLTL structure M = 〈W, H, μ, π〉, we define

[α]M = {w ∈ W | v(π(w), α) = 1}.

We say that M is measurable, if [α]M ∈ H for every α ∈ ForLTL. We denote the class of all measurable 
PLLTL structures with PLMeas

LTL . In this paper, we focus our attention on the class of measurable structures. 
We prove both a completeness theorem and decidability of PLLTL with respect to the class PLMeas

LTL .

Definition 6 (Value of a probabilistic term). Given a probabilistic term f and a measurable structure M =
〈W, H, μ, π〉 ∈ PLMeas

LTL , we define the value of f in M , denoted by fM , recursively as follows:

• 0M = 0, 1M = 1.
• w(α)M = μ([α]M ),
• (f + g)M = fM + gM .
• (f · g)M = fM · gM .
• (−f)M = −(fM ).

Now we define the satisfiability of a formula from For in a structure from PLMeas
LTL .

Definition 7 (Satisfiability). Let M = 〈W, H, μ, π〉 be a PLLTL structure. We define the satisfiability relation 
|=⊆ PLMeas

LTL × For recursively as follows:

• M |= α iff v(π(w), α) = 1 for every w ∈ W ,
• M |= f ≥ 0 iff fM ≥ 0,
• M |= ¬φ iff M �|= φ,
• M |= φ ∧ ψ iff M |= φ and M |= ψ.

Now we define the notion of a model.

Definition 8 (Model). We say that M ∈ PLMeas
LTL is a model of Φ, if M |= Φ. A formula Φ is valid, if M |= Φ

holds for every M ∈ PLMeas
LTL . We say that M is a model of a set of formulas T , and we write M |= T , iff 

M |= Φ for every Φ ∈ T . A set of formulas T is satisfiable if there is M such that M |= T .



JID:APAL AID:103389 /FLA [m3L; v1.347] P.7 (1-26)
D. Doder, Z. Ognjanović / Annals of Pure and Applied Logic ••• (••••) •••••• 7
The notion of entailment is defined in the usual way.

Definition 9 (Entailment). We say that the set of formulas T entails a formula Φ, and we write T |= Φ, if 
for all M ∈ PLMeas

LTL , M |= T implies M |= Φ.

For every α, β ∈ ForLTL, let us denote by αUnβ the formula

(
n−1∧

k=0

©kα) ∧©nβ,

and by αUnβ the formula

n∨

k=0

αUkβ.

Those formulas will play the important role in our axiomatization. Obviously, v(σ, αUβ) = 1 iff there is 
some n ∈ ω such that v(σ, αUnβ) = 1, and

[αUβ]M =
⋃

n∈ω

[αUnβ]M . (1)

Similarly,

[αUβ]M =
⋃

n∈ω

[αUnβ]M . (2)

Since (1) follows directly from the definition of the evaluation function v, we will use it to properly axiomatize 
LTL part of our logic. On the other hand, (2) is more convenient for capturing σ-additivity.

3. The axiomatization of PLLTL

In this section we provide an axiomatization for PLLTL, which we denote by AXPLLTL
. Let us first 

discuss some axiomatization issues. By (2) and σ-additivity, we obtain

μ([αUβ]M ) = μ(
⋃

n∈ω

[αUnβ]M ) = lim
n→+∞

μ(
n⋃

k=1

[αUkβ]M ).

We can see that the set

T = {w(αUβ) > r} ∪ {w(αUnβ) ≤ r | n ∈ ω}

is an unsatisfiable set of formulas. On the other hand, it is easy to check that every finite subset of T is 
satisfiable. In other words, the logic is not compact. It is known that, in this case, any finitary axiomatization 
would fail to be strongly complete [25]. Here we use an infinitary rule (R6) to obtain completeness, and, in 
particular, to make the set T inconsistent. It turns out that it is necessary (see the proof of Theorem 4) to 
introduce another infinitary rule (R4) to properly axiomatize LTL part of the logic, since the set of LTL 
formulas {αUβ} ∩ {¬(αUnβ) | n ∈ ω} is also an example of non-compactness.
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3.1. The axiomatic system AXPLLTL

The axiomatization AXPLLTL
contains 8 axioms and 6 rules of inference. We divide the axioms into 3 

groups as given below.

Tautologies

A1. All instances of classical propositional tautologies for both LTL and probabilistic formulas.

Temporal axioms

A2. ©(α → β) → (©α → ©β).
A3. ¬ © α ↔ ©¬α.
A4. αUβ ↔ β ∨ (α ∧©(αUβ)).

Axioms about commutative ordered rings

A5. All ForP -instances of axioms about commutative ordered rings.

Probabilistic axioms

A6. w(α) ≥ 0.
A7. w(α ∧ β) + w(α ∧ ¬β) = w(α).
A8. w(α → β) = 1 → w(α) ≤ w(β).

Inference rules

R1. From Φ and Φ → Ψ infer Ψ (where either Φ, Ψ ∈ ForLTL or Φ, Ψ ∈ ForP ).
R2. From α infer ©α.
R3. From α infer w(α) = 1.
R4. From the set of premises

{γ → ¬(αUnβ) | n ∈ ω}

infer γ → ¬(αUβ).
R5. From the set of premises

{φ → f ≥ r − 1
n

| n ∈ ω \ {0}}

infer φ → f ≥ r.
R6. From the set of premises

{φ → w(αUnβ) ≤ r | n ∈ ω}

infer φ → w(αUβ) ≤ r.

Let us briefly discuss the axiomatic system. A1 and R1 allow propositional reasoning with all formulas 
from For. The axioms A2–A4 are some standard axioms in various axiomatizations of LTL. Although all 
the axiomatizations contain some additional axioms, we show in Lemma 1(1) that all the valid temporal 
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formulas can be deduced in AXPLLTL
. Moreover, by Lemma 2, A1–A4 together with R1,R2 and R4 make a 

strongly complete system for LTL. Note that we use the temporal necessitation R2 with the next operator, 
while the standard generalization can be derived, as it is shown in the proof of Lemma 1(1). The rule R4 is 
an infinitary rule that characterizes the until operator. It is similar to a rule introduced by [31]. The axiom 
A5 includes all axioms about commutative ordered rings. They formally provide the usual manipulations 
with terms (commutativity, associativity etc) on the syntactical level. For example, f ·(g+h) = (f ·g) +(f ·h)
and (f � g ∧ h < 0) → f · h � g · h are instances of A5. Of course, any particular complete set of axioms 
about commutative ordered rings can be used for A5. The probabilistic axioms A6 and A7 correspond to 
nonnegativity and finite additivity, respectively. They are two of the four axioms presented by [14]. The 
other two axioms are theorems of AXPLLTL

(see Lemma 1). The rule R3 states that if we know that α holds, 
then we believe that it is true with probability 1. The rules R5 and R6 are two infinitary rules of inference. 
R6 is crucial for the proof of σ-additivity, while R5 ensures that the values of probability measures belong 
to the set of reals. R5 is a variant of a rule introduced by [34].

Definition 10 (Proof). A formula Φ is a theorem of the logic PLLTL, (� Φ), if there is an at most countable 
sequence of formulas Φ0, Φ1, . . . , Φ, such that every Φi is an axiom, or it is derived from the preceding 
formulas by an inference rule.

A formula Φ is deducible from a set of formulas T (T � Φ) if there is an at most countable sequence 
of formulas Φ0, Φ1, . . . , Φ, such that every Φi is a theorem or a formula from T , or it is derived from the 
preceding formulas by one of the inference rules, excluding R2. The corresponding sequence Φ0, Φ1, . . . , Φ
is the proof of Φ from T .

By the previous definition, application of the rule R2 is restricted to theorems only. Otherwise, any 
change over the course of time would be impossible. Note that the length of a proof (the number of formulas 
in the corresponding sequence) can be any countable successor ordinal.

Remark 2. We can see that the only way to infer a probabilistic formula from a temporal formula is by 
an application of R3. On the other hand, there is no way to derive a temporal formula from probabilistic 
formulas. In other words, every temporal formula can only be derived from other temporal formulas and 
the axioms A1–A4 using the inference rules R1, R2 and R4. Actually, we will show in Lemma 2 that this 
restricted proof system is a strongly complete axiomatization for LTL. We denote by CnLTL(T ) the set of 
all LTL formulas derivable from T .

Definition 11 (Consistency). A set of formulas T is consistent if there is no α ∈ ForLTL such that T � α∧¬α
and no φ ∈ ForP such that T � φ ∧ ¬φ; otherwise it is inconsistent.

T is maximal consistent if it is consistent and the following conditions hold:

• for every α ∈ ForLTL, if T � α, then α ∈ T and w(α) = 1 ∈ T ,
• for every φ ∈ ForP , either φ ∈ T or ¬φ ∈ T .

Next we make several observations about the notions of consistency and maximal consistency:
- In the definition of consistency, the condition that there is no α ∈ ForLTL such that T � α ∧ ¬α is 

redundant, i.e., it follows from the condition that there is no φ ∈ ForP such that T � φ ∧ ¬φ. Indeed, from 
T � α∧¬α we can obtain T � w(α) = 1 ∧w(¬α) = 1 by R3, and T � w(α) = 1 ∧¬w(α) = 1 by probabilistic 
axioms.

- Maximal consistency of T doesn’t imply that for every α ∈ ForLTL either T � α or T � ¬α. Such a 
requirement would trivialize probabilities, i.e., it would force probability of every temporal formula to be 
either 0 or 1. Indeed, suppose that w(α) = r ∈ T for some α and some r ∈ (0, 1). If T � α or T � ¬α, then 
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by R3 (and some probabilistic reasoning) we have T � w(α) = 1 or T � w(α) = 0, which would make T
inconsistent. On the other hand, for a φ ∈ ForP we have either T � φ or T � ¬φ.

- If T is a maximal consistent set of formulas, then T is deductively closed, i.e., if T � Φ then Φ ∈ T .

3.2. Some theorems about AXPLLTL

It is straightforward to check that all the axioms of AXPLLTL
are valid, and that the rules of inference 

maintain the validity of formulas. Thus, we omit the proof of the following result.

Theorem 1 (Soundness). The axiomatization AXPLLTL
is sound with respect to the class of models PLMeas

LTL .

Theorem 2 (Deduction theorem). Let T be a set of formulas and let Φ and Ψ be two formulas such that 
either Φ, Ψ ∈ ForLTL or Φ, Ψ ∈ ForP . Then T ∪ {Φ} � Ψ iff T � Φ → Ψ.

Proof. We will prove the direction from left to right, because the other direction follows immediately
from R1. We will use induction on the length of the inference. The cases when we consider application 
of the inference rules R1–R3 are standard. Let us consider the case when R6 is applied. Suppose that 
T ∪ {φ} � ψ → w(αUβ) ≤ r is obtained by R6. Then T ∪ {φ} � ψ → w(αUnβ) ≤ r holds, by assumption, 
for every n ∈ ω. Using the induction hypothesis, we have:
T � φ → (ψ → w(αUnβ) ≤ r), for every n ∈ ω;
T � (φ ∧ ψ) → w(αUnβ) ≤ r, for every n ∈ ω;
T � (φ ∧ ψ) → w(αUβ) ≤ r, by R6;
T � φ → (ψ → w(αUβ) ≤ r).

The cases when we apply R4 and R5 are similar. �
Lemma 1.

1. If v(σ, α) = 1 for all σ ∈ Σ, then � α.
2. � w(�) = 1
3. If T � α ↔ β, then T � w(α) = w(β)
4. If T is maximal consistent then either φ ∈ T or ¬φ ∈ T , for every φ ∈ ForP .

Proof. (1) It is sufficient to prove that all the axioms of any complete axiomatization of LTL (for example 
C1–C8 form [38]) are theorems of our logic, and that the standard Generalization rule “if α is a theorem, 
from α infer Gα” is a derived rule in AxPLLTL

. As an illustration, let us derive Generalization. If � α, 
applying rule R2 we obtain � ©nα for every n ∈ ω. Using A3, we conclude � ¬ ©n¬α for every n ∈ ω. Note 
that ¬ ©n ¬α can be written as ¬(�Un¬α). Finally, applying R4 we obtain � ¬(�U¬α), or, equivalently, 
� Gα.
(2) Follows directly form R3.
(3) Apply R3, then A8.
(4) Follows directly from Definition 11. �

Let us comment the above results. By (1), we can use all the standard theorems of LTL in our reasoning 
in PLLTL. (2) is an axiom for probabilistic reasoning from [14]. (3) plays the crucial role in the construction 
of the canonical model in the next section. If we choose α and β to be propositional formulas and T = ∅, we 
obtain another axiom by [14]. Thus, by (1)–(3), AXPLLTL

extends both temporal and probabilistic logic.
We use (4) in the proof of Theorem 5. We already pointed out that the same property doesn’t hold for 

the LTL formulas.
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4. The completeness of PLLTL

In this section we prove strong completeness: “every consistent set of formulas has a model”. We use a 
Henkin-like construction. First we extend a consistent set T of formulas to a maximal consistent set T ∗, 
then we use T ∗ to define the corresponding structure MT∗ , and finally we prove that MT∗ is a model of T . 
For a given T ∗, we say that MT∗ is its canonical model.

4.1. Lindenbaum’s lemma

First we show that any set of formulas that is consistent under our axiomatization can be extended to a 
maximal consistent superset.

Theorem 3 (Lindenbaum’s lemma). Every consistent set of formulas can be extended to a maximal consistent 
set.

Proof. Let T be a consistent set of formulas, and let ψ0, ψ1, . . . be an enumeration of all formulas from 
ForP . Recall that we used the expression CnLTL(T ) to denote the set of all LTL formulas derivable from 
T . We define the sequence of sets Ti, i = 0, 1, 2, . . . and the set T ∗ recursively as follows:

1. T0 = T ∪ CnLTL(T ) ∪ {w(α) = 1 | α ∈ CnLTL(T )},
2. for every i ≥ 0,

(a) if Ti ∪ {ψi} is consistent, then Ti+1 = Ti ∪ {ψi}, otherwise
(b) if ψi is of the form φ → f ≥ r, then Ti+1 = Ti ∪ {φ → f < r− 1

m}, where m is the smallest positive 
integer such that Ti+1 is consistent, otherwise

(c) if ψi is of the form φ → w(αUβ) ≤ r, then Ti+1 = Ti∪{φ → w(αUnβ) > r}, where n is the smallest 
nonnegative integer such that Ti+1 is consistent, otherwise

(d) Ti+1 = Ti.
3. T � =

⋃∞
i=0 Ti.

First, using Theorem 2 one can prove that the set T ∗ is correctly defined, i.e., there exist m and n from 
the parts 2(b) and 2(c) of the construction. Each Ti, i > 0 is consistent. The steps (1) and (2) of the 
construction ensure that T � is maximal. Also, T � obviously doesn’t contain all formulas. Finally, one can 
show that T � is a deductively closed set, and as a consequence we obtain that T � is consistent (otherwise 
it would contain ⊥).

We can prove that T � is a deductively closed set, i.e., that T ∗ � Φ implies Φ ∈ T ∗, by considering temporal 
and probabilistic formulas separately. The case when Φ ∈ ForLTL holds trivially from the construction of 
T0. Note that the step 1 also ensures that T ∗ is closed under the inference rule R3. For Φ ∈ ForP , we can 
prove that T ∗ � Φ implies Φ ∈ T ∗ by the induction on the length of inference. The only non-trivial part of 
the proof is to show closure under the infinitary inference rules. Note that closure under R4 is ensured by 
the first step of construction. Here we only give a proof for the infinitary rule R6, since R5 can be considered 
in a similar way.

Suppose that φ → w(αUnβ) ≤ r ∈ T � for every n ∈ ω. We need to prove that φ → w(αUβ) ≤ r ∈ T �. 
Assume that φ → w(αUβ) ≤ r /∈ T �. In that case, from maximality of T � we have ¬(φ → w(αUβ) ≤ r) ∈ T �, 
or, equivalently, φ ∧ ¬w(αUβ) ≤ r ∈ T �. That implies both φ ∈ T � and ¬w(αUβ) ≤ r ∈ T �. Let i be a 
non-negative integer such that φ ∈ Ti. If j is a non-negative integer such that Φj = w(αUβ) ≤ r, by the 
construction of T �, step 2(d), we have w(αUkβ) > r ∈ Tj+1 for some k. Furthermore, let m be a non-
negative integer such that φ → w(αUkβ) ≤ r ∈ Tm. Then Tmax{i,m} � w(αUkβ) ≤ r. This means that 
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Tmax{i,j+1,m} � w(αUkβ) ≤ r∧w(αUkβ) > r, which contradicts consistency of Tmax{i,j+1,m}. Therefore, T �

is closed under the application of R6. �
4.2. Canonical model

Definition 12 (Canonical model). For a maximal consistent set T ∗, we define a PLLTL structure for T ∗ as 
a tuple MT∗ = 〈W, H, μ, π〉, such that:

1. W = {σ ∈ Σ | v(σ, α) = 1 for all α ∈ T ∗ ∩ ForLTL},
2. H = {[α] | α ∈ ForLTL}, where [α] = {w ∈ W | v(w, α) = 1},
3. μ([α]) = sup{r ∈ Q | T ∗ � w(α) ≥ r}, for every α ∈ ForLTL,
4. π(w) = w for every w ∈ W .

Now we show that MT∗ is a measurable PLLTL structure. In the proof, we will use the following result. 
It states that the temporal part of our axiom system is strongly complete for LTL.

Lemma 2. The axioms A1–A4 and the inference rules R1, R2 and R4 form a sound and strongly complete 
axiomatization for LTL.

Proof. The proof of soundness is straightforward. In order to prove strong completeness, we need to show 
that every consistent set Γ of LTL formulas has a model, i.e., that there is σ such that v(σ, α) = 1 for every 
α ∈ Γ. Reasoning similarly as above, we can prove that Deduction theorem holds for this restricted system. 
Now we work with LTL formulas only, and in this system we define the notion of maximal consistency in a 
different way than before: we say that Γ∗ is a maximal consistent set of LTL formulas iff it is consistent and 
for every α either α ∈ Γ∗ or ¬α ∈ Γ∗. The proof that Γ can be extended to a maximal consistent set Γ∗ of 
LTL formulas is also along the lines of the proof construction above, so we omit some details. We assume an 
enumeration α1, α2, . . . of all LTL formulas, and define a maximal consistent set Γ∗ recursively, by setting 
Γ0 = Γ and, in each step i of the construction, defining Γi+1 = Γi ∪ {αi} if αi is consistent with Γi, while if 
αi is not consistent with Γi, we check whether αi is of the form γ → ¬(αUβ), in which case we define

Γi+1 = Γi ∪ {γ → (αUkβ)},

where k is the smallest nonnegative integer such that Γi+1 is consistent (Deduction theorem for LTL guar-
antees that there exist such k); otherwise Γi+1 = Γi. Finally, Γ∗ =

⋃
n∈ω Γn. As in the previous result, 

the non-trivial part of the proof is to show that Γ∗ is closed under applications of the infinitary inference 
rule R4. Assume that γ → ¬(αUnβ) ∈ Γ∗ for every n ∈ ω. Suppose that γ → ¬(αUβ) /∈ Γ∗. Since Γ∗ is a 
maximal consistent set, ¬(γ → ¬(αUβ)) ∈ Γ∗, so γ ∧ (αUβ) ∈ Γ∗. Consequently, γ ∈ Γ∗ and αUβ ∈ Γ∗, so 
there are m, n ∈ ω such that γ ∈ Γm and αUβ ∈ Γn. Let � be the integer such that αl = γ → ¬(αUβ). By 
the construction of Γ∗, there is k such that γ → (αUkβ) ∈ Γl. By temporal reasoning we obtain Γl � αUβ. 
Then αUβ ∈ Γmax{l,m,n}, which contradicts the consistency of Γmax{l,m,n}. Also, using the axiomatization 
it is straightforward to show that if Γ∗ is a maximal consistent set, then the set Γ∗

n = {α | ©n α ∈ Γ∗} is 
also maximal consistent.

For a given Γ∗, we define the path σ = s0, s1, . . . by si = {p ∈ P | Γ∗
i � p}. It is sufficient to prove that 

v(σ, γ) = 1 iff Γ∗ � γ, for every LTL formula γ. We use induction on the complexity of the formula. The only 
interesting case is when γ is of the form αUβ. Consider the following sequence of equivalent statements:
v(σ, γ) = 0 iff v(σ, ¬(αUβ)) = 1
iff for all n ∈ ω, it is not the case that both v(σ≥n, β) = 1 and for all k < n, v(σ≥k, α) = 1
iff for all n ∈ ω, it is not the case that both Γ∗

n � β and for all k < n, Γ∗
k � α (by induction hypothesis)
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iff for all n ∈ ω, it is not the case that both Γ∗ � ©nβ and for all k < n, Γ∗ � ©kα

iff for all n ∈ ω, Γ∗ � ¬(αUnβ) (by the maximal consistency of Γ∗)
iff Γ∗ � ¬(αUβ) (by R4). �

We will use the notation Γ �LTL α to denote that α is deducible from the set Γ of LTL formulas. From 
Remark 2 we obtain that for every consistent set of formulas T ⊆ For and every formula α ∈ ForLTL, we 
have

T � α iff T ∩ ForLTL � LTLα.

Let us denote by |=LTL the standard consequence relation of LTL: Γ |=LTL α iff for every σ the following 
implication holds: if v(σ, β) = 1 for every β ∈ Γ, then v(σ, α) = 1. As it is well known, we can state the 
alternative formulation of Completeness theorem for LTL (Lemma 2) as follows:

Γ |=LTL α iff Γ � LTLα. (3)

Theorem 4. For every maximal consistent set T ∗, MT∗ ∈ PLMeas
LTL .

Proof. First we need to show that the definition of MT∗ is correct. The set {[α] | α ∈ ForLTL} is an algebra 
of subsets of W , since W = [�], W \[α] = [¬α] and [α] ∪[β] = [α∨β]. We also need to check that μ is correctly 
defined, i.e., that if [α] = [β] then μ([α]) = μ([β]). From [α] = [β] we conclude that if σ is a path such that 
v(σ, γ) = 1 for all γ ∈ T ∗ ∩ ForLTL, then v(σ, α ↔ β) = 1. In other words, T ∗ ∩ ForLTL |=LTL α ↔ β. 
From Lemma 2 (see also the Equation (3)) we obtain T ∗ ∩ ForLTL �LTL α ↔ β, so T ∗ � α ↔ β holds as 
well. Consequently, T ∗ � w(α) = w(β) by Lemma 1(3), so μ([α]) = μ([β]). Obviously μ(W ) = μ([�]) = 1
by Lemma 1(2). Similarly, using A6 we conclude that μ is nonnegative, and using A7 we conclude that μ is 
a finitely additive probability measure on H. We need to prove that μ is σ-additive.

Let HΣ = {[α]Σ | α ∈ ForLTL}, where [α]Σ = {σ ∈ Σ | v(σ, α) = 1}. By For©LTL we denote the set of 
all LTL formulas in which © is the only temporal operator (i.e. there are no appearances of U). We also 
introduce the set A = {[α]Σ | α ∈ For©LTL}. Using the same argument as above, we can show that the sets 
HΣ and A are two algebras of subsets of Σ. Similarly as in the definition of MT∗ , we define μ∗ on HΣ by

μ∗([α]Σ) = sup{r ∈ Q | T ∗ � w(α) ≥ r}.

Reasoning as above, we conclude that μ∗ is a finitely additive measure. We also use the same symbol μ∗

to denote the restriction of μ∗ to A. We actually want to show that μ∗ is σ-additive on A. It is sufficient to 
show that if B =

⋃
i∈ω Bi, where B, Bi ∈ A, then there is n such that B =

⋃n
n=0 Bi.

If 2P denotes the set of subsets of P, note that Σ = 2P ×2P ×2P × . . . If we assume discrete topology on 
the finite set 2P and the induced product topology on Σ, then Σ is a compact space as a product of compact 
spaces.1 By definition of evaluation function v, we obtain that for every α ∈ For©LTL there exist n ∈ ω (for 
example n is the number of appearances of ©) and S ⊆ (2P)n such that [α]Σ = S×2P ×2P × . . . Note that 
the sets of the form S× 2P × 2P × . . . , where S ⊆ (2P)n for some n ∈ ω, are clopen (both closed and open) 
sets in product topology. Thus, each [α]Σ ∈ A is a clopen set in Σ. Now assume that [α]Σ =

⋃
n∈ω[αn]Σ, 

where α ∈ For©LTL and αn ∈ For©LTL for every n ∈ ω. The set {[αn]Σ | n ∈ ω} is an open cover of the 
closed subset [α]Σ of the compact space Σ, so there is a finite subcover {[αn1 ]Σ, . . . , [αn1 ]Σ} of [α]Σ. Thus, 
μ∗ is σ-additive on A.

Let F be the σ-algebra generated by A. Since [αUβ]Σ =
⋃

n∈ω[αUnβ]Σ, we can show that [α]Σ ∈ F

for every α ∈ ForLTL, using the induction on the number of appearances of U in α. Thus, HΣ ⊆ F . By 

1 For the basic notions and results about the topology used here we refer the reader to [27].
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Caratheodory’s extension theorem (see [1]), there is a unique σ-additive probability measure ν on F which 
coincides with μ∗ on A. As W =

⋂
α∈T∗∩ForLTL

[α]Σ, with each [α]Σ ∈ W , so also is W ∈ F . Then H ⊆ F , 
since for each α ∈ ForLTL, [α] = [α]Σ ∩W .

Our strategy for showing that μ is σ-additive on H is to show that μ and ν agree on H, via the following 
chain of equalities:

μ([α]) = μ∗([α]Σ) = ν([α]Σ) = ν([α]).

The first equality follows directly from the definitions of μ∗ and μ. We will prove the second equality and 
the third equality in the following two paragraphs.

We will now show that μ∗ is the restriction of ν to HΣ, i.e., that μ∗([α]Σ) = ν([α]Σ) for all α ∈ ForLTL, 
using the induction on the number of appearances of U in α. Indeed, ν([αUβ]Σ) = ν(

⋃
n∈ω[αUnβ]Σ) =

limk→+∞ ν(
⋃k

n=1[αUnβ]Σ) = limk→+∞ μ∗(
⋃k

n=1[αUnβ]Σ) = μ∗([αUβ]Σ). Here we used σ-additivity of ν, 
the induction hypothesis and, in the last step, the definition of μ∗ and R6. Thus, for all α ∈ ForLTL, 
μ∗([α]Σ) = ν([α]Σ).

Note that we have that μ∗([α]Σ) = 1 whenever T ∗ � α, by R3. From μ∗([α]Σ) = ν([α]Σ) we obtain 
μ∗([α]Σ) = 1 whenever T ∗ � α. Thus, ν(W ) = ν(

⋂
α:T∗	α[α]Σ) = 1, by σ-additivity of ν. Note that 

[α] = [α]Σ ∩W , so ν([α]) = ν([α]Σ ∩W ). Also, from ν(W ) = 1 we obtain ν([α]Σ ∩W ) = ν([α]Σ). Therefore 
we have ν([α]) = ν([α]Σ).

Thus, μ([α]) = μ∗([α]Σ) = ν([α]Σ) = ν([α]), so μ is σ-additive.
We showed that MT∗ is a PLLTL structure. Finally, note that [α] = [α]MT∗ , by the choice of π, so 

MT∗ ∈ PLMeas
LTL . �

4.3. Completeness theorem

Now we can prove the main result of this section.

Theorem 5 (Strong completeness). A set of formulas T ⊆ For is consistent iff it is satisfiable.

Proof. The direction from right to left follows from the soundness of the axiomatization AXPLLTL
. For the 

other direction, we need to show that a consistent set of formulas T has a model. First we extend T to a 
maximal consistent set T ∗, and we construct the canonical model MT∗ . We will show that MT∗ is a model 
of T ∗, and, consequently, a model of T . It is sufficient to prove that for all Φ ∈ For, T ∗ � Φ iff MT∗ |= Φ.

If Φ = α ∈ ForLTL. If α ∈ T ∗, then by the definition of W from MT∗ , MT∗ |= α. Conversely, if MT∗ |= α, 
we have T ∗ ∩ ForLTL |=LTL α (by the construction of the canonical model). From Lemma 2 (see also the 
Equation (3)) we obtain T ∗ ∩ ForLTL �LTL α, so α ∈ T ∗.

If Φ ∈ ForP , we proceed by induction on the complexity of Φ.
Let Φ = f ≥ 0. Then we can show, using the properties of supremum, that

fM = sup{s | T ∗ � f ≥ s}.

If we suppose that f ≥ 0 ∈ T ∗, then 0 ≤ sup{s | T ∗ � f ≥ s}, so MT∗ |= f ≥ 0. For the other direction, 
assume that MT∗ |= f ≥ 0. Then MT∗ �|= f < 0. If f < 0 ∈ T ∗, then, reasoning as above, we conclude 
MT∗ |= f < 0, a contradiction. By maximality of T ∗, we obtain f ≥ 0 ∈ T ∗.

If Φ = ¬φ, then MT∗ |= ¬φ iff MT∗ �|= φ iff φ /∈ T ∗ iff ¬φ ∈ T ∗, by maximality of T ∗.
If Φ = φ ∧ ψ, then MT∗ |= φ ∧ ψ iff MT∗ |= φ and MT∗ |= φ iff φ, ψ ∈ T ∗ iff φ ∧ ψ ∈ T ∗, by maximality of 
T ∗. �
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As it is well known, the alternative formulation of Completeness theorem, stated below, follows directly 
from the previous result.

Theorem 6. If T ⊆ For and Φ ∈ For, then T |= Φ iff T � Φ.

5. The decidability of PLLTL

In this section we prove that the problem of deciding satisfiability of formulas of our logic PLLTL is 
decidable, and that there is a decidability procedure for the problem that runs in polynomial space. Since 
PLLTL has two disjoint classes of formulas, we need to consider two cases.

First, let us consider LTL formulas. Let us recall that Sistla and Clarke [40] proved that the logic LTL 
is decidable, and they showed that the problem of deciding whether an LTL formula is satisfiable in a 
path is PSPACE-complete. Therefore, it is sufficient to show that satisfiability of LTL formulas under 
the standard LTL semantics coincides with satisfiability under the class of measurable structures PLMeas

LTL . 
Note that if α is not satisfiable in any path, then by Definition 7 it is not satisfiable in the logic PLLTL. 
On the other hand, if there is a path σ such that v(σ, α) = 1, then we can define a measurable structure 
M = 〈W, H, μ, π〉, such that W = {w} is a singleton and π(w) = σ. Note that in that case the range of μ is 
simply the doubleton {0, 1}. Obviously, v(π(w), α) = 1 for every w ∈ W , so M |= α. In this way, we have 
shown that the satisfiability problem of LTL formulas for the logic PLLTL is PSPACE-complete.

Next we consider the satisfiability of a formula ϕ ∈ ForP . We will first show that if ϕ is satisfiable, then 
it is satisfied in a measurable structure with a small number of worlds. This step does not automatically 
imply decidability, since there are infinitely many possibilities to assign real valued probabilities even with 
finitely many worlds. Now, let us introduce some notation. Let

Term(ϕ) = {f1, . . . , fm}

be the set of all probabilistic terms that appear in ϕ, and let ForLTL(ϕ) denote the set of all LTL formulas 
which appear under the scope of probability operator w in at least one element of Term(ϕ) (in other words, 
α ∈ ForLTL(ϕ) iff w(α) is a sub-expression of ϕ). Next, let

Subfor =
⋃

α∈ForLTL(ϕ)

Subfor(α),

where Subfor(α) denotes the set of all subformulas of α. Let us consider the formulas of the form

|Subfor|∧

k=1

βk, (4)

where each βk belongs to Subfor ∪ {¬β | β ∈ Subfor}, and each subformula of α appears exactly once 
(negated or not). Obviously the conjunction of any two different formulas of the form (4) is a contradiction, 
while the disjunction of all such formulas is a tautology. Those facts will enable us to distribute the proba-
bility of each element of ForLTL(ϕ) as the sum of probabilities of formulas of the form (4) in any structure. 
Note that overall we have 2|Subfor| formulas of the form (4). The problem in assigning the probabilities to 
such formulas is that not all of them are consistent (for example, consider the case when both ©¬α and Gα

are elements of ForLTL(ϕ)). For that reason, we first eliminate every formula of the form (4) that is not 
satisfiable in LTL, using the procedure from [40] (for the complexity of our logic, it is important to recall 
that this procedure runs in PSPACE). Suppose that there are � formulas which are satisfiable (� ≤ 2|Subfor|). 
We denote those formulas by α1, . . . , α�.
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Since α ∈ Subfor holds for every formula α ∈ ForLTL(ϕ), we have that such an α appears in each 
conjunction αk, either negated or not. Since 

∨�
k=1 αk is a tautology, there is a unique set of indices Iα ⊆

{1, . . . , �} such that

α ↔
∨

i∈Iα

αi

is a tautology. Let Γα be the corresponding set of disjuncts, i.e.,

Γα = {αi | i ∈ Iα}.

Using the probabilistic axioms and Lemma 1(3), we obtain

� w(α) =
∑

αi∈Γα

w(αi), (5)

so, by completeness, in every measurable structure the probability value of α will coincide with the sum of 
the probabilities of αi.

Now suppose that there exists a measurable structure M = 〈W, H, μ, π〉 such that M |= ϕ. A standard 
filtration approach would be to chose one world from the class [αi] of αi, for each of the formulas α1, . . . , α�, 
to replace the entire [αi] with that world, and to assign probability μ([αi]) to the corresponding singleton. 
That would lead to a model of size � ≤ 2|Subfor|. We now show that we can do a bit better than that, 
namely that we can reduce the size of a model to be at most the length of ϕ. For that, let us denote by yi
the probability assigned to the formula αi by that potential small model M ′, in such a way that

fMk = fM
′

k , (6)

for every fk ∈ Term(ϕ). The variables y1, . . . , yn must satisfy of the system of equations and inequalities 
consisting of the equation

y1 + · · · + y� = 1, (7)

the inequalities

y1 ≥ 0, y2 ≥ 0, . . . y� ≥ 0, (8)

and the set of equations (one equation for every α ∈ FormLTL(ϕ)) of the form
∑

αi∈Γα

yi = μ([α]). (9)

The system (7)–(9) has a solution, namely yi = μ([αi]). It is known that if a system of k linear equations 
has a non-negative solution, then it has a non-negative solution where at most k values are different than zero 
(see [4]). Thus, the system of equations (7)&(9) has a non-negative solution with at most |FormLTL(ϕ)| +
1 values different than zero. Without any loss of generality, assume that the solution is (y1, . . . , y�) =
(p1, . . . , p�), where pi = 0 for every i > |FormLTL(ϕ)| + 1. Now we define the measurable structure M ′ =
〈W ′, H ′, μ′, π′〉 such that

• W ′ = {w′
1, . . . , w

′
|FormLTL(ϕ)|+1}

• Every subset of W ′ belongs to H ′
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• μ′ is uniquely defined by μ′({w′
i}) = pi

• For every i ≤ |FormLTL(ϕ)| + 1, we chose one element wi from [αi]M and then define π′(w′
i) := π(wi).

Obviously (6) holds. Thus, from M |= ϕ we obtain M ′ |= ϕ. Thus, it is sufficient to consider the structures 
with |FormLTL(ϕ)| + 1 worlds.

Our procedure now runs as follows: it systematically cycles through sets of subsets of {α1, . . . , α�} of 
size |FormLTL(ϕ)| + 1. Note that polynomial space is sufficient for that, since each αi is a consistent LTL 
formula of the form (4), and, as we have already mentioned, checking consistency of each such formula is 
decidable in PSPACE. Then, for each subset Γ = {αn1 , . . . , αn|FormLTL(ϕ)|+1}, we check if we can assign the 
probability values ∃x1 . . .∃x|FormLTL(ϕ) to them such that ϕ is satisfied. We consider the following formula 
of RCF:

∃x1 . . .∃x|FormLTL(ϕ)|+1
( |FormLTL(ϕ)|+1∧

k=1
(xk ≥ 0)

∧
|FormLTL(ϕ)|+1∑

k=1
xk = 1

∧ Ineq(ϕ),

where Ineq(ϕ) is obtained by replacing in each term fk of the formula ϕ, each occurrence of every w(α) (for 
every α ∈ FormLTL(ϕ)) with the sum

∑

αi∈Γα∪Γ
xi. (10)

It is clear that ϕ is satisfiable in a measurable structure iff for some Γ the formula above is satisfied 
in RCF. Since the theory of real closed fields is decidable, our logic is decidable as well. Moreover, that 
the above sentence is an existential sentence so we can use Canny’s procedure from [3], which decides 
satisfiability of existential sentences of RCF in PSPACE.

Thus, in both the probabilistic and LTL cases there is a procedure which decides satisfiability of the 
formula in PSPACE. Therefore, we proved the following result.

Theorem 7. There is a procedure that decides whether a formula of the logic PLLTL is satisfiable in a 
measurable structure from PLMeas

LTL which runs in polynomial space.

6. The logic MPLLTL

In this section we present a novel logic, MPLLTL, in which probabilistic and temporal operators can 
be nested in an arbitrary way. In addition, we consider a set of agents, Agt = {1, . . . , N} where different 
agents can place different probabilities to the same events. Following [13], we first introduce the notion of 
i-probabilistic term.

Definition 13 (i-probabilistic term). For every i ∈ Agt and a given set F of formulas (of an arbitrary 
language) we define the set Termi(F ) of all i-probabilistic terms over F recursively as follows:

• Term0
i (F ) = {wi(α) | α ∈ F} ∪ {0, 1},

• Termn+1
i (F ) = Termn

i (F ) ∪ {(f + g), (f · g), (−f) | f , g ∈ Termn
i (F )},

• Termi(F ) =
∞⋃

Termn
i (F ).
n=0
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Note that this time terms are defined in a more abstract way. This is the consequence of the fact that 
the probabilities can be iterated in a formula, and it allows us to define the set of formulas of MPLLTL

recursively as follows.

Definition 14 (MPLLTL formula). The set Form of all MPLLTL formulas is the smallest set satisfying the 
conditions:

• P ⊆ Form,
• if {α, β} ⊆ Form, then {α ∧ β, ¬α, ©α, αUβ} ⊆ Form, and
• if i ∈ Agt and f ∈ Termi(Form), then f ≥ 0 ∈ Form.

The logic MPLLTL will use the same set of abbreviations as the logic PLLTL. In particular, recall that 
we can assume that all rational numbers are terms, and that we can express conditional probabilities in the 
language (by simply clearing the denominators).

Example 4. The expression

wi(©wj(p) > 0) ≤ 1
2

is a well defined formula of MPLLTL. Its meaning is “according to agent i, the probability that the agent 
j will place a positive probability to p in the next moment is at most one half”.

Now we define the semantics of our logic.

Definition 15 (MPLLTL structure). An MPLLTL structure ΣP is a set of probabilistic paths of the form 
σ = s0, s1, s2, . . . where each sj contains:

• P(sj), a set of propositional letters that hold in sj , and
• Prob(sj , i) = 〈ΣP (sj , i), H(sj , i), μ(sj , i)〉, a probability space such that ΣP (sj , i) ⊆ ΣP , for every sj

and every agent i ∈ Agt.

Recall that for a probabilistic path (we will also call it just “path”) σ = s0, s1, s2, . . ., the state (or the 
time instant) si is denoted by σi. Probabilistic paths are primitive semantic notions, so we assume that each 
of them has its own states. This means that there is no state that belongs to two different paths (and also 
there is no state that appears twice in one path).

Now let us define the satisfiability relation. Since in MPLLTL we can freely iterate probability and 
temporal operators, there are two issues that need to be taken care of:

• First, we need to assign a probability space to each time instance of a path (and for each agent). The 
problem with a direct adaptation of assigning values to all terms as in the case of PLLTL is that now 
we cannot know in advance which sets of paths will be measurable. For that reason, we follow the 
approach of [13] and first define the satisfiability relation |= using inner and outer measures. Then we 
will restrict our attention to the measurable structures, in which we know that formulas correspond to 
the measurable sets. Let us recall that, for a given probability space 〈W, H, μ〉, the inner measure μ∗
defined as

μ∗(A) = sup{μ(B) | B ⊂ A, B ∈ H}

assigns a value to every subset A of W . It is known that μ∗ and μ coincide on measurable sets.
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• And second, as we will emphasize in Remark 3, the satisfiability relation is defined between time instants 
and formulas.

Definition 16 (Satisfiability). For an MPLLTL structure ΣP , a path σ ∈ ΣP , a time instant σj and a formula 
α, we define when σj |= α, recursively as follows:

1. ΣP , σj |= p iff p ∈ P(σj),
2. ΣP , σj |= f ≥ 0 iff fΣP ,σj ≥ 0, whenever f is a probabilistic i-term, where fΣP ,σj is defined recursively 

as follows:
(a) 0ΣP ,σj = 0, 1ΣP ,σj = 1.
(b) wi(α)ΣP ,σj = μ�(σj , i)([α]iΣP ,σj

), where

[α]iΣP ,σj
= {π ∈ ΣP (σj , i) | ΣP , π0 |= α}. (11)

(c) (f + g)ΣP ,σj = fΣP ,σj + gΣP ,σj .
(d) (f · g)ΣP ,σj = fΣP ,σj · gΣP ,σj .
(e) (−f)ΣP ,σj = −(fΣP ,σj ).

3. ΣP , σj |= ©α iff ΣP , σj+1 |= α,
4. ΣP , σj |= αUβ iff ΣP , σj+k |= β for some k ≥ 0 and ΣP , σ≥j+l |= α for every l such that 0 ≤ l < k

5. ΣP , σj |= ¬α iff ΣP , σj �|= α,
6. ΣP , σj |= α ∧ β iff ΣP , σj |= α and ΣP , σj |= β.

Remark 3. There are two widely used definitions of satisfiability of LTL formulas in the literature. The first 
one, anchored version of satisfiability, assigns special significance to the initial state and uses subpaths in 
the definition. We have followed that approach in Section 2 (for example, we defined that v(σ, ©α) = 1 iff 
v(σ≥1, α) = 1). The second, floating version of satisfiability, treats all states in a path equally, and defines 
satisfiability of a formula in a state of a path (for example, it states that ©α holds in the n-th state of a 
path, if α holds in the (n + 1)-th state of the same path). It is well-known [30] that anchored and floating 
versions of satisfiability are equivalent, in the sense that a formula is satisfiable in the first approach iff it 
is satisfiable in the second one. That means that the class of satisfiable formulas does not change.

In the above definition, we have followed the floating version of satisfiability of temporal formulas (for 
example, the third item of the previous definition states that ©α holds in the i-th state of σ if α holds in 
the (i + 1)-th state of σ). The reason for this change with respect to the previous sections of this paper 
is practical – it turned that proving statements related to decidability would be more tedious under the 
anchored version of satisfiability.

Definition 17 (MPLLTL- measurable structure). An MPLLTL-structure ΣP is MPLLTL-measurable iff 
[α]iΣP ,σj

= {π ∈ ΣP (σj , i) | ΣP , π0 |= α} ∈ H(σj , i) for every path σ ∈ ΣP , every time instant σj , every 
i ∈ Agt and every α ∈ Form. The set of all MPLLTL-measurable structures is denoted by MPLmeas

LTL .

In the rest of this paper we focus on MPLLTL-measurable structures. For this class of structures we 
do not need inner measures in the definition of satisfiability relation. Indeed, since μ�(σj , i) and μ(σj , i)
coincide on measurable sets, in Definition 16 we can replace the condition 2 (b) with:

(b’) wi(α)ΣP ,σj = μ(σj , i)([α]iΣP ,σj
).

A formula α is satisfiable if there is an MPLLTL structure ΣP , a path σ ∈ ΣP , and a time instant σj

such that ΣP , σj |= α.



JID:APAL AID:103389 /FLA [m3L; v1.347] P.20 (1-26)
20 D. Doder, Z. Ognjanović / Annals of Pure and Applied Logic ••• (••••) ••••••
7. Decidability of MPLLTL

Let us assume that α is satisfiable, i.e., that there is an MPLLTL structure ΣP , a path σ ∈ ΣP and a 
time instant σj such that ΣP , σj |= α. Similarly as above, we consider the set Subfor(α) of all subformulas 
of α, and all classically consistent formulas (called atoms) of the form

|Subfor(α)|∧

k=1

βk

where each βk belongs to Subfor(α) ∪{¬β | β ∈ Subfor(α)} and each subformula of α appears exactly once 
(negated or not). We say that the formulas βk occur in the top conjunction of an atom at =

∧|Subfor(α)|
k=1 βk. 

Furthermore, by a classically consistent atom at =
∧|Subfor(α)|

k=1 βk we mean that each formula βk of the 
form f ≥ 0, ©γ or γUδ is considered as a propositional letter, each formula βk of the form ¬(f ≥ 0), ¬ © γ

or ¬(γUδ), is considered as a negated propositional letter, and that the conjunction at is not a classical 
contradiction.

Then:

• At(α) denotes the set of all atoms of α,
• for a formula β ∈ Subfor(α) and an atom at ∈ At(α), β ∈ at means that β occurs in the top conjunction 

of at, i.e., at =
∧|Subfor(α)|

k=1 βk, and for some k, β = βk,
• Atβ(α) denotes the set {at ∈ At(α) : β ∈ at}, and
• if at ∈ At(α), then [at] = {σ : ΣP , σ0 |= at}, where σ is a probabilistic path in a structure ΣP .

Note that:

• |Subfor(α)| ≤ |α|, i.e., the number of subformulas of α is not greater than the length of α,
• |At(α)| ≤ 2|α|,
• for every probabilistic path σ in ΣP , every time instant σj and exactly one atom at ∈ At(α), ΣP , σj |= at; 

that atom will be denoted at(α, σj),
• different atoms of α are mutually exclusive, and
• for every β ∈ Subfor(α), |= β ↔

∨
{at∈At(α):β∈at} at.

We say that a formula βUγ, satisfied in the time instant σj, is fulfilled before the time instant σj+k if 
there is an integer l ∈ [j, j + k − 1] such that:

• ΣP , σl |= γ, and
• ΣP , σi |= β for every integer i ∈ [j, l − 1].

Finally, since satisfiability of a formula α depends only on members of Subfor(α), in the remaining part 
of this section we consider valuations on Subfor(α) ∩P, algebras generated by sets of the form [at], and the 
probabilities defined on such sets. Note that it holds that, thanks to Corollary 3.3.4 from [2], measurable 
spaces in structures discussed in the sequel can be extended appropriately.

7.1. Ultimately periodic runs

Theorem 4.7 from [40] guarantees that to check satisfiability of an LTL-formula α it is enough to consider 
so-called ultimately periodic paths, where a path σ = σ0, σ1, . . . is ultimately periodic with starting index 
i and period m if:
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• for every k ≥ i, σk and σk+m coincide,
• both i and m are bounded by the functions of the size of α (i ≤ 2|α|, m ≤ 41+|α|), and
• every βUγ ∈ Subfor(α) satisfied in ΣP , σi is fulfilled before σi+m.

Here we can apply the same idea, but since the set of MPLLTL formulas contains also formulas of 
the form f ≥ 0, the corresponding procedure should be adapted in the following way. Let us consider an 
MPLLTL-measurable structure ΣP , and an MPLLTL-formula α, and let ΣP ′ denote the structure obtained 
after the Sistla-Clarke-procedure is applied on a path σ from ΣP . Since satisfiability of a formula f ≥ 0
in a time instant σj depends only on probabilities μ(σj , i) defined on sets of paths, in the procedure of 
transforming the path σ into a ultimately periodic path we can consider f ≥ 0 as a propositional letter. 
Furthermore, since a path π belongs to the set [β]iΣP ,σj

if ΣP , π0 |= β, and the procedure of transforming 
a path into a ultimately periodic path does not change satisfiability of the considered subformulas, the 
correctness of the properties of the structure ΣP ′ with respect to the definition of MPLLTL-measurable 
structures is preserved:

• if σ′ is the ultimately periodic path obtained from the path σ, then σ belongs to a measurable set in 
the starting structure ΣP iff σ′ belongs to the corresponding measurable set in ΣP ′ ,

• by transforming σ into the ultimately periodic paths σ′, nonempty measurable sets from ΣP remain 
nonempty measurable sets from ΣP ′ , and

• the same values of probabilities of measurable sets in ΣP and the corresponding measurable sets in ΣP ′

are kept.

Thus, ΣP ′ is an MPLLTL-measurable structure, and satisfiability of formulas from Subfor(α) does not 
change when ΣP is transformed to ΣP ′ . Since the same procedure can be applied on every path σ from 
ΣP , to check satisfiability of α it is enough to consider MPLLTL-measurable structures containing only 
ultimately periodic paths.

7.2. Finitely represented structures

Let ΣP be an MPLLTL-measurable structure containing only ultimately periodic paths. Let ∼α be a 
relation on the paths in ΣP such that σ ∼α π iff

• the starting indices of σ and π coincide, and the periods of σ and π coincide, and
• for every at ∈ At(α), ΣP , σj |= at iff ΣP , πj |= at, j � i + m.

Since we consider MPLLTL-measurable structures containing only ultimately periodic paths, the second 
constraint guarantees that for every j � 0, ΣP , σj |= at iff ΣP , πj |= at. Obviously, ∼α is an equivalence 
relation, and there is only a finite number of equivalence classes bounded by |At(α)|.

Now, we consider the following structure ΣP
fin:

• ΣP
fin contains one representative from every equivalence class of ∼α,

• for every path σ in ΣP
fin and every time instant σj the set P(σj) remains the same as in ΣP ,

• for every path σ in ΣP
fin and every time instant σj the probability space ProbΣ

P
fin(σj , i) is obtained by 

the restriction of ProbΣ
P (σj , i) to the algebra generated by sets of the form [at] ∩ ΣP

fin.

The last condition implies that the measures μΣP (σj , i) and μΣP
fin(σj , i) coincide on sets of the form [β] for 

every β ∈ Subfor(α).
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The next lemma shows that satisfiability of subformulas of α in ΣP is preserved in ΣP
fin.

Lemma 3. For every β ∈ Subfor(α), every path σ in ΣP
fin and every σj

ΣP , σj |= β iff ΣP
fin, σj |= β.

Proof. The statement can be proved using induction on the structure of formulas. Since differences between 
paths in ΣP and ΣP

fin are related to the corresponding probability spaces, the statement holds trivially for 
propositional letters and every β ∈ Subfor(α) with the leading temporal or classical operator. It remains 
to consider subformulas of α of the form f ≥ 0. Then, a check based on the complexity of subterms in f
gives that fΣP ,σj = fΣP

fin,σj . Thus, ΣP , σj |= f ≥ 0 iff ΣP
fin, σj |= f ≥ 0.

7.3. Decision procedure

The previous subsections imply that to check satisfiability of α it is enough to consider MPLLTL-
measurable structures containing only at most |At(α)| ultimately periodic paths. So, let us consider a 
structure ΣP :

• with n ≤ |At(α)| ≤ 2|α| ultimately periodic probabilistic paths, and
• for every σ = σ0, . . . , σiσ , . . . , σiσ+mσ−1, . . . in ΣP the lengths of staring index iσ and period mσ are at 

most 2|α| and 41+|α|, respectively.

For such a structure ΣP the set

ΣP = {{σ1
0 , . . . , σ

1
iσ1 , . . . , σ

1
iσ1+mσ1−1}, . . . , {σn

0 , . . . , σ
n
iσn , . . . , σ

n
iσn+mσn−1}}

is called carrier. Note that, although the number of considered structures related to α is not bounded 
(because of probability spaces attached to states), the number of the corresponding carriers is finite. Since 
the number of atoms of α is also finite, there is only a finite number of different ways to distribute those 
atoms to states in carriers.

So, let us consider a carrier ΣP with atoms denoted

at(σ1
0), . . . , at(σ1

iσ1 ), . . . , at(σ1
iσ1+mσ1−1), . . . , at(σn

iσn+mσn−1)

attached to the corresponding states. Particularly, to at least one σj an atom at is attached such that α ∈ at.
Now, the idea of the procedure is to check whether it is possible that all of the above atoms hold in the 

corresponding time instants. The affirmative answer implies that α is satisfiable, since it is required that 
for at least one atom at, α ∈ at. Assuming that:

• for every σj in a path σ and for every propositional letter p ∈ P ∩ Subfor(α), p ∈ P(σj) iff p ∈ at(σj)

we can check whether ΣP , σj |= at(σj) in the following way by recursively analyzing formulas that appear 
in the top conjunctions of atoms attached to the time instants from the path σ:

• for every propositional letter p ∈ at(σj), ΣP , σj |= p,
• for ¬β ∈ at(σj), ΣP , σj |= ¬β iff ΣP , σj �|= ¬β,
• for β ∧ γ ∈ at(σj), ΣP , σj |= β ∧ γ iff ΣP , σj |= β and ΣP , σj |= γ,
• for ©β ∈ at(σj), ΣP , σj |= ©β iff ΣP , σj+1 |= β, with the proviso that if j = iσ +mσ − 1, j + 1 denotes 

iσ,
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• for βUγ ∈ at(σj), thanks to the requirement that U -formulas satisfied in σiσ , is fulfilled before σiσ+mσ
, 

to check whether ΣP , σj |= βUγ means to check whether β and γ are satisfied in a finite number of time 
instants from the path σ.

Finally, to consider probabilistic constraints, i.e., formulas of the forms f ≥ 0, ¬f ≥ 0 ∈ at(σj) we have 
to check if there are probability spaces such that those formulas are satisfied in σ≥j. Recall that atoms are 
mutually exclusive and that every β ∈ Subfor(α) is equivalent to the disjunctions of all atoms in which 
β appears in the top conjunctions. For every σj in a path σ and for the atom at(σj) we consider the 
corresponding system of (in)equalities:

∑

at∈At(α)

μ(σj , i)([[at]]) = 1, for every agent i ∈ Agt (12)

μ(σj , i)([[at]]) � 0, for all at ∈ At(α), i ∈ Agt (13)

fΣP ,σj � 0, for every f ≥ 0 ∈ at(σj) (14)

fΣP ,σj < 0, for every ¬f ≥ 0 ∈ at(σj) (15)

where [[at]] denotes the set of all probabilistic paths σ such that at = at(σ0), and the notion fΣP ,σj is the 
same as it is introduced in Definition 16 with the additional condition that:

• wi(β)ΣP ,σj =
∑

at∈At(α),β∈at μ(σj , i)([[at]]).

The (in)equalities (12) and (13) correspond to the standard properties of probability measures: the proba-
bility of the set of all paths is 1 and the probability of every measurable set of paths is nonnegative. The 
equalities (14) and (15) correspond to positive and negative probabilistic constraints that appear in at(σj). 
For example, the inequalities (14) mean that for f ≥ 0 ∈ at(σj). Note that, since we consider polynomial 
weight formulas, in the above system polynomials in wi(β)ΣP ,σj appear.

For the considered carrier ΣP the union LS of all such systems corresponding to states is finite and, 
thanks to the decision procedure from [3], it can be examined in a finite number of steps. LS is solvable iff 
there are probability measures which satisfies formulas of the form f ≥ 0 and ¬f ≥ 0 that appear in the top 
conjunction of atoms attached to states.

Thus, we can prove:

Theorem 8 (Decidability). Satisfiability of MPLLTL-formulas in the class of MPLLTL- measurable structure 
is decidable.

Proof. Decidability follows from the above described procedure since:

• for any α there is only a finite number of carriers,
• there is a finite number of ways in which atoms can be attached to time instants,
• satisfiability of atoms in the corresponding time instants can be checked in a finite number of steps,
• if atoms are satisfiable, since to at least one σj an atom at is attached such that α ∈ at, α is also 

satisfiable, and
• if there is no carrier such that atoms can be attached to its time instants so that the atoms are satisfiable, 

α is not satisfiable. �
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8. Conclusion

In this paper, we introduced two logics for probabilistic temporal reasoning. The languages of both logics 
contain both LTL formulas and polynomial weight formulas in the style of [14].

The first logic, PLLTL is designed for probabilistic reasoning about temporal information, and its lan-
guage allows the probabilistic operator w to be applied to LTL formulas. The corresponding semantics 
consists of a probability spaces over worlds, where each world contains one path of LTL. We propose 
an axiomatization for the logic and prove strong completeness, modifying some of our earlier methods 
[5,7,31,35,41]. Since the semantical relationship between the operators “next” and “until” explicitly requires 
σ-additive semantics, the axiomatization contains infinitary rules of inference. We show that the satisfia-
bility problem is decidable in PSPACE, which is neither more complex than satisfiability of LTL nor the 
satisfiability of PWF alone.

Our second logic MPLLTL uses a non-restricted modal approach to probabilistic temporal logic, and 
allows all temporal and probabilistic modalities to be combined in an arbitrary way. The semantics of 
MPLLTL generalize paths of linear-time temporal logic by assigning probability spaces to all time instances 
of paths. We proved that the problem of satisfiability of formulas of MPLLTL is decidable. We propose 
development of a complete axiom system for MPLLTL as a topic for future work. We hope that this can 
be obtained by combining the techniques presented here with those presented in [26]. Ognjanović et al. 
[36] presented the logic PTEL, which has some similarity with MPLLTL, and proved its decidability. The 
language of PTEL involves epistemic, temporal and probability operators, so in that sense its semantics 
is more complicated than the semantics for MPLLTL where epistemic aspects are not considered. On the 
other hand, only probabilistic formulas equivalent to the form wi(α) ≥ s are allowed in PTEL (i.e., there 
are no arithmetical operations built into syntax), so expressiveness of MPLLTL (where polynomial weight 
formulas are allowed) is much broader in that domain. Also, as a consequence, the decision procedure for 
MPLLTL is more general than the decision procedure for PTEL since consideration of polynomial weight 
formulas must be involved.

The two most common interpretations of probabilities are: objective probabilities, where the numbers 
represent relative frequencies, and subjective probability, where the numbers reflect subjective assessments 
of likelihood [21]. We believe that our first logic, PLLTL, can be useful to model both the cases when 
frequence-based probabilities are assigned on temporal events (e.g. prediction where a cell phone will be in 
the future may be derived probabilistically from past logs showing the object’s location [18]), and in the 
cases where subjective probabilities are used (e.g., a subjective probability of an agent that represents the 
chance that his favorite football team will win tomorrow). Indeed, the same formal mathematical definition 
of probability measures holds for both interpretations.

For our second logic, MPLLTL, the situation is essentially different. The semantics of MPLLTL contain 
multiple agents that are allowed to place different probabilities to an event. Typically, such frameworks are 
used to model situations where probability values represent the subjective probabilities the agents assign to 
events [12,9].2

In the logic MPLLTL we can also apply temporal operators to probabilistic formulas, so one question 
that naturally arises is: how do probabilities change over time? We are not aware that the interaction 
between the probabilistic and the temporal modalities is systematically studied in the literature. A possible 
starting point for such a research would be the study on the interrelationship between knowledge and time 
presented in [22]. They analyzed semantically the properties of knowledge based on different assumptions 

2 Actually, Fagin and Halpern [13] emphasized that those semantics can be restricted to model also objective probability, by 
restricting the models in the way that in each state the probability spaces of all agents coincide. They have considered that 
restriction in the context of an epistemic probabilistic framework, to model the situations where all the probabilistic events are 
common knowledge (for example, if there is a global coin). However, we believe that in our logic such a restriction would not be 
of interest from multi-agent perspective, as we do not have any other modality that would help to distinguish between agents.
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of the underlying system (for example, whether the agents have perfect recall, which intuitively means that 
an agent’s local state encodes everything that has happened - from her point of view - thus far in the 
run). It seems that a comparison of this approach with probabilistic temporal frameworks can be only done 
if we assume that knowledge is equated with certainty, i.e., an agent knows α if she places probability 
1 to α (this approach is studied by van Eijck and Schwarzentruber [9]). We should emphasize that this 
interpretation of probability would require additional constraints on probability spaces, that would ensure 
desirable properties of the implied indistinguishability relation (like reflexivity and transitivity). However, 
there are also situations in which probability of an agent does not represent approximation of knowledge. 
For example, an agent might place one probability value to the event “it will rain on Friday” on Wednesday, 
and another one on Thursday, if she forms her probabilistic belief based on some weather forecast website. 
In addition, an agent can update her probability on the hypotheses as the effect of the observations (which 
is formalized by Halpern and Pucella [23]), or probabilities can change as the effect of actions of agents [17]. 
Each of those situations requires an extension of the semantics (with observations over time and actions, 
respectively). In this paper, our focus is not on any specific scenario (which would require further extensions 
of our semantics), but on formal properties like completeness for σ-additive semantics and decidability. We 
especially hope that our axiomatization could be used in various extensions of our general framework.

Some probabilistic LTL’s were motivated by the need to analyze probabilistic programs and stochastic 
systems [8,15,24,28,29]. In some of them, probabilistic operators are not explicitly mentioned in the formulas, 
while in the others it is possible to directly express probabilities. Our logic allows one to quantify runs 
satisfying some properties. In this paper we restrict our attention to theoretical issues, while the possible 
applications (e.g., heuristic procedures for satisfiability checking) are left for the future work.
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